
Appendix to “Algorithms for triple-word
arithmetic”

N. Fabiano J.M. Muller J. Picot

1 Analysis of Algorithm 13 and Proof of Theorem
9 (reciprocal of a TW)

1.1 Bound on the error
Momentarily, the computation of �̄� is seen as a black box (see Section ??). We
have ⃒⃒⃒

𝑎− 1
𝑥0

⃒⃒⃒
≤

⃒⃒⃒
𝑎− 1+2𝑢

𝑥0

⃒⃒⃒
+
⃒⃒⃒
1+2𝑢
𝑥0
− 1

𝑥0

⃒⃒⃒
≤ 𝑢

⃒⃒⃒
1+2𝑢
𝑥0

⃒⃒⃒
+
⃒⃒⃒
2𝑢
𝑥0

⃒⃒⃒
≤ (3𝑢 + 2𝑢2) ·

⃒⃒⃒
1
𝑥0

⃒⃒⃒
,

which implies
⃒⃒⃒
1−3.1𝑢

𝑥0

⃒⃒⃒
≤ |𝑎| ≤

⃒⃒⃒
1+3.1𝑢

𝑥0

⃒⃒⃒
, so that |ℎ1| ≤ (1 + 𝑢)(𝑢 · |𝑎𝑥0| + |𝑎| ·

2𝑢|𝑥0|) ≤ 3𝑢 + 13𝑢2. Now,⃒⃒⃒
1
𝑥0
− 1

𝑥0+𝑥1

⃒⃒⃒
=

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒ ⃒⃒⃒
1− 𝑥0+𝑥1

𝑥0

⃒⃒⃒
≤ (2𝑢− 2𝑢2)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒⃒⃒⃒
𝑎− 1

𝑥0+𝑥1

⃒⃒⃒
≤ (5𝑢 + 6𝑢2)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒
⃒⃒⃒
𝑎(2− 𝑎(𝑥0 + 𝑥1))− 1

𝑥0+𝑥1

⃒⃒⃒
= |𝑥0 + 𝑥1|

(︁
𝑎− 1

𝑥0+𝑥1

)︁2

≤ (25𝑢2 + 61𝑢3)
⃒⃒⃒

1
𝑥0+𝑥1

⃒⃒⃒
Hence, |𝑎| ≤

⃒⃒⃒
1+6𝑢
𝑥0+𝑥1

⃒⃒⃒
. Now, we have,⃒⃒

ℎ̄− (2− 𝑎(𝑥0 + 𝑥1))
⃒⃒

= |ℎ1 − (−ℎ1,1 − 𝑎𝑥1)|
≤ 𝑢 · |ℎ1|
≤ 3𝑢2 + 13𝑢3⃒⃒

�̄�− 𝑎ℎ̄
⃒⃒

= |𝑏1,2 − (𝑏1,1 + 𝑎ℎ1)|
≤ 𝑢|𝑏1,1 + 𝑎ℎ1|
≤ 𝑢 (𝑢|𝑎|(1− 2𝑢) + |𝑎ℎ1|)
≤ (4𝑢2 + 11𝑢3)|𝑎|

1

⃒⃒⃒
�̄�− 1

𝑥0+𝑥1

⃒⃒⃒
≤ (7𝑢2 + 24𝑢3)|𝑎|+ (25𝑢2 + 61𝑢3)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒
≤ (32𝑢2 + 121𝑢3)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒
⃒⃒⃒

1
𝑥0+𝑥1

− 1
�̄�

⃒⃒⃒
=

⃒⃒
1
�̄�

⃒⃒ ⃒⃒⃒
1− �̄�

𝑥0+𝑥1

⃒⃒⃒
≤ 2𝑢2

1−2𝑢

⃒⃒
1
�̄�

⃒⃒
≤ (2𝑢2 + 5𝑢3)

⃒⃒
1
�̄�

⃒⃒⃒⃒
�̄�− 1

�̄�

⃒⃒
≤ (34𝑢2 + 126𝑢3)

⃒⃒
1
�̄�

⃒⃒⃒⃒
�̄�(2− �̄��̄�)− 1

�̄�

⃒⃒
= |�̄�|(�̄�− 1

�̄�)2

≤ 1165𝑢4
⃒⃒
1
�̄�

⃒⃒
→

⃒⃒⃒
1−35𝑢2

�̄�

⃒⃒⃒
≤ |�̄�| ≤

⃒⃒⃒
1+35𝑢2

�̄�

⃒⃒⃒
Remark 1. This term is ultimately negligible if 𝑝 is large, because the accuracy
is doubled at each step so it jumps from roughly 2 words to roughly 4 instead of
just 3. Thus it is not a problem that computations were not performed accurately,
for instance starting with 1 + 2𝑢 instead of 1.

