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SHARP DECAY ESTIMATES FOR CRITICAL DIRAC EQUATIONS

WILLIAM BORRELLI

Abstract. We prove sharp decay estimates for critical Dirac equations on R
n, with n > 2.

They appear, e.g., in the study of critical Dirac equations on compact spin mani-

folds, describing blow-up profiles (the so-called bubbles) in the associated variational prob-

lem. We establish regularity and integrability properties of L2
♯

-solutions (where 2♯ is the

Sobolev critical exponent of the embedding of H
1

2 (Rn,CN ) into Lebesgue spaces) and

prove decay estimates, which are shown to be optimal proving the existence of a family of

solutions having the prescribed asymptotic behavior.
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1. Introduction and preliminaries

This paper is devoted to the study of decay properties of solutions to nonlinear Dirac

equations of the form

D ψ = |ψ|2
♯−2ψ, on R

n, n > 2, (1)

2♯ := 2n
n−1 being the critical exponent for the embedding of

H
1

2 (Rn,CN ) →֒ Lp(Rn,CN ).

We prove that L2♯-solutions to (1) have polynomial decay at infinity, also showing that

the exact prescribed rate is attained by a family a solutions. This is in contrast with

the case of massive nonlinear Dirac equation, for which it is showed in [11] that solutions

have exponential decay, generalizing the method of [7] to deal with nonlinear bound states

in any dimensions. Estimates for second order elliptic equations can be found e.g. in

[32, 41, 40, 39] and in references therein. We also mention that sharp localization properties

for eigenfunctions of perturbed Dirac operators have been investigated in [14]. Moreover,
1
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recently critical Dirac equations in two dimensions have been studied as effective models

for honeycomb structures. The reader can refer to [10, 9, 8, 19, 21] and references therein.

Equations of the form (1) appear, for instance, in the blow-up analysis of the variational

problem associated with the equation

D ψ = µψ + |ψ|2
♯−2ψ, on M, µ ∈ R, (2)

where (M,g,Σ) is a compact spin manifold, that is, a compact riemannian manifold (M,g)

carrying a spin structure Σ [33, 22]. In that case the L2-spectrum of D is discrete and

composed of eigenvalues of finite multiplicity accumulating at ±∞ (see e.g. [22, 33, 28]).

Solutions to (2) can be found as critical point of the following C1-functional

L(ψ) =
1

2

∫

M
〈D ψ,ψ〉d volg −

µ

2

∫

M
|ψ|2d volg −

1

2♯

∫

Rn

|ψ|2
♯

d volg, (3)

defined on H
1

2 (ΣM) the space of H
1

2 -sections of the spinor bundle ΣM of the manifold.

Here d volg stands for the volume measure of (M,g).

We remark that for µ = 0 equation (2) is referred to as the spinorial Yamabe equation

and has been studied in [1, 4, 2]. Spinorial Yamabe-type equations have been studied

on manifolds of bounded geometry in [25]. Such equations also arise in the study of the

conformal geometry of manifolds, se e.g. [3, 2, 24, 35], and have been investigated by

different techniques in the case of spheres S
n [29, 30]. General existence and multiplicity

results for subcritical equations on compact spin manifolds are contained in [27]. We also

mention that for n = 2 the spinorial Yamabe equation is related to a spinorial analogue of

the supersymmetric extension of harmonic maps, the Dirac-harmonic maps [17, 16]. In [28]

Isobe proved existence and C1,α-regularity of a (non-trivial) solution to (2), when dimM >

4 and λ /∈ σ(D). In the same paper [28] he analyzed the behavior of a generic Palais-Smale

sequence (ψn)n∈N ⊆ H
1

2 (ΣM) for the functional L and proved that it decomposes as

ψn = ψ∞ +

M∑

j=1

ωj
n + o(1), in H

1

2 (ΣM), (4)

where ψ∞ is the weak limit of (ψn)n and the ωj
n are suitably rescaled spinors obtained

mapping solutions to (1) to spinors on the manifold M . Moreover, the spinors ωj
n are

centered around points ajn → aj ∈M , as n→ ∞, and

ωj
n ⇀ δαj , n→ ∞,

weakly in the sense of measure, δaj being the delta measure concentrated in aj. The above

decomposition is related to the fact that the equation (2) is critical as we are dealing with the

limiting Sobolev embeddingH
1

2 (ΣM) →֒ L2♯(ΣM), where the (local) loss of compactness is

due to the invariance with respect to scaling. Suitably identifying spinors on manifolds, as

described in [26], one can map, after scaling, solutions to (1) to bubbles ωj
k on the manifold

(see (4)). In this case invariance by scaling manifests itself in the symmetry of (1) with

respect to the transformation

ψ(·) 7→ λ
n−1

2 ψ(λ·), λ > 0. (5)
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More generally, as showed in [28], (1) is conformally invariant.

Remark that (4) is the spinorial analogue of the result of Struwe [36] for the Brezis-

Nirenberg problem [13].

