
HAL Id: hal-01850934
https://hal.science/hal-01850934v4

Submitted on 15 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type System Describing Unboundedness
Pawel Parys

To cite this version:
Pawel Parys. A Type System Describing Unboundedness. Discrete Mathematics and Theoretical
Computer Science, 2020, vol. 22 no. 4, �10.23638/DMTCS-22-4-2�. �hal-01850934v4�

https://hal.science/hal-01850934v4
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 22:4, 2020, #2

A Type System Describing Unboundedness∗

Paweł Parys
Institute of Informatics, University of Warsaw, Poland

received 2018-08-13, revised 2019-11-05, 2020-07-30, accepted 2020-08-03.

We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite
trees. We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes,
which asks, given a set of letters A and a scheme G, whether it is the case that for every number n the scheme
accepts a word (a tree) in which every letter from A appears at least n times. Using this type system we prove that
SUP is (m − 1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for
tree-recognizing schemes of order m. Moreover, we establish the reflection property for SUP: out of an input scheme
G one can create its enhanced version that recognizes the same language but is aware of the answer to SUP.

Keywords: simultaneous-unboundedness problem, higher-order recursion schemes, intersection types, reflection

1 Introduction
The simultaneous-unboundedness problem (SUP for short, also known as the diagonal problem) in its
original formulation over finite words asks, for a set of letters A and a language of words L, whether for
every n ∈ N there is a word in L where every letter from A occurs at least n times. The same problem
can be also considered for a language of finite trees. In this paper, we are interested in solving SUP for
languages of finite words and finite trees recognized by nondeterministic higher-order recursion schemes.

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control flow of
programs in languages with higher-order functions. This formalism is equivalent via direct translations
to simply-typed λY -calculus (Salvati and Walukiewicz, 2016) and to higher-order OI grammars (Damm,
1982; Kobele and Salvati, 2015). Collapsible pushdown systems (Hague, Murawski, Ong, and Serre,
2008) and ordered tree-pushdown systems (Clemente, Parys, Salvati, and Walukiewicz, 2015) are other
equivalent formalisms. Schemes cover some other models such as indexed grammars (Aho, 1968) and
ordered multi-pushdown automata (Breveglieri, Cherubini, Citrini, and Crespi-Reghizzi, 1996).

By a recent result by Clemente, Parys, Salvati, and Walukiewicz (2016) we know that SUP for higher-
order recursion schemes is decidable. For schemes of order m their algorithm works in f(m)-fold
exponential time for some quadratic function f (although the complexity of the algorithm is not mentioned
explicitly in the paper, it can be easily estimated as being such). Their solution is based on two trans-
formations that simplify a scheme without changing the answer to SUP. These transformations, repeated
alternatingly, reduce the input scheme to a scheme of order 0, for which solving SUP becomes trivial.
∗Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

ISSN subm. to DMTCS © 2020 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/4748

2 Paweł Parys

We analyze SUP for schemes using an appropriate system of intersection types. Intersection types
were intensively used in the context of schemes, for several purposes like model-checking (Kobayashi,
2009; Kobayashi and Ong, 2009; Broadbent and Kobayashi, 2013; Ramsay, Neatherway, and Ong, 2014),
pumping (Kobayashi, 2013), transformations of schemes (Kobayashi, Inaba, and Tsukada, 2014; Asada and
Kobayashi, 2016; Clemente et al., 2016), and so on. Among such type systems we have to distinguish those
(Parys, 2016, 2017b), in which the (appropriately defined) size of a type derivation for a term approximates
some quantity visible in the Böhm tree of that term. In particular, in our recent work (Parys, 2017b) we
have developed a type system that allows to solve SUP for a special case of a single-letter alphabet.

Here, we generalize the last type system mentioned above to multiple letters. As a result, a type
derivation in this system is labeled by flags of different kinds. The key property lies in some (quite rough)
correspondence between words (trees) that can be generated from a term and type derivations for the term,
where, for every letter a, the number of occurrences of a in the generated word (tree) is approximated by
the number of occurrences of an appropriate flag in the type derivation. In consequence, SUP reduces to
checking whether there exist type derivations with arbitrarily many flags corresponding to every letter from
the input set A.

Thanks to a careful optimization of the developed type system, we obtain an algorithm solving SUP
in the optimal complexity. Namely, we prove that SUP is (m − 1)-EXPTIME-complete for word-
recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m.
The corresponding lower bounds are obtained effortlessly, because already much simpler problems for
schemes require such a complexity.

Let us recall from Clemente et al. (2016) that the decidability result for SUP entailed other decidability
results for recursion schemes, concerning in particular computability of the downward closure of recognized
languages (Zetzsche, 2015), and the problem of separability by piecewise testable languages (Czerwiński,
Martens, van Rooijen, and Zeitoun, 2015). Although our complexity result for SUP does not influence
directly our knowledge on the complexity of the other problems (the aforementioned reductions preserve
only decidability, but not complexity), it can be seen as the first step in establishing the complexity of the
other problems as well.

Going further, we constitute the reflection property for SUP: out of an input scheme G one can create
its enhanced version that recognizes the same language, but in every moment of the recognition process
it is aware of the answer to SUP. In order to obtain this result, we adapt a construction of Haddad (2012,
Section 4.2) to the setting of our type system. The reflection property for SUP allows to solve SUP
simultaneously for infinitely many languages at once, if they are all described by a single scheme. This
has been already used in our recent paper (Parys, 2018b) to establish decidability of model-checking trees
generated by recursion schemes with respect to the WMSO+U logic.

The current paper is a full version of a conference paper (Parys, 2017a). The part about the reflection
property (Section 10) comes from another conference paper (Parys, 2018b).

Our paper is structured as follows. In Section 2 we introduce all necessary definitions. In Section 3
we introduce the type system describing simultaneous unboundedness for word-recognizing schemes.
Sections 4-7 are devoted to a proof of correctness of the type system. In Section 8 we present a translation
from tree-recognizing schemes to word-recognizing schemes. Next, in Section 9 we show how the type
system can be used to solve SUP. Then, in Section 10 we establish the reflection property for SUP. Finally,
in Section 11 we comment on relations to the task of computing downward closures of languages.

A Type System Describing Unboundedness 3

2 Preliminaries

Infinitary lambda-calculus. The set of sorts (a/k/a simple types), constructed from a unique basic
sort o using a binary operation →, is defined as usual. We omit brackets on the right of an arrow, so
e.g. o→(o→ o) is abbreviated to o→ o→ o. The order of a sort is defined by induction: ord(o) = 0, and
ord(α1→ . . .→αs→ o) = 1 + max(ord(α1), . . . , ord(αs)) for s ≥ 1.

A sort α1→ . . .→αs→ o is homogeneous if ord(α1) ≥ · · · ≥ ord(αs) and all α1, . . . , αs are homo-
geneous. In the sequel we restrict ourselves to homogeneous sorts (even if not always this is written
explicitly).

Let Σ be a set of letters (alphabet). We assume that Σ is finite. To denote nondeterministic choices we
use a symbol nd. Assuming that nd 6∈ Σ, we denote Σnd = Σ ∪ {nd}. Let also Vars = {xα, yβ , zγ , . . . }
be a set of variables, containing infinitely many variables of every homogeneous sort (sort of a variable is
written in superscript).

We consider infinitary, sorted lambda-calculus. Infinitary lambda-terms (or just lambda-terms) are
defined by coinduction, according to the following rules:

• node constructor—if a ∈ Σnd, and P o1 , . . . , P
o
r are lambda-terms, then (a〈P o1 , . . . , P or 〉)o is a

lambda-term,
• variable—every variable xα ∈ Vars is a lambda-term,
• application—if Pα→ β and Qα are lambda-terms, then (Pα→ β Qα)β is a lambda-term, and
• lambda-binder—if P β is a lambda-term and xα is a variable, then (λxα.P β)α→ β is a lambda-term;

in the above, α, β, and α→β are homogeneous sorts. We naturally identify lambda-terms differing only
in names of bound variables. We often omit the sort annotations of lambda-terms, but we keep in mind
that every lambda-term (and every variable) has a particular sort. Substitution, beta-reduction, and free
variables of a lambda-term are defined as usual. A lambda-term P is closed if it has no free variables. We
write h−→β for a head beta-reduction defined as follows: we have P h−→β Q if P = (λx.R)S S1 . . . Ss and
Q = R[S/x]S1 . . . Ss.

For a lambda-term P , the order of P is just the order of its sort, while the complexity of P is the smallest
number m such that the order of all subterms of P is at most m. We restrict ourselves to lambda-terms that
have finite complexity. We also define the order of a beta-reduction as the order of the involved variable.
More precisely, for a number k ∈ N, we say that there is a beta-reduction of order k from a lambda-term P
to a lambda-term Q, written P →β(k) Q, if Q is obtainable from P by replacing a redex (λx.R)S where
ord(x) = k with R[S/x].

Trees. A tree is defined as a lambda-term that is built using only node constructors, that is, not using
variables, applications, nor lambda-binders. A tree is Γ-labeled if only letters from Γ appear in it.

Let us now define how we resolve nondeterministic choices. Although this is mainly used for trees,
we define it for arbitrary lambda-terms. We write P →nd Q if Q is obtained from P by choosing some
occurrence of the nd symbol surrounded only by node constructors with letters from Σ, and removing this
nd symbol together with all but one of its arguments. Formally, we let→nd to be the smallest relation such
that nd〈P1, . . . , Pr〉 →nd Pi for i ∈ {1, . . . , r}, and if a ∈ Σ, and Pi →nd P

′
i for some i ∈ {1, . . . , r},

and Pj = P ′j for all j ∈ {1, . . . , r} \ {i}, then a〈P1, . . . , Pr〉 →nd a〈P ′1, . . . , P ′r〉. For a relation r, by
r∗ we denote the reflexive transitive closure of r. For a lambda-term P (which is usually a Σnd-labeled,
potentially infinite tree), by L(P) we denote the set of all finite, Σ-labeled trees T such that P →∗nd T .

4 Paweł Parys

Böhm trees. We consider Böhm trees only for closed lambda-terms of sort o. For such a term P , its Böhm
tree BT (P) is constructed by coinduction, as follows: if P h−→∗β a〈P1, . . . , Pr〉 (for some a ∈ Σnd and
some lambda-terms P1, . . . , Pr), then BT (P) = a〈BT (P1), . . . ,BT (Pr)〉; otherwise BT (P) = nd〈〉.

Notice that for every lambda-term P there exists at most one Q such that P h−→β Q, and that if P is
already of the form a〈P1, . . . , Pr〉 then P h−→β Q does not hold for any Q. In consequence, there is at
most one lambda-term Q of the form a〈P1, . . . , Pr〉 for which P h−→∗β Q, and thus the Böhm tree of every
lambda-term is uniquely defined.

Due to the standardization theorem, for every closed lambda-term P of sort o, it is the case that
BT (P) = BT (Q) whenever P →β Q; in particular, if P →∗β a〈P1, . . . , Pr〉, then BT (P) = a〈BT (P1),
. . . ,BT (Pr)〉.

All finite lambda-terms P are strongly normalizing: every maximal sequence of beta-reductions starting
in P is finite and ends in the same lambda-term, called the beta-normal form of P . Additionally, if P is
finite, closed, and of sort o, then necessarily BT (P) equals the beta-normal form of P (this is the case,
because for every finite closed lambda-term Q of sort o either Q starts with a node constructor, or we have
Q h−→β R for some R).

Higher-order recursion schemes. We use a very loose definition of schemes. A higher-order recursion
scheme (or just a scheme) is a triple G = (N ,R, No

0), where N ⊆ Vars is a finite set of nonterminals,
R is a function that maps every nonterminal N ∈ N to a finite lambda-term whose free variables are
contained in N and whose sort equals the sort of N , and No

0 ∈ N is a starting nonterminal, being of sort o.
We assume that elements of N are not used as bound variables, and thatR(N) is not a nonterminal. We
sometimes say thatR defines rules of the scheme. The order of the scheme is defined as the maximum of
complexities ofR(N) over all its nonterminals N .

