Appendix to “Algorithms for triple-word
arithmetic”

N. Fabiano J.M. Muller J. Picot

1 Analysis of Algorithm 13 and Proof of Theorem
9 (reciprocal of a TW)

1.1 Bound on the error

Momentarily, the computation of i is seen as a black box (see Section ??). We
have
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Remark 1. This term is ultimately negligible if p is large, because the accuracy
is doubled at each step so it jumps from roughly 2 words to roughly 4 instead of
gust 8. Thus it is not a problem that computations were not performed accurately,
for instance starting with 1 + 2u instead of 1.

We denote d; the relative error committed when computing i (taken relatively
to zb) and J, the one for jj. They are supposed less than 20u® (see later).
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To conclude, we only have to bound ¢; and - as accurately as possible depending
on the algorithms used.

1.2 Computation of i

We have seen that |bZ — 1| < 35u2. Inside the computation of 3Prods 3(b, 7),
we have seen that |& — bZ| < 20u. Thus |6 — 1| < 36u?. Given that € is
F-nonoverlapping, we have |eg — &| < (1 — 27 %)uls(eg). If |eg| < 1, then |e| >
(1—u)+ (1 -2 =1—-2"% < 1 — 36u?, which is excluded, and we can
exclude similarly |eg| > 1. Thus ey = 1.

This property is the one that necessitates p > 10. It probably works for some
smaller values of p, but we have no proof of that.

Therefore, in order to compute 2 — 3Pr0d273(l_), Z), we can simply replace
e1,... by their opposites by turning some + into — operations and conversely
in order not to waste any operation. Correctness and the error bound are still
ensured for the same reasons. For instance, if we choose to use the accurate



version, we obtain Algorithm ??. One operation (the computation of eg) is saved
compared to the general version.

Algorithm 16 — 2 - 3Prod3% (bo, b1, zo, T1,72). (44 operations & 2 tests)

Zdos Zop  2Prod(bo, 7o)

Za1s 201 < 2Prod(bg, 1)

210y 210 < 2Prod(by, )

by, by, by < VecSum(zq, 2015 210)
¢« RN(b) + byz,) (FMA)

23,1 ¢ RN(Z;O + boxl) (FMA)
z3 <= RN(z3.2 + 251)

1, €2, €3, €4 < VecSum(—bf, —b), —c, —z3)
(o =1)

e1 + Fast2Sumy (1)(—2g, s1)
11,19 VSEB(2)(€1, €9, €3, 64)
return (1,i1,12)

1.3 Computation of y

We have very precise information about 4, so we use a modified version of the
fast algorithm.

Algorithm 17 — 3Prod§?§t(b0, b1, (1),41,%2). (20 operations)

2d1s 201 < 2Prod(by, i1)

0, b} < Fast2Sum(by, zg;)
23,1 < RN(Zo_l + blil) (FMA)
23 < RN(2’371 + boig) (FMA)
€0, €1, €2 < VecSum(bg, bj, s3)
Yo < €o
Y1, Y2 < Fast2Sum(eq, es)
return (yo,y1,Yy2)

Remark 2. In VecSum(by, by, s3), the sum of b, and sz is performed with a
28um in order to ensure correctness, but we can still use a Fast2Sum for the
second one.

A Fast2Sum can be used for the sum of by and zarl because if the condition
for Fast2Sum to be errorless is not satisfied, this means that |bi| is very small,
so that the global error will be small anyway.

Given the estimates on i, basically all errors are negligible, except the one
when computing s3. We get:
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Thus we can take 69 = u® + 260u?.

1.4 Final error bound and number of operations

We can take 6; = 10.5u® + 39u? if we use the accurate version for the first
3Prods 3, and 61 = 18u® + 75u? if we use the fast version. Theorem 9 follows
from that.

2 Analysis of Algorithm 14 and Proof of Theorem
10 (division of two TW numbers)

For the computation of zb in Algorithm 14, 3Prods, s is used (the relative error
is denoted by d3). The multiplication algorithm, to be used at the last line of
Algorithm 14, that takes into account that ig = 1 is Algorithm 7?7 below

Algorithm 18 — 3Prod§?§t(ao, ay,az, (1),41,42). (21 operations)

215 201 < 2Prod(ag, i1)

by, by + Fast2Sum(ay, z3;)

23,1 < RN(Z(;I + alil) (FMA)
23,2 < RN(Zg,l + aoig) (FMA)
23 RN(Z372 + b/l)

§3 < RN(Z3 + CLQ)

€o, €1, €2 < VecSum(by, b, s3)
Yo < €o

Y1, Y2 + Fast2Sum(eq, e2)
return (yo,y1,y2)

The error analysis is similar to the one of Algorithm ?? with an additional
2u?, and we get
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< < 3u® + 264u*.

Globally, we have,
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If we use the “accurate” versions of the multiplication algorithms, we can
use §; = 10.5u® + 39u? = §3, and if we use the “fast” versions, we can use
91 = 18u3 + 75u* = §5. This gives Theorem 10.



3 Analysis of Algorithm 15 and Proof of Theorem
11 (square root of a TW number)

Much of the analysis is very similar to what was done for reciprocal and division,
so we only focus on the differences.

The computation of h((f) in Algorithm 15 is exact because h((fi > 0.5 (this is
why we started with 1 + 4u instead of 1). l

The computation of i(!) is performed with one of the 3Prods 3 algorithms
(relative error bounded by 41).

The computation of i(2) is performed using Algorithm ?? (or its fast version),
where the penultimate line is replaced by e; <+ Fast2Sum(.5)(—zg,, s1) (relative
error bounded by d3). This works provided that p > 11.

The computation of § is performed using Algorithm ?? (relative error bounded
by 85 = 3u3 + 263u?).

We obtain
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Globally, we have
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which gives Theorem 11.