Solutions to the limiting problem (1) belonging to H̊
1

2 (Rn,CN ) correspond to critical

points of the action functional

L0(ψ) =
1

2

∫

Rn

〈D ψ,ψ〉dx −
1

2♯

∫

Rn

|ψ|2
♯

dx, (6)

defined for spinors ψ ∈ H̊
1

2 (Rn,CN ) (see Section 1). Invariance by scaling (5) makes the

variational argument to find critical points of (6) more delicate, as can be seen from [10]

where we treated the two-dimensional case, and whose proof can be easily adapted to the

case n > 2 (see also Remark 1.3). On the other hand, such symmetry guarantees the

existence of non-trivial solutions. Indeed, as shown in [31], subcritical Dirac equations

D ψ = |ψ|p−2ψ, on R
n, 2 < p <

2n

n− 1
, (7)

admit no non-trivial weak solutions ψ ∈ Lp(Rn,CN ), essentially as a consequence of the

fact that the two terms in (7) scale differently.

Another result proved in [28] consists in the following energy gap estimate for solutions

to (1)

L0(ψ) >
1

2n

(n
2

)n
ωn, (8)

where ωn is the volume of the unit ball in R
n.

However, to our knowledge besides this estimate general qualitative properties of solu-

tions to (1) seem still to be investigated. We believe that understanding decay properties

might be useful in further investigations of critical Dirac equations on spin manifolds.

Definition 1.1. We say that ψ ∈ L2♯(Rn,CN ) is a weak solution to (1) if there holds
∫

Rn

〈D ϕ,ψ〉dx =

∫

Rn

|ψ|2
♯−2〈ϕ,ψ〉dx, ∀ϕ ∈ C∞

c (Rn,CN ). (9)

The main result of the paper is the following

Theorem 1.2. Any weak solution ψ ∈ L2♯(Rn,CN ) of (1) is such that

ψ ∈ C1,α(Rn,CN ) ∩ L
n

n−1
,∞(Rn,CN )

for some 0 < α < 1 and sastisfies the following decay estimate

|ψ(x)| 6
C

(1 + |x|n−1)
, ∀x ∈ R

n, (10)

for some C > 0. As a consequence,

ψ ∈ Lp(Rn,CN ), for n
n−1 < p 6 ∞.. (11)

Moreover estimate (10) is optimal, as there exists a family of smooth solutions ϕ ∈

L2♯(Rn,CN ) to (1) such that

|ϕ(x)| ∼
1

|x|n−1
, as |x| → +∞. (12)
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This also proves that in general

ψ /∈ L
n

n−1 (Rn,CN ). (13)

The proof of the theorem is achieved in two steps. First, regularity and decay estimates

are proved in Section 3. Then Section 4 is devoted to the existence of solutions having the

asymptotic behavior (12).

Remark 1.3. The family of optimizers mentioned in the above theorem can be characterized

as critical point of the action functional (6). More precisely, those solutions are ground

states of L0 in the sense that they have least action among all possible critical points of

the action. However, they do not minimize the functional (6) which is strongly indefinite,

even if one fixes the L2♯-norm, as a consequence of the unbounded negative spectrum of the

Dirac operator (see e.g. [37]). The proof follows as in [10], with minor changes, combining

duality and Nehari manifold arguments.

Remark 1.4. In [10] we studied a class of critical (cubic) Dirac equations in 2D with a

nonlinearity of the form

Gβ1,β2
(ψ)ψ =

(
(2β2|ψ1|

2 + β1|ψ2|
2)ψ1, (β1|ψ1|

2 + 2β2|ψ2|
2)ψ2

)T
, 0 < β2 6 β1, (14)

which appears as effective model, e.g., in nonlinear optics and condensed matter physics (see

[5, 20] and references therein). We proved the existence of a family of solutions satisfying

(10), as already recalled in the previous Remark. It is easy to see that Theorem 1.2 applies to

the case of the nonlinearity (14). More generally, we believe that Theorem 1.2 can be proved

for more general nonlinearities of critical growth, under suitable assumptions, adapting the

strategy developed in this paper. However, this is beyond the scopes of the present work.

The Dirac operator. The Dirac operator on R
n is defined as

D := −iα · ∇ = −i

n∑

j=1

αj∂xj
, (15)

with αj being N ×N hermitian matrices satisfying the anticommutation relations

αjαk + αkαj = 2δj,kIN , 1 6 j, k 6 n, (16)

δj,k and IN being the Kronecker symbol and the N × N identity matrix, respectively.

Here N = 2[
n+1

2 ], where [·] denotes the integer part of a real number. Matrices αj form

a representation of the Clifford algebra of the euclidean space (see e.g. [22]). Different

choices of the matrices satisfying (16) correspond to unitarily equivalent representations.

In the sequel we will suppose the matrices (αj)
n
j=1 to be fixed, without any reference to

their particular form as our results are not affected by that choice. This only amounts to

a unitary transformation on the space of Dirac spinors CN . For later purposes (see Section

4) we only assume matrices αj to have the following block-antidiagonal structure

αj =

(
0 σj

σj 0

)
, 1 6 j 6 n, (17)
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where the σj are
(
N
2 × N

2

)
hermitian matrices satisfying analogous anticommutation rela-

tions as in (16):

σjσk + σkσj = 2δj,kIN/2, 1 6 j, k 6 n.

By (16) one can easily check that

D2 = (−∆)IN . (18)

A more detailed presentation of Dirac operators and Clifford algebras can be found e.g.

in [22, 33].