For a scheme G = (N ,R, No
0), and for a lambda-term P (possibly containing some nonterminals from

N), let ΛG(P) be the lambda-term obtained as a limit of applying recursively the following operation to P :
take an occurrence of some nonterminal N , and replace it byR(N) (the nonterminals should be chosen so
that every nonterminal is eventually replaced). We remark that while substitutingR(N) for a nonterminal
N , there is no need for any renaming of variables (capture-avoiding substitution), sinceR(N) does not
have free variables other than nonterminals. The infinitary lambda-term represented by G is defined as
ΛG(No

0), and is denoted Λ(G). Observe that Λ(G) is a closed lambda-term of sort o and of complexity not
greater than the order of the scheme. The language of G is defined as L(G) = L(BT (Λ(G))).

We remark that according to our definition all subterms of all lambda-terms (and all nonterminals as
well) have homogeneous sorts; usually it is not assumed that sorts used in a scheme are homogeneous. It is,
however, the case that any scheme using also non-homogeneous sorts can be converted into one in which
all sorts are homogeneous, and that this can be done in logarithmic space (Parys, 2018a). We make the
homogeneity assumption for technical convenience. We refer the reader to Appendix A for a comment on
other differences between our definition and the usual one.

A word is defined as a tree in which every node has at most one child (such a tree can be identified with
a word understood in the classic sense). We say that a closed lambda-term P of sort o (or a scheme G) is
word-recognizing if all elements of L(BT (P)) (or L(G), respectively) are words.

Example 2.1. Consider the higher-order recursion scheme G1 with two nonterminals, Mo (taken as a
starting nonterminal) and N(o→ o)→ o, and with rules

R(M) = N (λx.nd〈a〈x〉, b〈x〉〉) , R(N) = λf.nd〈f (c〈〉),N (λy.f (f y))〉 .

A Type System Describing Unboundedness 5

This recursion scheme is of order 2. We obtain Λ(G1) = R1 (λx.nd〈a〈x〉, b〈x〉〉), where R1 is the unique
lambda-term such that R1 = λf.nd〈f (c〈〉), R1 (λy.f (f y))〉. We have BT (Λ(G1)) = nd〈T20 , nd〈T21 ,
nd〈T22 , . . .〉〉〉, where T0 = c〈〉 and Ti+1 = nd〈a〈Ti〉, b〈Ti〉〉. In L(G1) we have words of length 2i + 1
for all i ∈ N, where the first 2i letters are chosen from {a, b} arbitrarily, and the last letter is c. In the
following examples we continue to consider this scheme, assuming that Σ = {a, b, c}; using our type
system, we want to exhibit the fact that in L(G1) there are words having simultaneously many letters a and
many letters b.

Let us also define formally the size of a higher-order recursion scheme. The size of a sort α, denoted |α|,
is defined by induction on the structure of α: |o| = 1 and |α→β| = |α| + 1 + |β|. The size of a finite
lambda-term P , denoted |P |, is also defined by induction on its structure, as follows:

|a〈P1, . . . , Pr〉| = 1 + |P1|+ · · ·+ |Pr| , |P Q| = |P |+ 1 + |Q| ,
|xα| = 1 , |λxα.P | = |α|+ 1 + |P | .

Finally, the size of a scheme G = (N ,R, N0), denoted |G|, is defined as

|G| =
∑

Nα∈N
(|α|+ |R(Nα)|) .

Remark. We notice that in the size of a scheme we include sizes of sorts of all bound variables and all
nonterminals. Although in “reasonable cases” lambda-terms using large sorts are large anyway, this is
sometimes important. For example, in the size of the lambda-term (λxα→ o.a〈〉) (λyα.a〈〉) we prefer to
include the size of α, as otherwise the size of this lambda-term would be small even for a very large α.
Similarly, in G we can have a nonterminal N of some sort α with a ruleR(N) = (λxo.N) (a〈〉); in such a
case we also prefer to include the size of α in the size of G.

3 Type system for simultaneous unboundedness
In this section we introduce a type system that allows to solve SUP for word-recognizing schemes. SUP
for tree-recognizing schemes is solved in Section 8 by a reduction to SUP for word-recognizing schemes.

Definition 3.1. For a set of trees L and a set of letters A, the predicate SUPA(L) holds if for every n ∈ N
there is some T ∈ L with at least n occurrences of every letter from A. The simultaneous-unboundedness
problem (SUP) for tree-recognizing order-m schemes is to decide whether SUPA(L(G)) holds, given a
scheme G of order at most m and a set A. SUP for word-recognizing order-m schemes is as the above, but
with the restriction that G is word-recognizing.

We remark that the language of infinite trees T for which SUPA(L(T)) holds is not regular (due
to a simple pumping argument)—SUP talks about unboundedness of some quantities. This makes the
problem inaccessible to standard methods used for analyzing schemes, as they usually concern only regular
properties of the Böhm tree; it was necessary to develop methods accessing some quantities visible in the
Böhm tree.

Intuitions. The main novelty of our type system lies in labeling nodes of type derivations by two kinds
of labels called flags and markers. To each marker we assign a number, called an order. Flags, besides their
order, are also identified by a letter from Σ; thus we have (k, a)-flags for k ≥ 1 and a ∈ Σ. While deriving

6 Paweł Parys

a type for a lambda-term of complexity at most m+ 1 (i.e., where every variable has order at most m), we
use markers of order from the range 0, . . . ,m, and flags of order from the range 1, . . . ,m+ 1.

Let Pm+1 be a word-recognizing closed lambda-term of sort o and of complexity at most m+ 1. Recall
that our goal is to describe a word T ∈ L(BT (Pm+1)) using a type derivation for Pm+1 itself. While
doing that, we want to preserve information that T has many occurrences of every letter from a set A.

Since T can be found in some finite prefix of BT (Pm+1), in order to find T it is enough to perform
finitely many beta-reductions from Pm+1. Moreover, thanks to the fact that all sorts are homogeneous, the
beta-reductions can be rearranged so that those of higher order are performed first (as shown in Lemma 6.1).
Namely, we can find lambda-terms P0, . . . , Pm such that

Pm+1 →∗β(m) Pm →
∗
β(m−1) . . .→

∗
β(0) P0 and P0 →∗nd T .

Recall that our goal is to identify places of Pm+1 responsible for creating nodes of T , and label them
somehow using flags and markers. In order to achieve this, we start by labeling P0, and then we transfer
the labels back to P1, P2, and so on.

Some prefix of P0 can be seen as a tree, in which we can find all nodes of T , interleaved with some
additional nd-labeled nodes. Let us place a marker of order 0 in the leaf of P0 that is taken as the (unique)
leaf of T . Additionally, for every letter a ∈ Σ, let us place (1, a)-flags in all a-labeled nodes of P0 that are
taken to T .

Notice that every node constructor of P0 was created out of some particular occurrence of a node
constructor in P1. Using this correspondence, we move flags from P0 back to P1. Namely, we find
node constructors of P1 out of which in P0 we obtain node constructors labeled by (1, a)-flags, and we
put (1, a)-flags also in these node constructors of P1; similarly we proceed with the marker of order 0.
The crucial observation is that no two flagged node constructors of P0 could come out of a single node
constructor of P1. Indeed, recall that all the beta-reductions between P1 and P0 are of order 0. This means
that in every such beta-reduction we take a whole subtree (i.e., a lambda-term of sort o) of P1, and we
replace it somewhere, possibly replicating it. But since all (1, a)-flags lie in P0 on a single path, they may
lie only in at most one copy of the replicated subtree.

Next, we would like to move flags from P1 back to P2, then to P3, and so on, so that the number of
occurrences of particular letters in T would be reflected in the number of flags in the original lambda-term
Pm+1. We cannot do this directly, though. The problem is that flags in P1 (unlike in P0) do not need to
be located on a single path, and, in consequence, a single node constructor in P2 may result in multiple
(uncontrollably many) node constructors with a flag in P1. We rescue ourselves by considering only |Σ|
paths in P1, one for each letter in Σ. Namely, for every letter a ∈ Σ we place in P1 a marker of order 1,
choosing in this way the path from the root to the position of this marker. Then, for every node labeled by
a (1, a)-flag we place a (2, a)-flag in the closest ancestor that lies on the chosen path. Although the number
of (2, a)-flags may be smaller than the number of (1, a)-flags (the closest ancestor on the path may be the
same for multiple (1, a)-flags), we can ensure that it is smaller only logarithmically; to do so, we choose
the marked node in a clever way: starting from the root, we always proceed to this subtree in which the
number of (1, a)-flags is the largest. In consequence, if the number of (1, a)-flags was “very large”, then
also the number of (2, a)-flags remains “very large”.

After this additional step, we transfer all flags and markers from P1 to P2 (i.e., whenever a node
constructor of P1 is labeled by a flag or a marker, we put the same label in the corresponding node
constructor of P2). Since for every a ∈ Σ all (2, a)-flags lie on a single path of P1, the number of

A Type System Describing Unboundedness 7

occurrences of order-2 flags (for every letter a) is the same in P2 as in P1. Although the number of
occurrences of order-1 flags may change, we transfer them to P2 as well; thanks to their presence, we are
able to easily check correctness of the labeling of P2 by order-2 flags.

We continue by repeating the same process until reaching Pm+1: in P2 we again reduce our considera-
tions to |Σ| paths by introducing markers of order 2, we place (3, a)-flags on these paths, we transfer all
flags and markers back to P3, and so on. At the end we obtain some labeling of Pm+1 by several kinds of
flags and markers. The goal of the type system we develop is, roughly speaking, to ensure that a labeling
of Pm+1 by flags and markers is actually obtainable in the process as above (in fact, we are not labeling
nodes of Pm+1 itself, but rather nodes of a type derivation for Pm+1).

Example 3.1. Let us take P2 = Λ(G1), where G1 is the scheme from Example 2.1 (the complexity of
P2 is indeed 2). In L(BT (P2)) we have a word T = a〈a〈a〈a〈c〈〉〉〉〉〉. Below we recall the shape of P2,
replacing by � subterms irrelevant for generating T (the vertical dots should be ignored for now, their
meaning is explained later):

P2 =

(
λf.nd

〈
�,
(
λf.nd

〈
�,
(
λf.nd〈f (c〈〉),�〉

) (
λy′.f

... (f y′)
)〉) (

λy.f
... (f

... y)
)〉)
(
λx.nd〈a〈x〉,�〉

)
.

After performing some β-reductions of order 1, we obtain the lambda-term

P1 = nd

〈
�, nd

〈
�, nd

〈(
λy′.

(
λy.
(
λx.nd〈a〈x〉,�〉

) ((
λx.nd〈a〈x〉,�〉

)
y
)) ...((

λy.
(
λx.nd〈a〈x〉,�〉

) ...
((
λx.nd〈a〈x〉,�〉

) ... y
))

y′
))

(c〈〉),�
〉〉〉

.

We remark that in the part of P1 hidden under � many variables of order 1 remain unreduced (we have
performed only a finite number of beta-reductions). Then, after performing also β-reductions of order 0,
we obtain the lambda-term

P0 = nd
〈
�, nd

〈
�, nd

〈
nd〈a〈nd〈a〈nd〈a〈nd〈a〈c〈〉〉,�〉〉,�〉〉,�〉〉,�〉,�

〉〉〉
,

and we have P0 →∗nd T .
The four a-labeled node-constructors of T are present also in P0; we label them by (1, a)-flags. We see

that in P0 they are located on a single path. Each of them originates from a different node-constructor
in P1; in P1 we again see the four node-constructors, and we label them by (1, a)-flags. In P1, however,
they are no longer located on a path (we see that they appear in four independent occurrences of a〈x〉).
We then see that the four node-constructors in P1 originate from a single node-constructor in P2. This
node-constructor in P2 becomes again labeled by a (1, a)-flag, but the number of (1, a)-flags in P2 is
“far from” their number in P0. It is thus indeed necessary to do something else, that is, to place in P1 a
marker of order 1 and some (2, a)-flags. We place the marker in the underlined occurrence of the variable
y. Then, for every node-constructor containing a (1, a)-flag we look for the closest common ancestor with
the occurrence of y containing the marker, and we place a (2, a)-flag in this ancestors. The ancestors are
“application nodes” of the lambda-term. For the last a, this is the rightmost place denoted in P1 by vertical
dots (i.e., the place where as an argument to λx.nd〈a〈x〉,�〉 we apply y). For the previous a, this is the

8 Paweł Parys

second place denoted in P1 by vertical dots. For the first two a’s, this is the first place denoted in P1 by
vertical dots. Thus, in P1 we have three (2, a)-flags. Notice that they are located on a single path. Each of
the three places denoted in P1 by vertical dots originates from a different place in P2 (also denoted there
by vertical dots). In consequence, in P2 we also have three (2, a)-flags.

