A Type System Describing Unboundedness - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2020

A Type System Describing Unboundedness

Résumé

We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes, which asks, given a set of letters A and a scheme G, whether it is the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. Using this type system we prove that SUP is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m. Moreover, we establish the reflection property for SUP: out of an input scheme G one can create its enhanced version that recognizes the same language but is aware of the answer to SUP.
Fichier principal
Vignette du fichier
types-diagonal-new.pdf (837.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01850934 , version 1 (28-07-2018)
hal-01850934 , version 2 (30-10-2019)
hal-01850934 , version 3 (29-07-2020)
hal-01850934 , version 4 (15-08-2020)

Identifiants

Citer

Paweł Parys. A Type System Describing Unboundedness. Discrete Mathematics and Theoretical Computer Science, 2020, vol. 22 no. 4, ⟨10.23638/DMTCS-22-4-2⟩. ⟨hal-01850934v4⟩
131 Consultations
712 Téléchargements

Altmetric

Partager

More