Lorentz spaces. In this section we collect some definitions and results about Lorentz

spaces needed in the paper. They extend to Banach space-valued functions, replacing the

absolute value with the norm of the space. We state them in the C-valued case for simplicity.

Let Ω ⊆ R
n be a Lebesgue-measurable set and σ ∈ (0,∞), τ ∈ (0,∞]. The Lorentz space

Lσ,τ (Ω) is defined as the set of measurable function f : Ω → C such that ‖f‖Lσ,τ (Ω) < +∞,

where

‖f‖Lσ,τ (Ω) :=





σ1/τ
(∫ ∞

0
hτ−1µ ({|f | > h})τ/σ dh

)1/τ

, if τ <∞

sup
h>0

(
hσµ ({|f | > h})1/σ

)
, if τ = ∞.

(19)

Here µ denotes the n-dimensional Lebesgue measure. Recall that there holds

Lσ,σ(Ω) = Lσ(Ω), ∀σ ∈ (0,∞), (20)

and

Lσ,τ2(Ω) ⊆ Lσ,τ1(Ω), ∀σ ∈ (0,∞], ∀τ1, τ2 ∈ (0,∞], τ1 < τ2. (21)

The reader can refer to the book of Grafakos [23] for a detailed presentation.

The following results contained in [34] extend Hölder and Young inequalities to Lorentz

spaces.

Lemma 1.5 (Hölder inequality). Let Ω ⊆ R
n be Lebesgue-measurable and σ1, σ2, σ ∈

(0,∞), τ1, τ2, τ ∈ (0,∞] such that

1

σ1
+

1

σ2
=

1

σ
,

1

τ1
+

1

τ2
> τ, (22)

adopting the convention that 1/∞ = 0. Then there exists C > 0 such that for any f1 ∈

Lσ1,τ1(Ω) and f2 ∈ Lσ2,τ2(Ω) there holds f1f2 ∈ Lσ,τ (Ω), with

‖f1f2‖Lσ,τ (Ω) 6 C‖f1‖Lσ1,τ1(Ω)‖f2‖Lσ2,τ2(Ω). (23)

Lemma 1.6 (Young inequality). Let σ1, σ2, σ ∈ (0,∞), τ1, τ2, τ ∈ (0,∞] such that

1

σ1
+

1

σ2
=

1

σ
+ 1,

1

τ1
+

1

τ2
> τ, (24)

adopting the convention that 1/∞ = 0. Then there exists C > 0 such that for any f1 ∈

Lσ1,τ1(Rn) and f2 ∈ Lσ2,τ2(Rn) there holds f1 ∗ f2 ∈ Lσ,τ (Rn), with

‖f1 ∗ f2‖Lσ,τ (Rn) 6 C‖f1‖Lσ1,τ1 (Rn)‖f2‖Lσ2,τ2 (Rn), (25)
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where ∗ denotes the convolution of two functions.

Lemma 1.7 (A limit case of the Young inequality). Let σ ∈ (0,∞). There exists C > 0

such that for any f1 ∈ L1(Rn) and f2 ∈ Lσ,∞(Rn) there holds f1 ∗ f2 ∈ L
σ,∞(Rn), with

‖f1 ∗ f2‖Lσ,∞(Rn) 6 C‖f1‖L1(Rn)‖f2‖Lσ,∞(Rn). (26)

For simplicity, in the following we will frequently omit the domain in the notation of

functional spaces when this is clear from the context.

The Green function of D. The Green function Γ of the Dirac operator D is the matrix

valued kernel

Γ : Rn
x × R

n
y \ {x = y} −→ End(CN )

given by the distributional solution of the equation

Dx Γ(x, y) = δ(x − y)IN , x ∈ R
n (27)

where δ(x) is the delta distribution at x. The Green kernel is explicitely given, with an

abuse of notation, by

Γ(x, y) = Γ(x− y) := −
i

nωn
α ·

x− y

|x− y|n
(28)

where ωn is the volume of the unit ball in R
n and α = (αj)

n
j=1. Formula (28) can be

immediately obtained recalling that

D2 = (−∆)IN ,

and the well-known expression for the Green function of the laplacian. Moreover, by (28)

one can easily check that

Γ ∈ L
n

n−1
,∞(Rn,CN ). (29)

2. A Liouville-type lemma

Lemma 2.1 (A Liouville-type lemma for harmonic spinors). Fix p > 1. Let ψ ∈ Lp(Rn,CN )

be a weakly harmonic spinor, that is, a weak solution to

D ψ = 0. (30)

Then ψ ≡ 0.

Proof. Let ψ ∈ Lp(Rn,CN ) be a weak solution to (30). Then
∫

Rn

〈ψ,D χ〉dx = 0, ∀χ ∈ C∞
c (Rn,CN ). (31)

Consider a family (ρε)ε>0 of smooth mollifiers ρε ∈ C∞
c (Rn,R+) (see [18, Appendix C.5])

and define

ψε(x) := (ρε ∗ ψ) (x) =

∫

Rn

ρε(y)ψ(x − y)dy.