Type judgments. For storing information about flags and markers used in a derivation of a type we use
flag sets and marker multisets. Recall that a flag is parameterized by a pair (k, a), where k ≥ 1 is called an
order, and a ∈ Σ is called a letter. For flags it is enough to remember for every order whether at least one
flag of this order was used, and if so, then also a letter of this flag (if flags with multiple letters were used,
it is enough for us to remember just one of these letters). Thus for m ≥ 0 we define

Fm =
{
F ⊆ {1, . . . ,m} × Σ | (k, a), (k, b) ∈ F ⇒ a = b

}
.

Sets F in Fm are called m-bounded flag sets. For markers the situation is slightly different, as we want to
remember precisely how many markers were used. Moreover, markers do not have a letter, only an order.
We thus define

Mm =
{
M : N→ {0, . . . , |Σ|} |M(0) ≤ 1 ∧ ∀k > m.M(k) = 0

}
.

Functions M inMm are called m-bounded marker multisets. The intention is that M(k) says how many
markers of order k were used.

ByM+M ′ andM−M ′ we mean the coordinatewise sum or difference, respectively. We use 0 to denote
a function that maps every element of its domain to 0 (where the domain should be always clear from the
context). By {|k1, . . . , kn|} we mean the multiset M such that M(k) = |{i ∈ {1, . . . , n} | ki = k}| for all
k ∈ N. When F ∈ Fm, M ∈Mm, n ∈ N, and � is one of ≤, >, we write F ��n for {(k, a) ∈ F | k�n},
and M��n for the function that maps every k to M(k) if k�n, and to 0 if ¬(k�n).

Next, for every sort α and for m ≥ 0 we define three sets: the set T α of types of sort α, the set T T αm
of m-bounded type triples of sort α, and the set T Cα of triple containers of sort α. They are defined by
mutual induction on the structure of α.

For α = α1→ . . .→αs→ o we define a set of types as follows:

T α = T Cα1 × · · · × T Cαs .

A type (C1, . . . , Cs) ∈ T α is written in the form C1→ . . .→Cs→ o.
Then, we define (using Mk(Ci) defined below)

T T αm =
{

(F,M,C1→ . . .→Cs→ o) ∈ Fm ×Mm × T α | ∀(k, a) ∈ F.M(k) = 0 ∧

M(0) +

s∑
i=1

Mk(Ci)(0) = 1
}
.

Elements of T T αm are called type triples; they store a type, together with information about flags and
markers used while deriving this type. In order to distinguish type triples from types, the former are denoted
by letters with a hat, like τ̂ . We also define a function Mk that extracts the marker multiset out of a type
triple: Mk(τ̂) = M for τ̂ = (F,M, τ). A type triple is balanced if Mk(τ̂) = 0; otherwise it is unbalanced.

Triple containers are used to store type triples that have to be derived for an argument of a lambda-term,
or for a lambda-term substituted for a free variable. For balanced type triples, triple containers behave like

A Type System Describing Unboundedness 9

sets, that is, they remember only whether every balanced type triple is required or not. Conversely, for
unbalanced type triples, triple containers behave like multisets, that is, they remember precisely how many
times every unbalanced type triple is required. Thus, formally,

T Cα =
{
C : T T αord(α) → {0, . . . , |Σ|} | ∀τ̂ ∈ T T

α
ord(α).Mk(τ̂) = 0⇒ C(τ̂) ≤ 1

}
.

For a triple container C ∈ T Cα we define Mk(C) =
∑
τ̂∈T T α

ord(α)

∑C(τ̂)
i=1 Mk(τ̂). For two triple containers

C,D ∈ T Cα we define their sum C tD : T T αord(α) → N so that for every τ̂ ∈ T T αord(α),

(C tD)(τ̂) =

{
C(τ̂) +D(τ̂) if Mk(τ̂) 6= 0 ,
max(C(τ̂), D(τ̂)) if Mk(τ̂) = 0 .

We also say that C v D if C(τ̂) = D(τ̂) for every unbalanced τ̂ ∈ T T αord(α), and C(τ̂) ≤ D(τ̂) for
every balanced τ̂ ∈ T T αord(α). We sometimes write {|τ̂1, . . . , τ̂n|} or {|τ̂i | i ∈ {1, . . . , n}|} to denote the
triple container C such that C(σ̂) = |{i ∈ {1, . . . , n} | τ̂i = σ̂}| for every unbalanced type triple σ̂, and
C(σ̂) = 1⇔ ∃i ∈ {1, . . . , n} . τ̂i = σ̂ for every balanced type triple σ̂.

A type environment is a function Γ that maps every variable xα to a triple container from T Cα. We use
ε to denote the type environment mapping every variable to 0. When Γ(x) = 0, by Γ[x 7→ C] we denote
the type environment that maps x to C, and every other variable y to Γ(y) (whenever we write Γ[x 7→ C],
we implicitly require that Γ(x) = 0). For two type environments Γ,Γ′ we define their sum Γ t Γ′ so that
(Γ t Γ′)(x) = Γ(x) t Γ′(x) for every variable x; moreover, we say that Γ v Γ′ if Γ(x) v Γ′(x) for every
variable x.

A type judgment is of the form Γ `m P : τ̂ . c, where Γ is a type environment, m ≥ 0 is called the
order of the type judgment, P is a lambda-term, τ̂ is an m-bounded type triple of the same sort as P (i.e.,
τ̂ ∈ T T αm when P is of sort α), and c is a function Σ→ N called a flag counter. Having two functions
with values in natural numbers (in particular: two flag counters), f, g : X → N, we write f ≤ g when
f(x) ≤ g(x) for every x ∈ X .

As usually for intersection types, the intuitive meaning of a type C→ τ is that a lambda-term having
this type can return a lambda-term having type τ , while taking an argument for which we can derive
all type triples from C. Let us now explain the meaning of a type judgment Γ `m P : (F,M, τ) . c.
Obviously τ is the type derived for P , and Γ contains type triples that could be used for free variables
of P in the derivation. As explained above for triple containers, balanced and unbalanced type triples
behave differently: all unbalanced type triples assigned to variables by Γ have to be used exactly once in
the derivation; conversely, balanced type triples may be used any number of times. Going further, the order
m of the type judgment bounds the order of flags and markers that can be used in the derivation: flags can
be of order at most m+ 1, and markers of order at most m. The multiset M counts markers used in the
derivation, together with those provided by free variables (i.e., we imagine that some derivations, specified
by the type environment, are already substituted for free variables in our derivation); we, however, do not
include markers provided by arguments of the lambda-term (i.e., coming from the triple containers Ci
when τ = C1→ . . .→Cs→ o). The set F contains information about flags of order at most m used in the
derivation. A pair (k, a) can be contained in F if a (k, a)-flag is placed in the derivation itself, or provided
by a free variable, or provided by an argument. We do not have to keep in F all such pairs, that is, if we
can derive a type triple with some flag set F , then we can derive it also with every subset of F as the flag
set. In fact, we cannot keep in F all such pairs due to two restrictions. First, the definition of a flag set

10 Paweł Parys

allows to have in F at most one pair (k, a) for every order k. Second, we intentionally remove from F
all pairs (k, a) for which M(k) > 0. Finally, in a type judgment we have a flag counter c, which for each
letter a counts the number of (m+ 1, a)-flags present in the derivation.

Type system. Before giving rules of the type system, let us state two general facts. First, all type
derivations are assumed to be finite—although we derive types mostly for infinite lambda-terms, each type
derivation analyzes only a finite part of a term. Second, we require that premisses and conclusions of all
rules are valid type judgments. For example, when the type environment appearing in the conclusion of a
rule is Γ t Γ′, this implies that Γ(x)(τ̂) + Γ′(x)(τ̂) ≤ |Σ| holds for all x and all unbalanced type triples τ̂
(so that (Γ t Γ′)(x) is indeed a valid triple container). Let us also remark that rules of the type system
guarantee that the order m of all type judgments used in a derivation is the same.

Rules of the type system correspond to particular constructs of lambda-calculus. We start by giving the
first three rules:

M�≤ord(x) = M ′

ε[x 7→ {|(F,M ′, τ)|}] `m x : (F,M, τ) . 0
(VAR)

Γ `m Pi : τ̂ . c i ∈ {1, . . . , r}
Γ `m nd〈P1, . . . , Pr〉 : τ̂ . c

(ND)

Γ[x 7→ C ′] `m P : (F,M, τ) . c C ′ v C
Γ `m λx.P : (F,M −Mk(C), C→ τ) . c

(λ)

The (VAR) rule allows to have in the resulting marker multiset M some numbers that do not come from
the multiset assigned to x by the type environment; these are the orders of markers placed in the leaf using
this rule. Notice, however, that we allow here only orders greater than ord(x). This is consistent with
the intuitive description of the type system (cf. page 5), which says that a marker of order k can be put
in a place that will be a leaf after performing all beta-reductions of order at least k. Indeed, the variable
x remains a leaf after performing beta-reductions of orders greater than ord(x), but while performing
beta-reductions of order ord(x) this leaf is replaced by a subterm substituted for x. Recall also that, by
the definition of a type judgment, we require that (F,M ′, τ) ∈ T T αord(x) and (F,M, τ) ∈ T T αm, for an
appropriate sort α; this introduces a bound on maximal numbers that may appear in F and M .

Example 3.2. In this example, as well as in the next three examples, we illustrate particular rules of the
type system while deriving type judgments for subterms of the lambda-term Λ(G1) from Example 2.1.
Denoting ρ̂all0 = (∅, {|0|}, o) we can derive:

ε[x 7→ {|ρ̂all0 |}] `1 x : (∅, {|0|}, o) . 0
(VAR)

ε[x 7→ {|ρ̂all0 |}] `1 x : (∅, {|0, 1, 1, 1|}, o) . 0
(VAR)

In the second derivation, three markers of order 1 are placed in the conclusion of the rule. We could equally
well place one or two such markers (but not four, because in our examples we assume that |Σ| = 3).

We see that in order to derive a type for the nondeterministic choice nd〈P1, . . . , Pr〉, we need to derive
it for one of the subterms P1, . . . , Pr.

For the (λ) rule, recall that C ′ v C means that in C ′ we have all unbalanced type triples from C, and
some subset of balanced type triples from C. Thus in a subderivation concerning the lambda-term P ,
we need to use all unbalanced type triples provided by an argument of λx.P , while balanced type triples
may be used or not. Recall also that we intend to store in the marker multiset information about markers
contained in the derivation itself and those provided by free variables, but not those provided by arguments.

A Type System Describing Unboundedness 11

Because of this, in the conclusion of the rule we remove from M information about markers provided by
x. It is required, implicitly, that the result remains nonnegative. The set F , unlike M , stores also flags
provided by arguments, so we do not need to remove anything from F .

Example 3.3. In this example we show how the (ND) and (λ) rules can be used. The derivations work for
every flag counter c. Notice that in the conclusion of the (λ) rule, in both derivations, we remove 0 from
the marker multiset, because an order-0 marker is provided by x.

