Algorithms for triple-word arithmetic - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Computers Année : 2019

Algorithms for triple-word arithmetic

Nicolas Fabiano
  • Fonction : Auteur
  • PersonId : 1036210
Jean-Michel Muller
Joris Picot

Résumé

Triple-word arithmetic consists in representing high-precision numbers as the unevaluated sum of three floating-point numbers (with "nonoverlapping" constraints that are explicited in the paper). We introduce and analyze various algorithms for manipulating triple-word numbers: rounding a triple-word number to a floating-point number, adding, multiplying, dividing, and computing square-roots of triple-word numbers, etc. We compare our algorithms, implemented in the Campary library, with other solutions of comparable accuracy. It turns out that our new algorithms are significantly faster than what one would obtain by just using the usual floating-point expansion algorithms in the special case of expansions of length 3.
Fichier principal
Vignette du fichier
TW-final.pdf (3.66 Mo) Télécharger le fichier
Appendix.pdf (228.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01869009 , version 1 (06-09-2018)
hal-01869009 , version 2 (20-05-2019)

Identifiants

Citer

Nicolas Fabiano, Jean-Michel Muller, Joris Picot. Algorithms for triple-word arithmetic. IEEE Transactions on Computers, 2019, 68 (11), pp.1573-1583. ⟨10.1109/TC.2019.2918451⟩. ⟨hal-01869009v2⟩
455 Consultations
540 Téléchargements

Altmetric

Partager

More