Since ψ ∈ L1
loc(R

n,CN ), by standard arguments there holds ψε ∈ C
∞(Rn,CN ).
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Given ϕ ∈ C∞
c (Rn,CN ), we have by Fubini theorem

∫

Rn

〈ψε(x),Dx ϕ(x)〉dx =

∫

Rn

dx

∫

Rn

dyρε(y)〈ψ(x− y),Dx ϕ(x)〉

=

∫

Rn

dyρε(y)

∫

Rn

dx〈ψ(x− y),Dx ϕ(x)〉 =
z=x−y

∫

Rn

dyρε(y)

∫

Rn

dz〈ψ(z),Dz ϕ(y + z)〉.

(32)

Remark that for all y ∈ R
n, ϕ(y + ·) ∈ C∞

c , and then by (31)
∫

Rn

dz〈ψ(z),Dz ϕ(y + z)〉 = 0,

and thus ∫

Rn

〈ψε,D ϕ〉dx = 0.

Being ϕ ∈ C∞
c arbitrary and since ψε ∈ C∞, we conclude that

D ψε = 0,

in classical sense, and by (18)

−∆ψε = 0.

Let ψε = (ψ1
ε , ..., ψ

N
ε )T , then all components ψj

ε : Rn → C of the spinor ψε are harmonic

functions. Fix j ∈ {1, ..., N}. Take x0 ∈ R
n and x ∈ Br(x0), for a fixed r > 0. Well-known

estimates on derivatives of harmonic functions (see [18, Theorem 4, Chapter 2.2]) give

|Dβψj
ε(x)| 6

Ck

rn+k
‖ψj

ε‖L1(Br(x)) 6
Ck

rn+k
‖ψj

ε‖L1(B2r(x0)), ∀x ∈ Br(x0), (33)

for each multi-index β of order |β| = k ∈ N.

Since ψj
ε → ψj in L1

loc as ε→ 0+ ([18, Appendix C.5]), in particular

‖ψj
ε‖L1(B2r(x0)) 6 C,

uniformly in ε. Then by (33) one concludes that

‖Dβψj
ε(x)‖L∞(Br(x0)) 6 Ck, ∀x ∈ Br(x0),

for each multi-index β of order |β| = k ∈ N.

Ascoli-Arzela’s theorem imply that we can extract a subsequence (ψj
k)k∈N such that

ψj
k −→ ψj , in C2(Br(x0)), as k → +∞.

In particular, we infer that ψj ∈ C2, and −∆ψj = 0, for all j = 1, ..., N . Moreover, recall

that ψj ∈ Lp. Fix x ∈ R
n. The mean-value property of harmonic functions and the Hölder

inequality give

|ψj(x)| 6
1

ωnrn

∫

Br(x)
|ψj(y)|dy .

1

rn/p
‖ψj‖Lp , ∀r > 0. (34)

Letting r −→ +∞ one gets ψj ≡ 0, thus concluding the proof. �
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3. Decay estimates and regularity

In this section we prove the C1-regularity and the decay estimates stated in Theorem

1.2, dividing the proof in several intermediate steps. To this aim we borrow some ideas

from [32, 41].

Let ψ ∈ L2♯(Rn,CN ) be a weak solution to (1).

Lemma 3.1. There holds

ψ = Γ ∗ (|ψ|2
♯−2ψ)

Proof. Recall that Γ ∈ L
n

n−1
,∞. Since ψ ∈ L2♯ and 2♯ = 2n

n−1 , we have |ψ|2
♯−2ψ ∈ L

2n
n+1 .

Define

ϕ := Γ ∗ (|ψ|2
♯−2ψ).

Then Young inequality (24) gives

ϕ ∈ L2♯(Rn,CN ),

and there holds

D ϕ = |ψ|2
♯−2ψ,

in distributional sense. This implies that

D(ψ − ϕ) = 0,

that is, the spinor (ψ −ϕ) ∈ L2♯ is weakly harmonic and then the claim follows by Lemma

2.1. �

Lemma 3.2. We have

ψ ∈ Lσ(Rn,CN ), for all σ ∈
(

n
n−1 ,

2n
n−2

)
.

Proof. We argue by contradiction. Let σ ∈
(

n
n−1 ,

2n
n−2

)
, and assume that ψ /∈ Lσ(Rn,CN ).

Then there exists a sequence (ϕk)k∈N ⊆ C∞
c (Rn,CN ) such that

lim
k→∞

∫

Rn

〈ψ,ϕk〉dx = +∞, and ‖ϕk‖Lσ′ 6 1, ∀k ∈ N, σ′ =
σ

σ − 1
. (35)

Moreover, since ψ ∈ L2♯ , thanks to (35) we can choose ϕk so that

2

∫

Rn

〈ψ,ϕk〉dx > Sk := sup
ϕ∈Ak

∫

Rn

〈ψ,ϕ〉dx, (36)

where

Ak :=
{
ϕ ∈ Lσ′

∩ L2+ : ‖ϕ‖Lσ′ 6 ‖ϕk‖Lσ′ , ‖ϕ‖
L2+ 6 ‖ϕk‖L2+

}

Remark that |ψ|2
♯−2 ∈ Ln(Rn,R). Then there exist

(fh)h∈N ⊆ C∞
c (Rn,R), (gh)h∈N ⊆ Ln(Rn,R),

such that

lim
h→∞

‖gh‖Ln = 0 and |ψ|2
♯−2 = fh + gh, ∀h ∈ N. (37)
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Using Lemma 3.1 we can write
∫