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : ({(1, a)}, {|0|}, o) . c
ε[x 7→ {|ρ̂all0 |}] `1 nd〈a〈x〉, b〈x〉〉 : ({(1, a)}, {|0|}, o) . c

(ND)

ε `1 λx.nd〈a〈x〉, b〈x〉〉 : ({(1, a)},0, {|ρ̂all0 |}→ o) . c
(λ)

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : (∅, {|0, 1, 1, 1|}, o) . c
ε[x 7→ {|ρ̂all0 |}] `1 nd〈a〈x〉, b〈x〉〉 : (∅, {|0, 1, 1, 1|}, o) . c

(ND)

ε `1 λx.nd〈a〈x〉, b〈x〉〉 : (∅, {|1, 1, 1|}, {|ρ̂all0 |}→ o) . c
(λ)

The next three rules use a predicate Compm, saying how flags and markers from premisses contribute to
the conclusion. It takes “as input” pairs (Fi, ci) for i ∈ I , consisting of a flag set Fi and a flag counter ci
from some premiss. Moreover, the predicate takes a marker multiset M that appears in the conclusion of
the rule. The goal is to compute a flag set F and a flag counter c that should be placed in the conclusion.
First, for each k ∈ {2, . . . ,m+ 1} consecutively, we decide which flags of order k should be placed in the
considered node of a type derivation (the Compm predicate is not responsible for placing flags of order 1).
We follow here the rules mentioned in the intuitive description. Namely, we place a (k, a)-flag if we are
on the path leading to a marker of order k − 1 (i.e., if M(k − 1) > 0), and simultaneously we receive
information about a (k− 1, a)-flag. By receiving the information we mean that either a (k− 1, a)-flag was
placed in the current node, or (k − 1, a) belongs to some set Fi. Actually, we place multiple (k, a)-flags:
one per each (k− 1, a)-flag placed in the current node, and one per each set Fi containing (k− 1, a). Then,
we compute F and c. In c(a), for every a ∈ Σ, we store the number of (m+ 1, a)-flags: we sum all the
flag counters ci, and we add the number of (m+ 1, a)-flags placed in the current node. In F , we allow to
keep elements of all Fi, and we allow to add pairs (k, a) for flags that were placed in the current node, but
it can be chosen “nondeterministically” which of them are actually taken to F , and which are dropped. It is
often necessary to drop some elements, since when the set F is used in a type triple, the definitions of a
flag set and of a type triple put additional requirements on this set.

Below we give a formal definition, in which f ′k,a contains the number of (k, a)-flags placed in the
current node, while fk,a additionally counts the number of premisses for which (k, a) ∈ Fi. We say that
(F, c) ∈ Compm(M ; ((Fi, ci))i∈I) when

F ⊆ {(k, a) | fk,a > 0} , and c(a) = fm+1,a +
∑
i∈I

ci(a) for all a ∈ Σ,

where, for k ∈ {1, . . . ,m+ 1} and a ∈ Σ,

fk,a = f ′k,a +
∑
i∈I
|Fi ∩ {(k, a)}|, f ′k,a =

{
0 if k = 1 or M(k − 1) = 0,
fk−1,a otherwise.

12 Paweł Parys

We now present rules for node constructors using letters other than nd (recall that the type system is
intended to work only for word-recognizing schemes, so it is enough to handle node constructors of arity at
most 1):

(F, c) ∈ Compm(M ; ({(1, a)},0)) a 6= nd

ε `m a〈〉 : (F,M, o) . c
(CON0)

Γ `m P : (F1,M, o) . c1 (F, c) ∈ Compm(M ; ({(1, a)},0), (F1, c1)) a 6= nd

Γ `m a〈P 〉 : (F,M, o) . c
(CON1)

By passing the set {(1, a)} to Compm we express the fact that a (1, a)-flag is placed in the current node.
We remark that the set {(1, a)}, passed to Comp0, is not an element of F0 = {∅} (and the definition of
Compm does not require this). In the (CON0) rule, that is, if we are in a leaf, we are allowed to place
markers of an arbitrary order: the marker multiset M may be arbitrary.

Remark. We allow to put markers only in leaves (i.e., in the (VAR) and (CON0) rules). Equally well it
could be allowed to put markers in any node of a derivation; this does not change a lot. Actually, Asada
and Kobayashi (2017), while using our type system to develop a pumping lemma, allow to place markers
anywhere.

Example 3.4. For a ∈ {a, b, c}, let ca be the flag counter such that ca(a) = 1 and ca(b) = 0 for all
b ∈ Σ \ {a}. The (CON1) rule may be instantiated in the following ways:

ε[x 7→ {|ρ̂all0 |}] `1 x : (∅, {|0|}, o) . 0

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : ({(1, a)}, {|0|}, o) . 0
(CON1)

ε[x 7→ {|ρ̂all0 |}] `1 x : (∅, {|0, 1, 1, 1|}, o) . 0

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : (∅, {|0, 1, 1, 1|}, o) . ca
(CON1)

In the first example, a (1, a)-flag is placed in the conclusion of the rule. Indeed, the (CON1) rule implies
that the pair (1, a) is passed to the Comp1 predicate. In the second derivation, additionally a (2, a)-flag is
placed in the conclusion of the rule: since the marker multiset contains 1 (order-1 markers are visible),
we do not put (1, a) to the flag set, but instead we create a (2, a)-flag, which results in increasing the flag
counter.

The last rule describes application:

Γ′ `m P : (F ′,M ′, {|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ I|}→ τ) . c′

Γi `m Q : (Fi,Mi, τi) . ci for each i ∈ I M = M ′ +
∑

i∈I
Mi ord(Q) ≤ m

(F, c) ∈ Compm(M ; (F ′, c′), ((Fi�>ord(Q), ci))i∈I) {(k, a) ∈ F ′ |M(k) = 0} ⊆ F

Γ′ t
⊔

i∈I
Γi `m P Q : (F,M, τ) . c

(@)

In this rule, it is allowed (and potentially useful) that for two different i ∈ I the type triples (Fi,Mi, τi)
are equal. It is also allowed that I = ∅, in which case no type needs to be derived for Q. Observe how
flags and markers coming from premisses concerning Q are propagated: only flags and markers of orders

A Type System Describing Unboundedness 13

k ≤ ord(Q) are visible to P , while only flags of orders k > ord(Q) are passed to the Compm predicate.
This can be justified if we recall the intuitions staying behind the type system (cf. page 5). Indeed, while
considering flags and markers of order k, we should imagine the lambda-term obtained from the current
lambda-term by performing all beta-reductions of order at least k; the distribution of flags and markers of
order k in the current lambda-term actually simulates their distribution in this imaginary lambda-term. Thus,
if ord(Q) ≥ k, then our application will disappear in this imaginary lambda-term, and Q will be already
substituted somewhere in P ; for this reason we need to pass information about flags and markers of order
k from Q to P . Conversely, if ord(Q) < k, then in the imaginary lambda-term the considered application
will be still present, and, in consequence, the subterm corresponding to P will not see flags and markers
of order k placed in the subterm corresponding to Q. The condition {(k, a) ∈ F ′ | M(k) = 0} ⊆ F
(saying that flags derived for P cannot disappear, unless they meet information about markers of the
corresponding order) is added for technical reasons. It turns out to be useful in our proofs, namely, in the
proof of Lemma 7.1 on page 39.

Example 3.5. Recalling that ρ̂all0 = (∅, {|0|}, o), denote by τ̂a and τ̂m the type triples derived in Example 3.3:
τ̂a = ({(1, a)},0, {|ρ̂all0 |}→ o) and τ̂m = (∅, {|1, 1, 1|}, {|ρ̂all0 |}→ o). We can derive:

ε[f 7→ {|τ̂a|}] `1 f : τ̂a . 0

ε[f 7→ {|τ̂m|}] `1 f : τ̂m . 0 ε[y 7→ {|ρ̂all0 |}] `1 y : ρ̂all0 . 0

ε[f 7→ {|τ̂m|}, y 7→ {|ρ̂all0 |}] `1 f y : (∅, {|0, 1, 1, 1|}, o) . 0
(@)

ε[f 7→ {|τ̂a, τ̂m|}, y 7→ {|ρ̂all0 |}] `1 f (f y) : (∅, {|0, 1, 1, 1|}, o) . ca
(@)

ε[f 7→ {|τ̂a, τ̂m|}] `1 λy.f (f y) : τ̂m . ca
(λ)

Below the lower (@) rule information about a (1, a)-flag (from the first premiss) meets information about
a marker of order 1 (from the second premiss), and thus a (2, a)-flag is placed, which increases the flag
counter.

Denote ρ̂allm = (∅,Mall
m , o), where Mall

m ∈ Mm is such that Mall
m (0) = 1 and Mall

m (k) = |Σ| for all
k ∈ {1, . . . ,m}. The key property of the type system is described by the following theorem.

Theorem 3.2. Let m ∈ N, let P be a word-recognizing closed lambda-term of sort o and of complexity at
most m+ 1, and let A ⊆ Σ. Then SUPA(L(BT (P))) holds if and only if for every n ∈ N we can derive
ε `m P : ρ̂allm . cn with some cn such that cn(a) ≥ n for all a ∈ A.

We postpone the proof of this theorem to Sections 4-7. Before this proof, we give some examples and
comments.

Example 3.6. In Examples 3.6-3.9 we present a complete derivation concerning the recursion scheme G1

from Example 2.1, continuing Examples 3.2-3.5. Actually, we present a series of derivations with larger
and larger values in the flag counter; this corresponds to the fact that the language of G1 contains words
with arbitrarily many occurrences of the letters a and b. The four examples follow the intuitions shown in
Example 3.1.

We start by a derivation of order 0 that works for BT (Λ(G1)). Recall that BT (Λ(G1)) = nd〈T20 ,
nd〈T21 , nd〈T22 , . . .〉〉〉, where T0 = c〈〉 and Ti+1 = nd〈a〈Ti〉, b〈Ti〉〉.

By applying the (CON0) rule we can derive ε `0 c〈〉 : ρ̂all0 . cc (recall that ρ̂all0 = (∅, {|0|}, o). Then,

14 Paweł Parys

having a derivation of ε `0 Ti : ρ̂all0 . c, we can continue in one of two ways:

ε `0 Ti : ρ̂all0 . c

ε `0 a〈Ti〉 : ρ̂all0 . c+ ca
(CON1)

ε `0 Ti+1 : ρ̂all0 . c+ ca
(ND)

ε `0 Ti : ρ̂all0 . c

ε `0 b〈Ti〉 : ρ̂all0 . c+ cb
(CON1)

ε `0 Ti+1 : ρ̂all0 . c+ cb
(ND)

In consequence, we can derive ε `0 Ti : ρ̂all0 . c for every flag counter c such that c(a) + c(b) = i and
c(c) = 1; this reflects precisely the number of occurrences of particular letters in words from L(Ti). For
every i of the form 2j we can continue by deriving ε `0 BT (Λ(G1)) : ρ̂all0 . c:

ε `0 T2j : ρ̂all0 . c

ε `0 nd〈T2j , . . .〉 : ρ̂all0 . c
(ND)

. . .
(ND)

ε `0 nd〈T21 , . . . nd〈T2j , . . .〉 . . .〉 : ρ̂all0 . c
(ND)

ε `0 nd〈T20 , nd〈T21 , . . . nd〈T2j , . . .〉 . . .〉〉 : ρ̂all0 . c
(ND)

Example 3.7. Next, we consider the lambda-term obtained from Λ(G1) by performing all (infinitely many)
beta-reductions of order 1. It is the lambda-term Q0 where for all i ∈ N,

Qi = nd〈Si (c〈〉), Qi+1〉 , Si+1 = λy.Si (Si y) , and S0 = λx.nd〈a〈x〉, b〈x〉〉 .

