ON UNBOUNDED SOLUTIONS OF ERGODIC PROBLEMS FOR NON-LOCAL HAMILTON-JACOBI EQUATIONS - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Theory, Methods and Applications Année : 2019

ON UNBOUNDED SOLUTIONS OF ERGODIC PROBLEMS FOR NON-LOCAL HAMILTON-JACOBI EQUATIONS

Résumé

We study an ergodic problem associated to a non-local Hamilton-Jacobi equation defined on the whole space λ − L[u](x) + |Du(x)| m = f (x) and determine whether (unbounded) solutions exist or not. We prove that there is a threshold growth of the function f , that separates existence and non-existence of solutions, a phenomenum that does not appear in the local version of the problem. Moreover, we show that there exists a critical ergodic constant, λ * , such that the ergodic problem has solutions for λ λ * and such that the only solution bounded from below, which is unique up to an additive constant, is the one associated to λ * .
Fichier principal
Vignette du fichier
NonlocErgo_beta3.pdf (468.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01864454 , version 1 (29-08-2018)

Identifiants

  • HAL Id : hal-01864454 , version 1

Citer

Cristina Brândle, Emmanuel Chasseigne. ON UNBOUNDED SOLUTIONS OF ERGODIC PROBLEMS FOR NON-LOCAL HAMILTON-JACOBI EQUATIONS. Nonlinear Analysis: Theory, Methods and Applications, 2019, 180, pp.94-128. ⟨hal-01864454⟩
85 Consultations
57 Téléchargements

Partager

More