Rn

〈ψ,ϕk〉dx =

∫

Rn

〈Γ ∗ (|ψ|2
♯−2ψ), ϕk〉dx

=

∫

Rn

〈Γ ∗ (fhψ), ϕk〉dx+

∫

Rn

〈Γ ∗ (ghψ), ϕk〉dx =: I1 + I2

(38)

Let us estimate I1, using Hölder and then Young inequalities

|I1| 6

∣∣∣∣
∫

Rn

〈Γ ∗ (fhψ), ϕk〉dx

∣∣∣∣ 6 ‖Γ ∗ (fhψ)‖Lσ‖ϕk‖Lσ′

6 ‖Γ‖
L

n
n−1

,∞‖fhψ‖L
nσ
n+σ

‖ϕk‖Lσ′ 6 ‖Γ‖
L

n
n−1

,∞‖fhψ‖L
nσ
n+σ

(39)

Remark 3.3. In the above formula we need σ > n
n−1 , in order to apply the Young inequality.

Now we turn to the term I2. Using Fubini theorem one finds, recalling that for all

x, y ∈ R
n with x 6= y, Γ(x− y) is a hermitian matrix

I2 =

∫

Rn

〈Γ ∗ (ghψ), ϕk〉dx =

∫

Rn

〈

∫

Rn

Γ(x− y)(gh(y)ψ(y))dy, ϕk(x)〉dx

=

∫

Rn

dy

∫

Rn

dx〈Γ(x− y)(gh(y)ψ(y)), ϕK (x)〉 =

∫

Rn

dy

∫

Rn

dx〈gh(y)ψ(y),Γ(x − y)ϕk(x)〉

=

∫

Rn

dy〈gh(y)ψ(y),

∫

Rn

Γ(x− y)ϕk(x)dx〉 = −

∫

Rn

〈gh(y)ψ(y), (Γ ∗ ϕk)(y)〉dy

(40)

Using again Lemma 3.1 and arguing as for (40) we can rewrite the last integral in (40) as
∫

Rn

〈ghψ,Γ ∗ ϕk〉dy =

∫

Rn

gh〈Γ ∗ (|ψ|2
♯−2ψ),Γ ∗ ϕk〉dy

= −

∫

Rn

〈|ψ|2
♯−2ψ,Γ ∗ (gh(Γ ∗ ϕk))〉dy

(41)

Then one finds

I2 =

∫

Rn

〈ψ, |ψ|2
♯−2Γ ∗ (gh(Γ ∗ ϕk))〉dy. (42)

Our aim now is to prove that

χh := |ψ|2
♯−2Γ ∗ (gh(Γ ∗ ϕk)) ∈ Ak, (43)

for h suitably large, but independent of k. This will be achieved by a repeated use of Hölder

and Young inequalities, as follows.

We can estimate

‖χh‖L2+ 6 ‖|ψ|2
♯−2‖Ln‖Γ ∗ (gh(Γ ∗ ϕk))‖

L
2n
n−1

, 2n
n+1

, (44)

and

‖Γ ∗ (gh(Γ ∗ ϕk))‖
L

2n
n−1

, 2n
n+1

6 ‖Γ‖
L

n
n−1

,∞‖gh(Γ ∗ ϕk)‖ 2n
n+1

. (45)

Moreover, there holds

‖gh(Γ ∗ ϕk)‖ 2n
n+1

6 ‖gh‖Ln‖Γ ∗ ϕk‖
L

2n
n−1

, 2n
n+1

6 ‖gh‖Ln‖Γ‖
L

n
n−1

,∞‖ϕk‖
L

2n
n+1

. (46)
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Combining (44,45,46) we get

‖χh‖L2+ = o
(
‖ϕk‖L2+

)
, (47)

for h ∈ N large, thanks to (37). Arguing similarly, one finds

‖χh‖Lσ′ = o
(
‖ϕk‖Lσ′

)
. (48)

By (38,39,47,48) we deduce that
∫

Rn

〈ψ,ϕk〉dx = O(‖fhψ‖L
nσ
n+σ ,σ), for h large but fixed, independently of k (49)

Recall that fh ∈ C∞
c , and let Ω = supp(f). Then using (20,21) and the Hölder inequality

‖fhψ‖L
nσ
n+σ ,σ

(Ω)
6 ‖fhψ‖L

nσ
n+σ (Ω)

. ‖fhψ‖L2♯ (Rn)
. ‖ψ‖

L2♯ (Rn)
, (50)

thus contradicting (35) �

Remark 3.4. In (50) we used the assumption σ < 2n
n−2 .

Lemma 3.5. There holds

ψ ∈ L
n

n−1
,∞(Rn,CN ).

Proof. By Lemma 3.1 and (37) we have

ψ = Γ∗ (|ψ|2
♯−2ψ) = Γ∗ (fhψ)+Γ∗ (ghψ) = Γ∗ (fhψ)+Γ∗ (gh(Γ∗ (|ψ|2

♯−2ψ))) =: Fh+Gh.

