Real structures on horospherical varieties
Structures réelles sur des variétés horosphériques
Résumé
We study the equivariant real structures on complex horospherical varieties, generalizing classical results known for toric varieties and flag varieties. In particular, we obtain a necessary and sufficient condition for the existence of such real structures and determine the number of equivalence classes. We then apply our results to classify the equivariant real structures on smooth projective horospherical varieties of Picard rank 1.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|