We denote 𝛿1 the relative error committed when computing �̄� (taken relatively
to �̄��̄�) and 𝛿2 the one for 𝑦. They are supposed less than 20𝑢3 (see later).⃒⃒̄

𝑖− (2− �̄��̄�)
⃒⃒
≤ 𝛿1|�̄��̄�|
≤ 𝛿1(1 + 35𝑢2)

|̄𝑖| ≤ |2− �̄��̄�|+ 𝛿1(1 + 35𝑢2)
≤ 1 + 35𝑢2⃒⃒

𝑦 − �̄̄�𝑖
⃒⃒
≤ 𝛿2|�̄̄�𝑖|
≤ 𝛿2(1 + 35𝑢2)|�̄�|⃒⃒

𝑦 − 1
�̄�

⃒⃒
≤ (𝛿1 + 𝛿2)(1 + 35𝑢2)|�̄�|+ 1165𝑢4

⃒⃒
1
�̄�

⃒⃒
≤

(︀
(𝛿1 + 𝛿2)(1 + 70𝑢2) + 1165𝑢4

)︀ ⃒⃒
1
�̄�

⃒⃒
.

To conclude, we only have to bound 𝛿1 and 𝛿2 as accurately as possible depending
on the algorithms used.

1.2 Computation of �̄�
We have seen that |�̄��̄� − 1| ≤ 35𝑢2. Inside the computation of 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�),
we have seen that |𝑒 − �̄��̄�| ≤ 20𝑢3. Thus |𝑒 − 1| ≤ 36𝑢2. Given that 𝑒 is
F-nonoverlapping, we have |𝑒0 − 𝑒| ≤ (1 − 2−4)uls(𝑒0). If |𝑒0| < 1, then |𝑒| ≥
(1 − 𝑢) + (1 − 2−4)𝑢 = 1 − 2−4𝑢 < 1 − 36𝑢2, which is excluded, and we can
exclude similarly |𝑒0| > 1. Thus 𝑒0 = 1.

This property is the one that necessitates 𝑝 ≥ 10. It probably works for some
smaller values of 𝑝, but we have no proof of that.

Therefore, in order to compute 2 − 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�), we can simply replace
𝑒1, . . . by their opposites by turning some + into − operations and conversely
in order not to waste any operation. Correctness and the error bound are still
ensured for the same reasons. For instance, if we choose to use the accurate

2

version, we obtain Algorithm ??. One operation (the computation of 𝑒0) is saved
compared to the general version.

Algorithm 16 – 2 - 3Prodacc
2,3 (𝑏0, 𝑏1, 𝑥0, 𝑥1, 𝑥2). (44 operations & 2 tests)

𝑧+00, 𝑧
−
00 ← 2Prod(𝑏0, 𝑥0)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑏0, 𝑥1)

𝑧+10, 𝑧
−
10 ← 2Prod(𝑏1, 𝑥0)

𝑏′0, 𝑏
′
1, 𝑏

′
2 ← VecSum(𝑧−00, 𝑧

+
01, 𝑧

+
10)

𝑐← RN(𝑏′2 + 𝑏1𝑥1) (FMA)
𝑧3,1 ← RN(𝑧−10 + 𝑏0𝑥1) (FMA)
𝑧3 ← RN(𝑧3,2 + 𝑧−01)
𝑠1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(−𝑏′0,−𝑏′1,−𝑐,−𝑧3)
(𝑖0 = 1)
𝑒1 ← Fast2Sum2(1)(−𝑧+00, 𝑠1)
𝑖1, 𝑖2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)
return (1, 𝑖1, 𝑖2)

1.3 Computation of 𝑦
We have very precise information about �̄�, so we use a modified version of the
fast algorithm.

Algorithm 17 – 3Prodfast
2,3 (𝑏0, 𝑏1, (1), 𝑖1, 𝑖2). (20 operations)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑏0, 𝑖1)

𝑏′0, 𝑏
′
1 ← Fast2Sum(𝑏1, 𝑧

+
01)

𝑧3,1 ← RN(𝑧−01 + 𝑏1𝑖1) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑏0𝑖2) (FMA)
𝑠3 ← RN(𝑏′1 + 𝑧3)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑏0, 𝑏

′
0, 𝑠3)

𝑦0 ← 𝑒0
𝑦1, 𝑦2 ← Fast2Sum(𝑒1, 𝑒2)
return (𝑦0, 𝑦1, 𝑦2)

Remark 2. In VecSum(𝑏0, 𝑏
′
0, 𝑠3), the sum of 𝑏′0 and 𝑠3 is performed with a

2Sum in order to ensure correctness, but we can still use a Fast2Sum for the
second one.

A Fast2Sum can be used for the sum of 𝑏1 and 𝑧+01 because if the condition
for Fast2Sum to be errorless is not satisfied, this means that |𝑏1| is very small,
so that the global error will be small anyway.