(51)

Let σ ∈
(

n
n−1 ,

2n
n−2

)
. A repeated use of Young and Hölder inequalities gives

‖Gh‖Lσ,∞ 6 ‖Γ‖
L

n
n−1

,∞‖gh(Γ ∗ (|ψ|2
♯−2ψ))‖

L
nσ
n+σ ,∞

6 ‖Γ‖
L

n
n−1

,∞‖gh‖Ln,∞‖Γ ∗ (|ψ|2
♯−2ψ)‖Lσ,∞

6 ‖Γ‖2
L

n
n−1

,∞‖gh‖Ln,∞‖|ψ|2
♯−2ψ‖

L
nσ
n+σ

,

(52)

By Lemma 3.2, our choice of σ ensures that ‖|ψ|2
♯−2ψ‖

L
nσ
n+σ

<∞ and (37) gives

‖Gh‖Lσ,∞ = o(1), as h→ +∞. (53)

Then (51) and (53) imply that

‖ψ‖Lσ,∞ 6 2‖Γ ∗ (fhψ)‖Lσ,∞ ,

and taking the limit as σ −→
(

n
n−1

)+
we get

‖ψ‖
L

n
n−1

,∞ 6 2‖Γ ∗ (fhψ)‖L
n

n−1
,∞ . (54)

Now, the limit case of the Young inequality (26) gives

‖Γ ∗ (fhψ)‖L
n

n−1
,∞ 6 ‖Γ‖

L
n

n−1
,∞‖fhψ‖L1 . ‖Γ‖

L
n

n−1
,∞‖ψ‖

L2♯ , (55)

exploiting the fact that fh ∈ C∞
c , as done for (50). By (54) and (55) we deduce the

claim. �

Lemma 3.6. The function ψ is of class C1,α(Rn,CN ), for some 0 < α < 1.
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Proof. Lemma 3.2 gives that ψ ∈ Lσ, for n
n−1 < σ < 2n

n−2 .

Observe that if n = 2, we have ψ ∈ Lp, for 2 < p < ∞. In the case n > 3 and we will

obtain higher integrability by a bootstrap argument.

The assumptions on σ ensure that

|ψ|2
♯−2ψ ∈ L2+εn , for all 0 < εn <

4
(n+1)(n−2) .

Remark that by (16) there holds

| D ψ| = |∇ψ|,

and since

Dψ = |ψ|2
♯−2ψ,

we conclude, using the Sobolev embedding, that

ψ ∈ W̊ 1,2+εn(Rn,CN ) →֒ Lpn(Rn,CN ), with pn >
2n
n−2 .

Iterating this argument, one deduces that there exists rn > n such that

ψ ∈ W̊ 1,rn(Rn,CN ) →֒ C0,αn(Rn,CN ), for some 0 < αn < 1,

by Morrey embedding theorem. Then the claim follows using Schauder estimates for the

Dirac operator [1, Chapter 3]. �

Remark 3.7. One may also prove C1,α-regularity of solutions to (1) adapting the result

proved in [28, Appendix].

Lemma 3.8. The closed set Z := {x ∈ R
n : ψ(x) = 0} has zero Lebsegue measure, and

ψ ∈ C2(Rn \ Z,CN ).

Proof. The main result of [6] ensures that Z has Hausdorff dimension at most (n− 2), and

then its n-dimensional Lebesgue measure is zero. Then we have

|ψ|2
♯−2ψ ∈ C1(Rn \ Z,CN ),

and local Schauder estimates [1, Chapter 3] for (1) give the claim. �

Lemma 3.9. Estimate (10) holds.

Proof. Take R > 1 and define

ψR(x) = Rn−1ψ(Rx), ∀x ∈ R
n. (56)

By Lemma 3.8, ψR is of class C2 outside its nodal set Z, which has zero Lebesgue measure.

Then a direct computation using (1,18,56) gives

−∆ |ψR(x)| =
1

|ψR(x)|
〈ψR(x),−∆ψR(x)〉 =

1

|ψR(x)|
〈ψR(x),D

2 ψR(x)〉

=
Rn+1

|ψ(Rx)|


〈ψ(Rx),−i(α · ∇(|ψ(Rx)|2

♯−2)ψ(Rx))︸ ︷︷ ︸
=0

+〈ψ(Rx), |ψ(Rx)|2(2
♯−2)ψ(Rx)〉




= Rn+1〈ψ(Rx), |ψ(Rx)|2×2♯−3ψ(Rx)〉 = R−2|ψR(x)|
n+3

n−1 , for almost every x ∈ R
n.

(57)
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This implies

−∆ |ψR| 6 |ψR|
n+3

n−1 , for almost every x ∈ R
n, (58)

and then ψR is a weak subsolution to equation (58).