Denote τ̂0 = (∅,0, {|ρ̂all0 |}→ o). We can derive:

ε[x 7→ {|ρ̂all0 |}] `0 x : ρ̂all0 . 0
(VAR)

ε[x 7→ {|ρ̂all0 |}] `0 a〈x〉 : ρ̂all0 . ca
(CON1)

ε[x 7→ {|ρ̂all0 |}] `0 nd〈a〈x〉, b〈x〉〉 : ρ̂all0 . ca
(ND)

ε `0 S0 : τ̂0 . ca
(λ)

ε[x 7→ {|ρ̂all0 |}] `0 x : ρ̂all0 . 0
(VAR)

ε[x 7→ {|ρ̂all0 |}] `0 b〈x〉 : ρ̂all0 . cb
(CON1)

ε[x 7→ {|ρ̂all0 |}] `0 nd〈a〈x〉, b〈x〉〉 : ρ̂all0 . cb
(ND)

ε `0 S0 : τ̂0 . cb
(λ)

Then, having derivations for Si with flag counters c1, c2, we can continue as follows:

ε `0 Si : τ̂0 . c1

ε `0 Si : τ̂0 . c2 ε[y 7→ {|ρ̂all0 |}] `0 y : ρ̂all0 . 0
(VAR)

ε[y 7→ {|ρ̂all0 |}] `0 Si y : ρ̂all0 . c2
(@)

ε[y 7→ {|ρ̂all0 |}] `0 Si (Si y) : ρ̂all0 . c1 + c2
(@)

ε `0 Si+1 : τ̂0 . c1 + c2
(λ)

In consequence, we can derive ε `0 Si : τ̂0 . c for every flag counter c such that c(a) + c(b) = 2i and
c(c) = 0. We finish the derivation as follows:

ε `0 Si : τ̂0 . c ε `0 c〈〉 : ρ̂all0 . cc
(CON0)

ε `0 Si (c〈〉) : ρ̂all0 . c+ cc
(@)

ε `0 Qi : ρ̂all0 . c+ cc
(ND)

ε `0 Qi−1 : ρ̂all0 . c+ cc
(ND)

. . .
(ND)

ε `0 Q0 : ρ̂all0 . c+ cc
(ND)

A Type System Describing Unboundedness 15

As in the previous example, to every derivation we can assign a corresponding word in L(BT (Q0)), so
that the flag counter computes precisely the number of occurrences of particular letters in the word.

Example 3.8. Let us now increase the order of the derivation from the previous example, by adding
markers of order 1 and flags of order 2. Recall the type triples defined previously:

ρ̂all0 = (∅, {|0|}, o) , τ̂a = ({(1, a)},0, {|ρ̂all0 |}→ o) ,

ρ̂all1 = (∅, {|0, 1, 1, 1|}, o) , τ̂m = (∅, {|1, 1, 1|}, {|ρ̂all0 |}→ o) .

From Examples 3.2-3.4 we already know how to derive S0 : τ̂a . 0 and S0 : τ̂m . ca. Then, consecutively
for every i ∈ N, based on a type judgment for Si, we derive a type judgment for Si+1:

ε `1 Si : τ̂a . 0

ε `1 Si : τ̂a . 0 ε[y 7→ {|ρ̂all0 |}] `1 y : ρ̂all0 . 0

ε[y 7→ {|ρ̂all0 |}] `1 Si y : ({(1, a)}, {|0|}, o) . 0
(@)

ε[y 7→ {|ρ̂all0 |}] `1 Si (Si y) : ({(1, a)}, {|0|}, o) . 0
(@)

ε `1 λy.Si (Si y) : τ̂a . 0
(λ)

Next, suppose that we can derive ε `1 Si : τ̂a . 0 and ε `1 Si : τ̂m . c. Out of those type judgments we
can derive (notice a high similarity to the derivation from Example 3.5):

ε `1 Si : τ̂a . 0

ε `1 Si : τ̂m . c ε[y 7→ {|ρ̂all0 |}] `1 y : ρ̂all0 . 0

ε[y 7→ {|ρ̂all0 |}] `1 Si y : ρ̂all1 . c
(@)

ε[y 7→ {|ρ̂all0 |}] `1 Si (Si y) : ρ̂all1 . c+ ca
(@)

ε `1 λy.Si (Si y) : τ̂m . c+ ca
(λ)

In analogy to τ̂a, let τ̂b = ({(1, b)},0, {|ρ̂all0 |}→ o). Changing a to b in the above derivations, we
can derive a type judgment ε `1 S0 : τ̂b . 0, then ε `1 Si : τ̂b . 0 for every i ∈ N, and then out of
ε `1 Si : τ̂m . c we can derive ε `1 Si+1 : τ̂m . c+ cb. In consequence, for every i ∈ N we can derive
ε `1 Si : τ̂m . c for any flag counter c such that c(a) + c(b) = i + 1 and c(c) = 0. Recall that words
described by Si contain 2i letters, so this time values in the flag counter are exponentially smaller (unlike
for `0 in the previous example).

As previously, it is easy to finish the derivation:

ε `0 Si : τ̂m . c ε `0 c〈〉 : ρ̂all0 . 0
(CON0)

ε `0 Si (c〈〉) : ρ̂all1 . c
(@)

ε `0 Qi : ρ̂all1 . c
(ND)

ε `0 Qi−1 : ρ̂all1 . c
(ND)

. . .
(ND)

ε `0 Q0 : ρ̂all1 . c
(ND)

Notice that in the (CON0) rule a (1, c)-flag is placed. It is not necessary to remember information about
this flag in the type triple, and thus we can derive ρ̂all0 , having an empty flag set.

16 Paweł Parys

Example 3.9. Finally, we actually present a derivation for the lambda-term Λ(G1). Besides the type triples
ρ̂all0 , ρ̂all1 , τ̂a, τ̂b, τ̂m defined previously let us also define

σ̂R = (∅, {|0|}, {|τ̂a, τ̂b, τ̂m|}→ o) .

Recall from Example 2.1 that R1 is a lambda-term such that R1 = λf.nd〈f (c〈〉), R1 (λy.f (f y))〉. A type
judgment ε `1 R1 : σ̂R . 0 can be derived as follows:

ε[f 7→ {|τ̂m|}] `1 f : τ̂m . 0
(VAR)

ε `1 c〈〉 : ρ̂all0 . 0
(CON0)

ε[f 7→ {|τ̂m|}] `1 f (c〈〉) : ρ̂all1 . 0
(@)

ε[f 7→ {|τ̂m|}] `1 nd〈f (c〈〉), R1 (λy.f (f y))〉 : ρ̂all1 . 0
(ND)

ε `1 R1 : σ̂R . 0
(λ)

Notice that the type triples τ̂a and τ̂b required for the argument by σ̂R are not used here; recall that the
(λ) rule allows to discard them, since they are balanced. On the other hand, the type triple τ̂m is unbalanced,
so it could not be discarded, and has to be used exactly once in the derivation.

Next, we derive the same type triple for R1, but using the second argument of the nd symbol; this results
in greater values of the flag counter. In Example 3.5 we have derived the type judgment ε[f 7→ {|τ̂a, τ̂m|}]
`1 λy.f (f y) : τ̂m . ca. Similarly we can derive ε[f 7→ {|τ̂b, τ̂m|}] `1 λy.f (f y) : τ̂m . cb. We continue by
deriving the type triple τ̂a for the subterm λy.f (f y):

ε[f 7→ {|τ̂a|}] `1 f : τ̂a . 0

ε[f 7→ {|τ̂a|}] `1 f : τ̂a . 0 ε[y 7→ {|ρ̂all0 |}] `1 y : ρ̂all0 . 0

ε[f 7→ {|τ̂a|}, y 7→ {|ρ̂all0 |}] `1 f y : ({(1, a)}, {|0|}, o) . 0
(@)

ε[f 7→ {|τ̂a|}, y 7→ {|ρ̂all0 |}] `1 f (f y) : ({(1, a)}, {|0|}, o) . 0
(@)

ε[f 7→ {|τ̂a|}] `1 λy.f (f y) : τ̂a . 0
(λ)

In the above derivation there are no flags nor markers. Similarly we can derive ε[f 7→ {|τ̂b|}] `1 λy.f (f y) :
τ̂b . 0. We continue with the lambda-term R1 (for an arbitrary flag counter c):

ε `1 R1 : σ̂R . c ε[f 7→ {|τ̂a|}] `1 λy.f (f y) : τ̂a . 0
ε[f 7→ {|τ̂b|}] `1 λy.f (f y) : τ̂b . 0 ε[f 7→ {|τ̂a, τ̂m|}] `1 λy.f (f y) : τ̂m . ca

ε[f 7→ {|τ̂a, τ̂b, τ̂m|}] `1 R1 (λy.f (f y)) : ρ̂all1 . c+ ca
(@)

ε[f 7→ {|τ̂a, τ̂b, τ̂m|}] `1 nd〈f (c〈〉), R1 (λy.f (f y))〉 : ρ̂all1 . c+ ca
(ND)

ε `1 R1 : σ̂R . c+ ca
(λ)

In this fragment of a derivation no flag nor counter is placed. In particular, there is no order-2 flag in
conclusion of the (@) rule, although its second and third premisses provide (1, a)- and (1, b)-flags while
the last premiss provides markers of order 1. We recall from the definition of the (@) rule that information
about flags and markers coming from the arguments is divided into two parts. Numbers not greater than the
order of the argument (which is 1 in our case) are passed to the operator, while only greater numbers (in
our case: greater than 1) contribute in creating new flags via the Comp predicate.

Similarly, out of ε `1 R1 : σ̂R . c we can derive ε `1 R1 : σ̂R . c + cb. By composing these two
derivation fragments, we can derive ε `1 R1 : σ̂R . c for every c such that c(c) = 0 (by modifying

A Type System Describing Unboundedness 17

slightly the initial fragment of the derivation descending to f (c〈〉) we could also obtain c(c) = 1, but not
c(c) > 1). Finally, we apply the argument S0 = λx.nd〈a〈x〉, b〈x〉〉, and we derive for Λ(G1) the type triple
ρ̂all1 , appearing in Theorem 3.2.

ε `1 R1 : σ̂R . c ε `1 S0 : τ̂a . 0 ε `1 S0 : τ̂b . 0 ε `1 S0 : τ̂m . ca

ε `1 Λ(G1) : ρ̂all1 . c+ ca
(@)

Recall that from Examples 3.2-3.4 we already know how to derive the three premisses concerning S0.
There is a lack of symmetry here with respect to letters a and b, but instead of the last premiss we could
equally well use ε `1 S0 : τ̂m . cb, obtaining flag counter c + cb at the end. We notice that there is no
direct correspondence between the considered derivation and some particular word in L(G1); we can only
say that such a derivation with flag counter c + ca talks about words from L(G1) having 2c(a)+c(b) + 1
nodes, because c(a) + c(b) times we have descended to the second argument of the nd symbol in R1. We
remark that in every of the above derivations only four flags of order 1 are present (two (1, a)-flags, one
(1, b)-flag, and one (1, c)-flag), in the four nodes using rules (CON1) or (CON0).

Example 3.10. This is a “negative” example: we have here a scheme with a finite language. Due to
Theorem 3.2, type derivations concerning such a scheme result in small values in the flag counter. Namely,
consider a scheme G2, similar to G1, where

R(M) = N (λx.nd〈a〈x〉, b〈x〉〉) , R(N) = λf.nd〈f (c〈〉),N (λy.f y)〉 .

The only difference, compared with G1, is that in R(N) we have replaced f (f y) by f y. In consequence,
the lambda-term R2 (defined analogously to R1 from Example 2.1) is obtained from R1 by replacing all
occurrences of the subterm f (f y) with f y. We have BT (Λ(G2)) = nd〈T1, nd〈T1, nd〈T1, . . .〉〉〉, where
T1 = nd〈a〈c〈〉〉, b〈c〈〉〉〉, and thus L(G2) = {a〈c〈〉〉, b〈c〈〉〉}.