Given the estimates on �̄�, basically all errors are negligible, except the one
when computing 𝑠3. We get:⃒⃒⃒⃒

𝑦 − �̄̄�𝑖

�̄̄�𝑖

⃒⃒⃒⃒
≤ 𝑢3 + 256𝑢4

(1− 2𝑢)(1− 35𝑢2)

3

Thus we can take 𝛿2 = 𝑢3 + 260𝑢4.

1.4 Final error bound and number of operations
We can take 𝛿1 = 10.5𝑢3 + 39𝑢4 if we use the accurate version for the first
3𝑃𝑟𝑜𝑑2,3, and 𝛿1 = 18𝑢3 + 75𝑢4 if we use the fast version. Theorem 9 follows
from that.

2 Analysis of Algorithm 14 and Proof of Theorem
10 (division of two TW numbers)

For the computation of 𝑧�̄� in Algorithm 14, 3𝑃𝑟𝑜𝑑2,3 is used (the relative error
is denoted by 𝛿3). The multiplication algorithm, to be used at the last line of
Algorithm 14, that takes into account that 𝑖0 = 1 is Algorithm ?? below

Algorithm 18 – 3Prodfast
3,3 (𝑎0, 𝑎1, 𝑎2, (1), 𝑖1, 𝑖2). (21 operations)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑎0, 𝑖1)

𝑏′0, 𝑏
′
1 ← Fast2Sum(𝑎1, 𝑧

+
01)

𝑧3,1 ← RN(𝑧−01 + 𝑎1𝑖1) (FMA)
𝑧3,2 ← RN(𝑧3,1 + 𝑎0𝑖2) (FMA)
𝑧3 ← RN(𝑧3,2 + 𝑏′1)
𝑠3 ← RN(𝑧3 + 𝑎2)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑏0, 𝑏

′
0, 𝑠3)

𝑦0 ← 𝑒0
𝑦1, 𝑦2 ← Fast2Sum(𝑒1, 𝑒2)
return (𝑦0, 𝑦1, 𝑦2)

The error analysis is similar to the one of Algorithm ?? with an additional
2𝑢3, and we get ⃒⃒⃒⃒

𝑦 − �̄��̄�

�̄��̄�

⃒⃒⃒⃒
≤ 3𝑢3 + 256𝑢4

(1− 2𝑢)(1− 35𝑢2)
≤ 3𝑢3 + 264𝑢4.

Globally, we have,⃒⃒⃒
𝑦 − 𝑧

�̄�

⃒⃒⃒
≤

(︀
(𝛿1 + 𝛿2 + 𝛿3)(1 + 70𝑢2) + 1165𝑢4

)︀ ⃒⃒⃒ 𝑧
�̄�

⃒⃒⃒
If we use the “accurate” versions of the multiplication algorithms, we can

use 𝛿1 = 10.5𝑢3 + 39𝑢4 = 𝛿3, and if we use the “fast” versions, we can use
𝛿1 = 18𝑢3 + 75𝑢4 = 𝛿3. This gives Theorem 10.

4

3 Analysis of Algorithm 15 and Proof of Theorem
11 (square root of a TW number)

Much of the analysis is very similar to what was done for reciprocal and division,
so we only focus on the differences.

The computation of ℎ(2)
0 in Algorithm 15 is exact because ℎ

(2)
0,1 ≥ 0.5 (this is

why we started with 1 + 4𝑢 instead of 1).
The computation of 𝑖(1) is performed with one of the 3𝑃𝑟𝑜𝑑2,3 algorithms

(relative error bounded by 𝛿1).
The computation of 𝑖(2) is performed using Algorithm ?? (or its fast version),

where the penultimate line is replaced by 𝑒1 ← Fast2Sum(.5)(−𝑧+00, 𝑠1) (relative
error bounded by 𝛿2). This works provided that 𝑝 ≥ 11.

The computation of 𝑦 is performed using Algorithm ?? (relative error bounded
by 𝛿3 = 3𝑢3 + 263𝑢4).

We obtain ⃒⃒⃒⃒
�̄�− 1√

�̄�

⃒⃒⃒⃒
≤ (81𝑢2 + 622𝑢3)

⃒⃒⃒⃒
1√
�̄�

⃒⃒⃒⃒
, and⃒⃒⃒⃒

�̄��̄�(1.5− 1

2
�̄�2�̄�)−

√
�̄�

⃒⃒⃒⃒
≤ 9916𝑢4

√
�̄�

Globally, we have

⃒⃒⃒
𝑦 −
√
�̄�
⃒⃒⃒
≤

⎛⎜⎜⎝
𝛿1(1.5 + 287𝑢2)

+𝛿2(0.5 + 123𝑢2)
+𝛿3(1 + 162𝑢2)

+9916𝑢4

⎞⎟⎟⎠√�̄�
which gives Theorem 11.

5