Weak Harnack-type inequalities proved in [38] imply that for σ > 1,

‖ψR‖L∞(B4\B2) 6 Cσ‖ψR‖Lσ(B5\B1), (59)

where Br := {x ∈ R
n : |x| 6 r}, r > 0. Then if we choose 1 < σ < n

n−1 , Hölder inequality

gives

‖ψR‖Lσ(B5\B1) 6 C̃σ′‖ψR‖L
n

n−1
∞

(B5\B1)
. (60)

Remark that there holds

‖ψR‖L
n

n−1
∞

(B5\B1)
= ‖ψ‖

L
n

n−1
∞

(B5R\BR)
6 ‖ψ‖

L
n

n−1
∞

(Rn)
, ∀R > 1. (61)

Combining (59,60,61) and Lemma 3.5 we get

‖ψR‖L∞(B4\B2) 6 C, ∀R > 1. (62)

Then (56) and the continuity of ψ give

|ψ(x)| 6
C

Rn−1
, if 2R 6 |x| 6 4R, (63)

for all R > 1, and thus

|ψ(x)| 6
C

|x|n−1
, if |x| > 2. (64)

The claim (10) follows thanks to the continuity of ψ. �

This last step concludes the first part of the proof of Theorem 1.2.

4. Existence of a family of optimizers

In order to complete the proof of Theorem 1.2, we now prove the existence of a family

of smooth solutions to (1) satysfying (12). We adapt the method of [10] which allows,

exploiting a suitable ansatz, to convert (1) into a dynamical system and to get the desired

result. As already mentioned, those solutions admit a variational characterization as ground

states of the functional (6), adapting the proof given in [10] for the two-dimensionale case.

Let us consider the following Soler/Wakano-type ansatz as, e.g., in [12]. Take n ∈ C
N/2

with |n| = 1, and define

ϕ(x) =

(
v(r)n

iu(r)
(
x
r · σ

)
n

)
, r = |x|, u, v : (0,∞) −→ R, σ = (σj)

n
j=1, (65)

with σj as in (17). Plugging (65) into (1) one obtains the following system for (u, v)



u′ +

n− 1

r
u = v(u2+v2)1/(n−1)

v′ = −u(u2 + v2)1/(n−1)
(66)

where u′ := du
dr , and similarly for v.
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Thus we are lead to study the flow of the above system. In particular, since we are

looking for L2♯-solutions, we are interested in solutions to (66) such that

(u(r), v(r)) −→ (0, 0) as r → +∞

In order to avoid singularities and to get non-trivial solutions, we choose as initial con-

ditions

u(0) = 0 , v(0) = λ 6= 0 (67)

The symmetry of the system allows us to consider only the case λ > 0. An analogous result

holds for λ < 0. We are going to prove the following

Proposition 4.1. For any λ > 0 there exists a unique solution

(uλ, vλ) ∈ C∞([0,+∞),R2)

of the Cauchy problem (66,67).

Moreover, there holds

uλ(r), vλ(r) > 0, ∀r > 0, (68)

and

uλ(r) ∼
1

rn−1
, vλ(r) ∼

1

rn
, as r → +∞. (69)

The proof of Prop. 4.1 is divided in several intermediate steps.

Multiplying the first equation in (66) by rn−1 allows to rewrite (66) in integral form as




u(r) =
1

rn−1

∫ r

0
sn−1v(s)(u2(s) + v2(s))1/(n−1)ds

v(r) = λ−

∫ r

0
u(s)(u2(s) + v2(s))1/(n−1)ds

(70)

where the integrands in the r.h.s. are locally Lipschitz continuous functions of (u, v). Then

a contraction mapping argument as in [15] gives the following

Lemma 4.2. For any λ > 0 there exist 0 < Rλ 6 +∞ and (u, v) ∈ C1([0, Rλ),R
2) unique

maximal solution to (66), which depends continuously on λ and uniformly on [0, R] for any

0 < R < Rλ.

Let (uλ, vλ) be the (maximal) solution corresponding to a fixed λ > 0. Dropping the

singular term in (66) we obtain a hamiltonian system

{
u̇ = v(u2 + v2)1/n−1

v̇ = −u(u2 + v2)1/(n−1)
(71)

with hamiltonian

H(u, v) =
n− 1

2n
(u2 + v2)n/(n−1). (72)

Consider

Hλ(r) := H(uλ(r), vλ(r)) (73)

then a simple computation gives

H ′
λ(r) = −

n− 1

r
u2λ(r)(u

2
λ(r) + v2λ(r))

1/n−1 6 0 (74)
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so that the energy H is non-increasing along the solutions of (66). Then ∀r ∈ [0, Rx),

(uλ(r), vλ(r)) ∈ {H(u, v) 6 H(0, λ)}, the latter being a compact set. Thus there holds

Lemma 4.3. Every solution to (66) is global.

Remark 4.4. Additionally, basic ODE theory implies smoothness of solutions to (66), that

is

(uλ, vλ) ∈ C∞([0,∞),R2).

In view of the above remarks, one expects the solutions to (66) to be close to the hamil-

tonian flow (71). This is indeed true, as stated in the following

Lemma 4.5. Let (f, g) be the solution of (71) with initial data (f0, g0). Let (u0k, v
0
k) and

ρk be such that

ρk
k→+∞
−−−−→ +∞ and (uk, vk)

k→+∞
−−−−→ (f0, g0)

Consider the solution of



u′k +

uk
r + ρk

= vk(u
2
k + v2k)

1/(n−1)

v′k = −uk(u
2
k + v2k)

1/(n−1)

such that uk(0) = u0k and vk(0) = v0k. Then (uk, vk) converges to (f, g) uniformly on bounded

intervals.

