Sharp decay estimates for critical Dirac equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Sharp decay estimates for critical Dirac equations

Résumé

We prove sharp decay estimates for critical Dirac equations on R n , with n 2. They appear, e.g., in the study of critical Dirac equations on compact spin mani-folds, describing blow-up profiles (the so-called bubbles) in the associated variational problem. We establish regularity and integrability properties of L 2-solutions (where 2 is the Sobolev critical exponent of the embedding of H 1 2 (R n , C N) into Lebesgue spaces) and prove decay estimates, which are shown to be optimal proving the existence of a family of solutions having the prescribed asymptotic behavior.
Fichier principal
Vignette du fichier
DecayDirac.pdf (252.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01865427 , version 1 (31-08-2018)
hal-01865427 , version 2 (11-12-2018)

Identifiants

  • HAL Id : hal-01865427 , version 1

Citer

William Borrelli. Sharp decay estimates for critical Dirac equations. 2018. ⟨hal-01865427v1⟩
93 Consultations
128 Téléchargements

Partager

More