Let us see how the type derivations have to be changed. The type judgment ε `1 R2 : σ̂R . 0 can
be obtained without any change, as its derivation descends to the first child of the outermost nd〈·, ·〉 in
R2 = λf.nd〈f (c〈〉), R2 (λy.f y)〉. The type judgment ε[f 7→ {|τ̂a|}] `1 λy.f y : τ̂a . 0, and a similar one
for τ̂b, can be obtained without any problem, as the type judgments concerning the subterms f y and f (f y)
were the same. Let us now see what happens to the derivation of the type triple τ̂m:

ε[f 7→ {|τ̂m|}] `1 f : τ̂m . 0
(VAR)

ε[y 7→ {|ρ̂all0 |}] `1 y : ρ̂all0 . 0
(VAR)

ε[f 7→ {|τ̂m|}, y 7→ {|ρ̂all0 |}] `1 f y : (∅, {|0, 1, 1, 1|}, o) . 0
(@)

ε[f 7→ {|τ̂m|}] `1 λy.f y : τ̂m . 0
(λ)

In the subterm f y we have only one occurrence of f, so we cannot use simultaneously both τ̂a and τ̂m (as
we did for f (f y)); as a result, no order-2 flag is placed. Thus if we create a derivation for R2 that descends
to the second child of the outermost nd〈·, ·〉, out of ε `1 R2 : σ̂R . 0 we derive again ε `1 R2 : σ̂R . 0,
without any change to the flag counter. In consequence, the type triple ρ̂all1 is derived for Λ(G2) with flag
counter ca (or cb, if one prefers). This corresponds to the fact that L(G2) contains only words with one
letter among a, b.

Example 3.11. This example shows how subterms disappearing during beta-reductions are handled by
our type system. Consider a lambda-term P2 = (λg.Λ(G2)) (λz.Pa), where Pa is the unique lambda-term

18 Paweł Parys

such that Pa = nd〈z, a〈Pa〉〉 (by the way, notice that P2 is a lambda-term that cannot be described by any
scheme, because the free variable z occurs in Pa infinitely many times). We see that P2 beta-reduces to
Λ(G2), hence the recognized language remains unchanged. Let us see what happens on the side of type
derivations. Notice that we can create the following derivation:

ε[z 7→ {|ρ̂all0 |}] `1 z : ρ̂all0 . 0
(VAR)

ε[z 7→ {|ρ̂all0 |}] `1 Pa : ρ̂all0 . 0
(ND)

ε[z 7→ {|ρ̂all0 |}] `1 a〈Pa〉 : ({(1, a)}, {|0|}, o) . 0
(CON1)

ε[z 7→ {|ρ̂all0 |}] `1 Pa : ({(1, a)}, {|0|}, o) . 0
(ND)

ε `1 λz.Pa : τ̂a . 0
(λ)

The two lines above the (λ) rule can be repeated arbitrarily many times. Then, in the conclusion of every
(CON1) rule, a (1, a)-flag is placed (there are no (2, a)-flags, though). Such a derivation can be used as a
part of a derivation for P2:

ε `1 Λ(G2) : ρ̂all1 . ca

ε `1 λg.Λ(G2) : (∅, {|0, 1, 1, 1|}, {|τ̂a|}→ o) . ca
(λ)

ε `1 λz.Pa : τ̂a . 0

ε `1 P2 : ρ̂all1 . ca
(@)

Because τ̂a is balanced, it can be discarded in the (λ) rule; it does not need to be used in the derivation for
Λ(G2). We thus obtain a derivation for P2 in which there are many (1, a)-flags (but only one (2, a)-flag).
This shows that in the flag counter we indeed need to count only the number of flags of the maximal order
(not, say, the total number of flags of all orders).

Example 3.12. In the derivation from Example 3.9 all order-1 markers were placed in the same leaf,
corresponding to the subterm x. In this example we see that sometimes it is necessary to place markers in
multiple leaves. To this end, consider a scheme G3, where additionally to M and N we have a nonterminal
Mb of sort o, and the rules are changed to:

R(M) = N (λx.a〈x〉) , R(Mb) = nd〈c〈〉, b〈Mb〉〉 ,
R(N) = λf.nd〈f Mb,N (λy.f (f y))〉 .

Here we need to place one order-1 marker (responsible for counting occurrences of the a letter) in a leaf
corresponding to x, and another order-1 marker (responsible for counting occurrences of the b letter) in a
leaf corresponding to c〈〉. We do not have to care where to put the third available order-1 marker; let us put
it in a leaf corresponding to x.

Since we want to place only two order-1 markers in a leaf corresponding to x, this time we consider
the type triple τ̂ ′m = (∅, {|1, 1|}, {|ρ̂all0 |}→ o). We can derive τ̂ ′m and τ̂a = ({(1, a)},0, {|ρ̂all0 |}→ o) for
λx.a〈x〉:

ε[x 7→ {|ρ̂all0 |}] `1 x : (∅, {|0, 1, 1|}, o) . 0
(VAR)

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : (∅, {|0, 1, 1|}, o) . ca
(CON1)

ε `1 λx.a〈x〉 : τ̂ ′m . ca
(λ)

A Type System Describing Unboundedness 19

ε[x 7→ {|ρ̂all0 |}] `1 x : ρ̂all0 . 0
(VAR)

ε[x 7→ {|ρ̂all0 |}] `1 a〈x〉 : ({(1, a)}, {|0|}, o) . 0
(CON1)

ε `1 λx.a〈x〉 : τ̂a . 0
(λ)

Denote by Pb the lambda-term corresponding to Mb, that is, let Pb = nd〈c〈〉, b〈Pb〉〉. We can derive:

ε `1 c〈〉 : (∅, {|0, 1|}, o) . cc
(CON0)

ε `1 Pb : (∅, {|0, 1|}, o) . cc
(ND)

ε `1 Pb : (∅, {|0, 1|}, o) . c
ε `1 b〈Pb〉 : (∅, {|0, 1|}, o) . c+ cb

(CON1)

ε `1 Pb : (∅, {|0, 1|}, o) . c+ cb
(ND)

Starting with the derivation fragment on the left, and then appending the fragment on the right an appropriate
number of times, we can derive ε `1 Pb : (∅, {|0, 1|}, o) . c for every flag counter c such that c(a) = 0 and
c(c) = 1 (where c(b) is arbitrary).

We can derive ε[f 7→ {|τ̂a|}] `1 λy.f (f y) : τ̂a . 0 and ε[f 7→ {|τ̂a, τ̂ ′m|}] `1 λy.f (f y) : τ̂ ′m . ca, exactly
as in Example 3.9. Let us take σ̂′R = (∅, {|0, 1|}, {|τ̂a, τ̂ ′m|}→ o). Consider a lambda-term R3 corresponding
to N, namely the unique lambda-term such that R3 = λf.nd〈f Pb, R3 (λy.f (f y))〉. By continuing the
above derivation concerning Pb we obtain:

ε[f 7→ {|τ̂ ′m|}] `1 f : τ̂ ′m . 0
(VAR)

ε `1 Pb : (∅, {|0, 1|}, o) . c
ε[f 7→ {|τ̂ ′m|}] `1 f Pb : ρ̂all1 . c

(@)

ε[f 7→ {|τ̂ ′m|}] `1 nd〈f Pb, R3 (λy.f (f y))〉 : ρ̂all1 . c
(ND)

ε `1 R3 : σ̂′R . c
(λ)

We also have a derivation fragment that increases the flag counter on the first coordinate:

ε `1 R3 : σ̂′R . c ε[f 7→ {|τ̂a|}] `1 λy.f (f y) : τ̂a . 0 ε[f 7→ {|τ̂a, τ̂ ′m|}] `1 λy.f (f y) : τ̂ ′m . ca

ε[f 7→ {|τ̂a, τ̂ ′m|}] `1 R3 (λy.f (f y)) : ρ̂all1 . c+ ca
(@)

ε[f 7→ {|τ̂a, τ̂ ′m|}] `1 nd〈f (c〈〉), R3 (λy.f (f y))〉 : ρ̂all1 . c+ ca
(ND)

ε `1 R3 : σ̂′R . c+ ca
(λ)

Notice that, in the last two derivation fragments, the final (λ) rule removes two order-1 markers from the
marker multiset of ρ̂all1 , so that the marker multiset of σ̂′R contains one order-1 marker. This is because τ̂ ′m
provides two order-1 markers. In Example 3.9 τ̂m provided three order-1 markers, and, in consequence, σ̂R
had no order-1 markers.

By repeating the last derivation fragment, we can derive ε `1 R3 : σ̂′R . c for every c such that c(c) = 1.
We end the derivation as in Example 3.9:

ε `1 R3 : σ̂′R . c ε `1 λx.a〈x〉 : τ̂a . 0 ε `1 λx.a〈x〉 : τ̂ ′m . ca

ε `1 Λ(G3) : ρ̂all2 . c+ ca
(@)

Remark. In our type derivations and in ρ̂allm we allow |Σ| markers of every positive order, but actually,
while solving SUP for a set A, it would be enough to have |A| of them, since we are not interested in
counting letters not in A. Similarly, it is not necessary to consider (k, a)-flags for a 6∈ A.

20 Paweł Parys

Remark. One can notice that the definition of Compm(M ; ((Fi, ci))i∈I) does not use the value of
M(0), so the way how flags are handled does not depend on markers of order 0. In consequence, it is
possible to consider a variant of the type system where there are no markers of order 0 at all. A careful
analysis can show that such a variant remains correct (i.e., Theorem 3.2 remains true, assuming m ≥ 1).
Nevertheless, the presence of order-0 markers is useful for obtaining the optimal complexity: the condition
M(0) +

∑s
i=1 Mk(Ci)(0) = 1 put on every type triple (F,M,C1→ . . .→Cs→ o) decreases the number

of type triples; see Section 9.1 for more details.

Other type systems. The idea of using intersection types for counting is not completely new. In Parys
(2014, 2016) there is a type system that, essentially, allows to estimate the size of the beta-normal form of
a (finite) lambda-term just by looking at (the number of some flags in) a derivation of a type for this term.
A similar idea, but for higher-order pushdown automata, is present in Parys (2012), where we can estimate
the number of] symbols appearing on a particular, deterministically chosen branch of the generated tree.
This previous approach also uses intersection types, where the derivations are marked with just one kind of
flags, denoting “productive” places of a term (in contrast to our approach, where we have different flags for
different orders and letters, and we also have markers). The trouble with the “one-flag” approach is that it
works well only in a completely deterministic setting, where looking independently at each node of the
Böhm tree we know how it contributes to the result; the method stops working (or at least we do not know
how to prove that it works) in our situation, where we first nondeterministically perform some guesses in
the Böhm tree (namely, we guess which word T ∈ L(BT (P)) should be considered), and only after that
we want to count something that depends on the chosen values.

Our type system and the type system from Parys (2017b) are, to some extent, motivated by an algorithm
of Clemente et al. (2016) solving SUP for schemes. This algorithm works by repeating two kinds of
transformations of schemes. The first of them turns the scheme into a scheme generating trees having only
a fixed number of branches, one per each letter from A. The branches are chosen nondeterministically
out of some tree generated by the original scheme; for every a ∈ A there is a choice witnessing that a
appeared many times in the original tree. Then, such a scheme of the special form is turned into a scheme
that is of order lower by one, and generates trees having the same nodes as trees generated by the original
scheme, but arranged differently (in particular, the new trees may have again arbitrarily many branches).
After finitely many repetitions of this procedure, a scheme of order 0 is obtained, and SUP becomes easily
decidable. In some sense we do the same, but instead of applying all these transformations one by one,
we simulate all of them simultaneously in a single type derivation. In this derivation, for each order k,
we allow to place arbitrarily |A| markers of order k (actually, |Σ| of them), which corresponds to the
nondeterministic choice of |A| branches in the k-th step of the previous algorithm. We also place some
(k, a)-flags, in places that correspond to a-labeled nodes remaining after the k-th step of the previous
algorithm.

The idea of having balanced types and unbalanced types (where the former can be used arbitrarily many
times, while the latter have to be used exactly once) comes from a type system of Asada and Kobayashi
(2016).