The proof is the same as in [15]. The above results allows us to obtain some informations

on the asymptotic behavior of (uλ, vλ).

Proposition 4.6. For any λ > 0, we have

uλ(r), vλ(r) > 0, ∀r > 0. (75)

and

lim
r→+∞

(uλ(r), vλ(r)) = (0, 0). (76)

Proof. A direct computation using (66) gives

d

dr
(rn−1uλ(r)vλ(r)) = rn−1(v2λ − u2λ)(u

2
λ + v2λ)

1/(n−1), (77)

and
d

dr
(rnHλ(r)) =

(
n− 1

2

)
rn−1(v2λ − u2λ)(u

2
λ + v2λ)

1/(n−1). (78)

Combining (77) and (78) and integrating gives
(
n− 1

2

)
uλ(r)vλ(r) = rHλ(r) (79)

and (75) follows, Hλ being positive definite.

Combining (75) and the second equation in (66) one sees that v′λ(r) 6 0 for all r > 0,

and then

∃ lim
r→+∞

vλ(r) =: µ > 0. (80)
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Moreover, since u is bounded, there exists a sequence rn ↑ +∞ such that

∃ lim
k→+∞

uλ(rk) = δ > 0. (81)

We claim that

lim
r→+∞

uλ(r) = δ. (82)

By contradiction, suppose that (82) does not hold. Then there exist ε > 0 and another

sequence sk ↑ +∞ such that

|uλ(sk)− δ| > ε > 0, ∀k ∈ N. (83)

Up to subsequences, we can suppose that

lim
k→+∞

uλ(sk) = γ 6= δ, (84)

for some γ > 0. Recall that H decreases along the flow of (66), as shown in (74), and then

∃ lim
r→+∞

Hλ(r) = h > 0. (85)

Then it follows that

(δ, µ), (γ, µ) ∈ {H(u, v) = h} . (86)

It is easy to see that the algebraic equation for u

H(u, µ) = h, (87)

has only one non-negative solution and thus δ = γ, reaching a contradiction. This proves

the claim (82), and then there holds

lim
r→+∞

(uλ(r), vλ(r)) = (δ, µ). (88)

Let (ρk)k ⊆ R be a sequence such that

lim
k→+∞

ρk = +∞ , lim
k→+∞

(uλ(ρk), vλ(ρk)) = (δ, µ) (89)

and consider the solution (U, V ) to (71) such that

(U(0), V (0)) = (δ, µ).

By (Lemma 4.5), it follows that (uλ(ρk + ·), vλ(ρk + ·)) converges uniformly to (U, V ) on

bounded intervals. But since

lim
k→+∞

(uλ(ρk + r), vλ(ρk + r)) = (δ, µ), ∀r > 0, (90)

this implies that

(U(r)), V (r)) = (δ, µ), ∀r > 0 (91)

and thus (δ, µ) = (0, 0) as the latter is the only equilibrium of the hamiltonian system (71).

This proves (76). �

Proposition 4.7. For large r > 0, we have

1

r2(n−1)
. u2λ(r) + v2λ(r) .

1

rn−1
. (92)
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Proof. By (74) we easily get

H ′
λ(r) > −

2n

r
Hλ(r),

and thus by the comparison principle for ODE

Hλ(r) &
1

r2n
, for r > 0 large.

Then (72) gives the lower bound in (92). Moreover, using (79) and the definition of H we

have

(n− 1)

2n
r(u2λ(r)+ v2λ(r))

n/(n−1) =
(n − 1)

2
uλ(r)vλ(r) 6

(n− 1)

2

(u2λ(r) + v2λ(r))

2
, ∀r > 0,

and the second inequality in (92) easily follows. �

We are now in a position to prove (12). Multiplying the first equation in (66) by rn−1

one can rewrite it as

d

dr
(rn−1uλ(r)) = rn−1vλ(r)(u

2
λ(r) + v2λ(r))

1/(n−1). (93)

Then (93) implies that the function f(r) := rn−1uλ(r) is strictly increasing, as vλ > 0, and

thus

∃ lim
r→+∞

f(r) =: l ∈ (0,∞]. (94)

Suppose that

l = +∞, (95)

and then

uλ(r) >
1

rn−1
, for r > 0 large. (96)

Combining (96) and the lower bound in (4.7), the second equation in (66) gives

v′(r) . −
1

rn+1
, (97)

and then

vλ(r) .
1

rn
, for r > 0 large. (98)

Integrating (93) we obtain

f(r) =

∫ r

0
vλ(s)(u

2
λ(s) + v2λ(s))

1/(n−1)sn−1ds .

∫ +∞

1

ds

s2
< +∞, ∀r > 0, (99)

where we have used the upper bound in (92) and (98). This contradicts (95) and thus

0 < l < +∞ and

uλ(r) ∼
1

rn−1
, for r > 0 large. (100)

By (98) and the second equation in (66), one gets

v′λ(r) ∼ −
1

rn+1
,

and then

vλ(r) ∼
1

rn
, for r > 0 large. (101)

Then (12) is proved, thus concluding the proof of Theorem 1.2.
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