Numerical convergence for a diffuse limit of hyperbolic systems on bounded domain - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Numerical convergence for a diffuse limit of hyperbolic systems on bounded domain

Résumé

This paper deals with the diffusive limit of the scaled Goldstein-Taylor model and its approximation by an Asymptotic Preserving Finite Volume scheme. The problem is set in some bounded interval with nonhomogeneous boundary conditions depending on time. We obtain a uniform estimate in the small parameter ε using a relative entropy of the discrete solution with respect to a suitable profile which satisfies the boundary conditions expected to hold as ε goes to 0. Key words: Diffusive limit of hyperbolic systems, initial boundary value problem, finite volume approximation, asymptotic preserving scheme MSC (2010): 65M08, 65M12, 35L50
Fichier principal
Vignette du fichier
Mathis_Therme-FVCA8.pdf (139 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01872359 , version 1 (12-09-2018)

Identifiants

  • HAL Id : hal-01872359 , version 1

Citer

Hélène Mathis, Nicolas Therme. Numerical convergence for a diffuse limit of hyperbolic systems on bounded domain. FVCA 8, Jun 2017, Lille, France. ⟨hal-01872359⟩
42 Consultations
46 Téléchargements

Partager

More