Let us compare our type system with the type system introduced in Parys (2017b) in order to solve SUP
in the case of |A| = 1. The first difference is that we solve the case of multiple letters in A. This is done by
replacing a single marker and a single kind of flags of every order by |Σ| markers and |Σ| kinds of flags,
one per each letter of the alphabet Σ. This makes the proofs slightly more complex, but seeing Clemente
et al. (2016) and Hague, Kochems, and Ong (2016) it was quite natural that every letter from Σ (or, at least,

A Type System Describing Unboundedness 21

every letter from A) requires separate markers and flags.
Conceptually, it was more difficult to establish the optimal complexity. In Parys (2017b) no explicit

complexity bound is given, but we can observe that for schemes of order m a direct adaptation of their
algorithm to the multiple-letters case works in (m+3)-EXPTIME (which drops down to (m+2)-EXPTIME
for |A| = 1 or, more generally, for fixed A); we thus had to save four exponentiations. The previous paper
proposes a quite naive algorithm for checking whether there exist type derivations with arbitrarily many
flags, which is doubly exponential in the number of type triples, and we replace it by an algorithm that is
polynomial in the number of type triples. This saves two exponentiations. Another exponentiation is saved
by making the number of order-0 type triples polynomial in |A|; this is obtained by making all markers
of a fixed order identical (not labeled by a letter, like flags), and by storing information only about one,
nondeterministically chosen, flag of every order in flag sets, instead of information about all kinds of flags
seen so far. Finally, one more exponentiation is saved by restricting to word-recognizing schemes, and
observing that in this case the number of order-1 types can be also made polynomial. This is possible
because in every word there is a unique leaf in which an order-0 marker may be placed.

Finally, let us also mention that Asada and Kobayashi (2017) use a slight modification of our type system
in order to prove a pumping lemma for languages recognized by higher-order recursion schemes.

4 Finite approximations of infinite lambda-terms
Theorem 3.2 talks about infinite lambda-terms, but the properties described by this theorem concern actually
only finite prefixes of these lambda-terms. Moreover, while proving this theorem it is easier to concentrate
on finite lambda-terms. For this reason we now formalize the concept of taking a finite approximation of a
lambda-term.

We first explain what it means that one lambda-term is an approximation of another lambda-term. This
is described by the relation 4 defined as the smallest reflexive relation such that:

• P 4 P for all lambda-terms P ,
• λxα1

1 . · · · .λxαss .nd〈〉 4 Q whenever Q is of sort α1→ . . .→αs→ o,
• a〈P1, . . . , Pr〉 4 a〈P ′1, . . . , P ′r〉 if Pi 4 P ′i for all i ∈ {1, . . . , r},
• P Q 4 P ′Q′ if P 4 P ′ and Q 4 Q′, and
• λx.P 4 λx.P ′ if P 4 P ′.

In other words, we allow to replace some subterms Q by lambda-terms of the form λx1. · · · .λxs.nd〈〉
(where the quantity of variables x1, . . . , xs and their sorts are chosen so that the sort of the lambda-term
remains unchanged).

The fact that in Theorem 3.2 it is enough to consider finite approximations of lambda-terms is given by
the following two lemmata.

Lemma 4.1. We can derive a type judgment Γ `m P : τ̂ . c if and only if for some finite lambda-term P ′

such that P ′ 4 P we can derive Γ `m P ′ : τ̂ . c.

Proof: For the left-to-right implication we recall that type derivations are finite by assumption. We can
thus cut off (i.e., replace by λx1. · · · .λxs.nd〈〉) those subterms of P to which we do not descend while
deriving Γ `m P : τ̂ . c. For the opposite implication we observe that it is impossible to derive any type
judgment for a lambda-term of the form λx1. · · · .λxs.nd〈〉, because we cannot apply the (ND) rule to a
node constructor without any child. We can thus replace subterms of this form by the actual subterms of P ,
without altering the type derivation. Details, being easy, are left to the reader.

22 Paweł Parys

Lemma 4.2. Let P be a closed lambda-term of sort o. For every tree T it is the case that T ∈ L(BT (P))
if and only if there exists a finite lambda-term P ′ such that P ′ 4 P and T ∈ L(BT (P ′)).

The remaining part of this section is devoted to a formal proof of Lemma 4.2. The proof is tedious, but
essentially straightforward. The first three lemmata are useful while showing its right-to-left implication.

Lemma 4.3. If R′ 4 R and S′ 4 S, then R′[S′/x] 4 R[S/x].

Proof: A trivial coinduction on the structure of R′.

Lemma 4.4. If P ′ 4 P and P ′ h−→∗β Q′, then there exists a lambda-term Q such that Q′ 4 Q and
P h−→∗β Q.

Proof: We proceed by induction on the length of the shortest reduction sequence witnessing P ′ h−→∗β Q′;
only the base case of a single beta-reduction is interesting, thus assume that P ′ h−→β Q′. In this case
P ′ = (λx.R′)S′0 S

′
1 . . . S

′
s and Q′ = R′[S′0/x]S′1 . . . S

′
s (where s ≥ 0).

We have two cases. One possibility is that P = (λx.R)S0 S1 . . . Ss, where R′ 4 R and S′i 4 Si for all
i ∈ {0, . . . , s}. In this case, taking Q = R[S0/x]S1 . . . Ss we have that P h−→∗β Q, and, by Lemma 4.3,
Q′ 4 Q.

It is also possible that R′ = λx1. · · · .λxs.nd〈〉. In this case we simply take Q = P , and we observe that
Q′ = R′ 4 Q.(i)

Lemma 4.5. If P ′ and P are closed lambda-terms of sort o such that P ′ 4 P , and if T is a finite Σ-labeled
tree such that BT (P ′)→n

nd T , then BT (P)→∗nd T .

Proof: The proof is by induction on |T | + n. Because BT (P ′) →n
nd T , necessarily BT (P ′) 6=

nd〈〉, and thus P ′ h−→∗β a〈P ′1, . . . , P ′r〉 for some a ∈ Σnd and some lambda-terms P ′1, . . . , P
′
r such

that BT (P ′) = a〈BT (P ′1), . . . ,BT (P ′r)〉. Since P ′ 4 P , by Lemma 4.4 there exist lambda-terms
P1, . . . , Pr such that P h−→∗β a〈P1, . . . , Pr〉 and P ′i 4 Pi for all i ∈ {1, . . . , r}. Notice that BT (P) =
a〈BT (P1), . . . ,BT (Pr)〉. We have two cases.

Suppose first that a 6= nd. Then BT (P ′) →n
nd T implies that T = a〈T1, . . . , Tr〉, where for all

i ∈ {1, . . . , r} it is the case that |Ti| < |T | and BT (P ′i)→
ni
nd Ti for some ni ≤ n. For every i ∈ {1, . . . , r}

the induction assumption implies that BT (Pi)→∗nd Ti, and thus BT (P)→∗nd T , as required.
Next, suppose that a = nd. In this case we have BT (P ′) →nd BT (P ′i) →

n−1
nd T for some i ∈

{1, . . . , r}. Then BT (Pi) →∗nd T by the induction assumption (used for one fixed i only), and we can
conclude observing that BT (P)→nd BT (Pi).

The first step needed while proving the left-to-right implication of Lemma 4.2 is to show that every tree
from L(BT (P)) can be seen already after performing finitely many beta-reductions from P .

Lemma 4.6. Let P be a closed lambda-term of sort o, and let T be a finite Σ-labeled tree such that
BT (P)→n

nd T . Then there exists a lambda-term Q such that P →∗β Q→∗nd T .

Proof: The proof is by induction on |T | + n. Since BT (P) →n
nd T , necessarily BT (P) 6= nd〈〉, and

thus P h−→∗β a〈P1, . . . , Pr〉 for some a ∈ Σnd and some lambda-terms P1, . . . , Pr such that BT (P) =
a〈BT (P1), . . . ,BT (Pr)〉. We have two cases.
(i) In the latter case we only know that P is of the form T S0 S1 . . . Ss, but not necessarily (λx.R)S0 S1 . . . Ss, so we cannot

proceed as in the former case.

A Type System Describing Unboundedness 23

Suppose first that a 6= nd. Then T = a〈T1, . . . , Tr〉, and for all i ∈ {1, . . . , r} it is the case that
|Ti| < |T | and BT (Pi)→ni

nd Ti for some ni ≤ n. For every i ∈ {1, . . . , r} the induction assumption gives
us a lambda-termQi such that Pi →∗β Qi →∗nd Ti. TakingQ = a〈Q1, . . . , Qr〉we obtain P →∗β Q→∗nd T ,
as required.

Next, suppose that a = nd. In this case we have BT (P)→nd BT (Pi)→n−1
nd T for some i ∈ {1, . . . , r}.

Then Pi →∗β Qi →∗nd T for some lambda-term Qi, by the induction assumption (used for one fixed i only).
Taking Qj = Pj for j ∈ {1, . . . , r} \ {i} and Q = nd〈Q1, . . . , Qr〉 we obtain P →∗β Q→nd Qi →∗nd T ,
as required.

It is convenient to introduce one more relation: we write P ≈l P ′ if the lambda-terms P and P ′ agree
up to depth l ∈ N. Formally, ≈l is defined by induction on l as the smallest equivalence relation such that:

• if l = 0, then P ≈l Q for all lambda-terms P,Q of the same sort,
• a〈P1, . . . , Pr〉 ≈l a〈P ′1, . . . , P ′r〉 if l > 0 and Pi ≈l−1 P

′
i for all i ∈ {1, . . . , r},

• P Q ≈l P ′Q′ if l > 0, and P ≈l−1 P
′, and Q ≈l−1 Q

′, and
• λx.P ≈l λx.P ′ if l > 0 and P ≈l−1 P

′.
Observe that P ≈l P ′ implies P ≈k P ′ for k < l. Next, we observe that only a finite prefix of the
lambda-term Q obtained in Lemma 4.6 is important.

Lemma 4.7. Let Q be a closed lambda-term of sort o, and let T be a finite Σ-labeled tree such that
Q→n

nd T . Then BT (Q′)→∗nd T for all lambda-terms Q′ such that Q ≈|T |+n Q′.

Proof: Again, the proof is by induction on |T | + n. Since Q →n
nd T and |T | + n ≥ 1, necessarily Q

and Q′ are of the form a〈Q1, . . . , Qr〉 and a〈Q′1, . . . , Q′r〉, respectively, where Qi ≈|T |+n−1 Q
′
i for all

i ∈ {1, . . . , r}. Clearly BT (Q′) = a〈BT (Q′1), . . . ,BT (Q′r)〉. We have two cases.
Suppose first that a 6= nd. Then T = a〈T1, . . . , Tr〉, and for all i ∈ {1, . . . , r} it is the case that |Ti| <
|T | and Qi →ni

nd Ti for some ni ≤ n. Since |Ti|+ ni ≤ |T |+ n− 1, we have that Qi ≈|Ti|+ni Q′i, hence
BT (Q′i)→∗nd Ti by the induction assumption (for all i ∈ {1, . . . , r}). In consequence, BT (Q′)→∗nd T .

Next, suppose that a = nd. Then Q→nd Qi →n−1
nd T for some i ∈ {1, . . . , r}. Since Qi ≈|T |+n−1 Q

′
i,

by the induction assumption we obtain that BT (Q′i)→∗nd T , which together with BT (Q′)→nd BT (Q′i)
gives us that BT (Q′)→∗nd T , as required.

The next two lemmata describe what happens during a beta-reduction.

Lemma 4.8. If P ≈l P ′ and Q ≈l Q′ for some l ∈ N, then also P [Q/x] ≈l P ′[Q′/x].

Proof: Induction on l. For l = 0 the lemma is obvious: ≈0 always holds. When l > 0 and P = RS, then
P ′ = R′ S′ withR ≈l−1 R

′ and S ≈l−1 S
′. By the induction assumption we haveR[Q/x] ≈l−1 R

′[Q′/x]
and S[Q/x] ≈l−1 S′[Q′/x], and thus P [Q/x] ≈l P ′[Q′/x]. The cases when P = a〈P1, . . . , Pr〉
or P = λy.Q are similar. Finally, when P = P ′ is a variable, the thesis follows immediately from
Q ≈l Q′.

Lemma 4.9. If P ≈l+2 P
′ and P →β Q, then for some Q′ we have that P ′ →∗β Q′ and Q ≈l Q′.

Proof: Induction on l. If l = 0, the thesis holds for Q′ = P ′. Next, suppose that l > 0 and P = (λx.R)S
and Q = R[S/x]. Then P ′ = (λx.R′)S′, where R ≈l R′ and S ≈l+1 S

′. Taking Q′ = R′[S′/x] we
have P ′ →β Q

′, and, by Lemma 4.8, Q ≈l Q′. The remaining case is that l > 0 and the redex involved in
the beta-reduction P →β Q is not located on the front of P . Then the thesis follows from the induction

24 Paweł Parys

assumption. Let us consider only a representative example: suppose that P = RS, and Q = T S, and
R→β T . In this case P ′ = R′ S′ with R ≈l+1 R

′ and S ≈l+1 S
′. The induction assumption gives us T ′

such that R′ →∗β T ′ and T ≈l−1 T
′. Thus for Q′ = T ′S′ we have P ′ →∗β Q′ and Q ≈l Q′.

We can now conclude the proof of Lemma 4.2.

Proof of Lemma 4.2: The right-to-left implication follows directly from Lemma 4.5. Indeed, recall that
we have a finite lambda-term P ′ such that P ′ 4 P and T ∈ L(BT (P ′)). By the definition of L(·), the
latter means that BT (P ′)→n

nd T for some n ∈ N, and that T is a finite Σ-labeled tree. In such a situation
Lemma 4.5 implies BT (P)→∗nd T , and thus T ∈ L(BT (P)), as required.

Let us now prove the opposite implication. We know that T ∈ L(BT (P)), that is, that T is a finite
Σ-labeled tree and BT (P)→n

nd T for some n ∈ N. Then, by Lemma 4.6, there exists a lambda-term Q
such that P →k

β Q →m
nd T for some k,m ∈ N. We now take a finite lambda-term P ′ such that P ′ 4 P

and P ≈2k+m+|T | P
′; it is easy to obtain such P ′: we simply need to cut off P at depth 2k + m + |T |.

By applying Lemma 4.9 consecutively to every beta-reduction in the reduction sequence witnessing
P →k

β Q we obtain a lambda-term Q′ such that P ′ →∗β Q′ and Q ≈m+|T | Q
′. Next, Lemma 4.7

implies that BT (Q′)→∗nd T . Since BT (P ′) equals BT (Q′) (this is the beta-normal form of these finite
lambda-terms), we obtain T ∈ L(BT (P ′)), as required.

5 Properties of type judgments
Before actually proving Theorem 3.2 in the next two sections, we state here some properties of those type
judgments that can be derived in our type system.

We start by a simple lemma, that follows directly from rules of the type system. This lemma is used
implicitly later.

Lemma 5.1. If we can derive Γ `m R : τ̂ . c, and x is not free in R, then Γ(x) = 0.

Next, in Lemma 5.2, we formalize the intuition that the marker multiset of a type judgment includes all
markers provided by free variables (which are described in the type environment).

Lemma 5.2. Suppose that we can derive Γ `m R : τ̂ . c. Then Mk(Γ) ≤ Mk(τ̂).

Proof: Fix some derivation of Γ `m R : τ̂ . c; the proof is by induction on the structure of this derivation.
We analyze the shape of R.

Suppose first that R = x. The (VAR) rule says that Γ = ε[x 7→ {|τ̂ ′|}] for τ̂ ′ such that Mk(τ̂ ′) ≤ Mk(τ̂),
which implies that Mk(Γ) ≤ Mk(τ̂).

In the case when R = a〈〉 for a 6= nd, the (CON0) rule implies that Γ = ε, hence Mk(Γ) ≤ Mk(τ̂).
Next, suppose that R = λx.P . Let Γ[x 7→ C ′] `m P : τ̂ ′ . c be the premiss of the final (λ) rule,

and let C→ τ be the type appearing in the type triple τ̂ . By conditions of the rule we have C ′ v C
and Mk(τ̂) = Mk(τ̂ ′) − Mk(C). While writing Γ[x 7→ C ′] we mean that Γ(x) = 0, so Mk(Γ) =
Mk(Γ[x 7→ C ′]) −Mk(C ′). The condition C ′ v C implies that Mk(C) = Mk(C ′), and the induction
assumption ensures that Mk(Γ[x 7→ C ′]) ≤ Mk(τ̂ ′). Putting this together we obtain Mk(Γ) ≤ Mk(τ̂).

Finally, suppose that R = a〈P 〉 for a 6= nd, or P = nd〈P1, . . . , Pr〉, or R = P Q. Let τ̂1, . . . , τ̂s be the
type triples derived in premisses of the final rule (which is either (CON1), or (ND), or (@)), and let Γ1, . . . ,Γs
be the type environments used there. Each of the three possible rules ensures that Mk(τ̂) = Mk(τ̂1) + · · ·+

A Type System Describing Unboundedness 25

Mk(τ̂s) and Γ = Γ1 t · · · t Γs. The induction assumption gives us inequalities Mk(Γi) ≤ Mk(τ̂i) for all
i ∈ {1, . . . , s}. It follows that Mk(Γ) ≤ Mk(τ̂).

The next important property of our type system is given in Lemma 5.3.

Lemma 5.3. If a type judgment ∆ `m R : σ̂ . d is used in a derivation of Γ `m S : τ̂ . c, where
Mk(τ̂)(m) = 0 and ord(S) ≤ m, then Mk(σ̂)(m) = 0.

Proof: We say that a type triple σ̂ = (F,M,C1→ . . .→Cs→ o) ism-clear if (M+
∑s
i=1 Mk(Ci))(m) =

0. It is enough to prove that, in the considered derivation, there are only type judgments with m-clear type
triples; then the statement of the lemma follows immediately.

We first notice that if σ̂ is derived for a lambda-term having sortα of order at mostm, and Mk(σ̂)(m) = 0,
then σ̂ is m-clear. Indeed, let us write σ̂ = (F,M,C1→ . . .→Cs→ o). For i ∈ {1, . . . , s} by definition
we have Ci ∈ T Cαi , where α = α1→ . . .→αs→ o; type triples in Ci belong to T T αiord(αi)

, so Mk(Ci)

is ord(αi)-bounded, and because ord(αi) < ord(α) ≤ m, we obtain Mk(Ci)(m) = 0 as needed. In
particular it follows that the type triple τ̂ derived at the end is m-clear.

It remains to prove that if a conclusion of some rule derives an m-clear type triple, then all its premisses
as well. Let ∆ `m R : (F,M, σ) . d be the considered conclusion, where σ = C1→ . . .→Cs→ o. We
have several cases depending on the shape of R.

If R = x or R = a〈〉, the thesis is immediate, as there are no premisses. If R = nd〈P1, . . . , Pr〉, then
the (ND) rule is used, so the type triple derived in the premiss is the same as in the conclusion. If R = a〈P 〉
for a 6= nd then, on the one hand, s = 0 and, on the other hand, the (CON1) rule is used, and it has a
premiss ∆ `m P : (F ′,M, o) . d′ with an unchanged marker multiset.

Suppose that R = λx.P . Then the (λ) rule is used, and it has a premiss ∆′ `m P : (F,M ′, σ′) . d,
where σ′ = C2→ . . .→Cs→ o and M ′ = M + Mk(C1). We thus have (M ′ +

∑s
i=2 Mk(Ci))(m) =

(M +
∑s
i=1 Mk(Ci))(m) = 0.

Finally, suppose that R = P Q. Let ∆′ `m P : (F ′,M ′, C0→σ) . d′ and ∆i `m Q : (Fi,Mi, σi) .
di for i ∈ I be the premisses of the considered rule, which is (@). The rule implies thatM = M ′+

∑
i∈IMi,

so M ′(m) = 0 and Mi(m) = 0 for all i ∈ I . It also implies that ord(Q) ≤ m, so the type triples
(Fi,Mi, σi) derived for Q are m-clear (as observed at the beginning). Moreover, the marker multisets in
type triples in C0 are Mi�≤ord(Q), so Mk(C0)(m) = 0, and thus also (F ′,M ′, C0→σ) is m-clear.

Out of Lemma 5.3 we easily deduce the following lemma.

Lemma 5.4. Suppose that we can derive Γ `m S : τ̂ . c, where Mk(τ̂)(m) = 0 and ord(S) ≤ m. Then
c = 0.

Proof: Suppose to the contrary that c 6= 0. Then for some rule used in the derivation, its conclusion ∆ `m
R : (F,M, σ) . d has a nonzero flag counter d, but flag counters in all premisses are 0. This is possible
only in the following rules: (CON0), (CON1), or (@). In these rules we have (F, d) ∈ Compm(M ; · · ·),
where by Lemma 5.3 we have M(m) = 0. To the Compm predicate we pass pairs (Fi, ci) corresponding
to particular premisses; for them we know that ci = 0 and that Fi is m-bounded. In the (CON0) and
(CON1) rules we additionally pass a pair (Fi, ci) = ({(1, a)},0). In these rules σ = o, so M(0) = 1 by the
definition of a type triple (more generally, if σ = C1→ . . .→Cs→ o, thenM(0)+

∑s
i=1 Mk(C1)(0) = 1),

which implies that m ≥ 1 (recall that M(m) = 0 6= 1). In consequence, for this pair it is also the case
that ci = 0 and that Fi is m-bounded. It follows that the numbers f ′m+1,a and fm+1,a appearing in the
definition of Compm are 0, and thus necessarily d = 0, contrary to our assumption.

26 Paweł Parys

One may suspect that Lemma 5.4 can be generalized to lower orders, that is, that whenever we can
derive Γ `m S : (F,M, τ) . c with M(k) = 0 for all k ≥ ord(S), then F �>ord(S) = ∅. The justification
of such a statement would be as those of Lemma 5.4: flags of order k + 1 > ord(S) are created only when
a marker of order k ≥ ord(S) is visible, while such markers are not provided neither in the derivation
itself (since M(k) = 0) nor in the the arguments of the lambda-term. Life is not so simple, however: it
may be the case that Γ simply provides some flag of order greater than ord(S). This is illustrated by the
following example.

Example 5.1. In this example we assume that Σ = {a}; then ρ̂all1 = (∅, {|0, 1|}, o). Denote

τ̂y = ({(1, a)},0,0→ o) and σ̂ = ({(1, a)},0, {|τ̂y|}→0→ o) ,

and consider the following type derivation, in which x is of sort o, y is of sort o→ o, and z is of sort
(o→ o)→ o→ o. As in the previous examples, ca is the flag counter such that ca(a) = 1.

ε `1 a〈〉 : ρ̂all1 . cc
(CON0)

ε `1 λz.a〈〉 : (∅, {|0, 1|}, {|σ̂|}→ o) . cc
(λ)

ε[y 7→ {|τ̂y|}] `1 y : τ̂y . 0
(VAR)

ε[y 7→ {|τ̂y|}] `1 y x : ({(1, a)},0, o) . 0
(@)

ε[y 7→ {|τ̂y|}] `1 λx.y x : τ̂y . 0
(λ)

ε `1 λy.λx.y x : σ̂ . 0
(λ)

ε `1 (λz.a〈〉) (λy.λx.y x) : ρ̂all1 . cc
(@)

The type judgment concerning the subterm y x is of the considered “illegal” form: it provides a flag of
order 1, but does not use any markers. This means two things: first, that such a type judgment can be
derived, and second, that it can be used in a derivation concerning a closed lambda-term of sort o. We
notice, however, that this type judgment could appear in the whole derivation only because it is actually
ignored (λz.a〈〉 ignores its argument z); otherwise, it would be necessary to derive τ̂y for some subterm
that would be given as y to λy.λx.y x, and this would be impossible, since we cannot create a flag of order
1 without using markers.

We thus have to generalize Lemma 5.4 in a more subtle way, having in mind the above issues. To this end,
we proceed in a minimalistic way: in Lemma 5.5 we prove what is really useful for us, although it might be
effortless to prove a slightly stronger result. While formulating this lemma we need the following definition.
Consider a use of the (@) rule that derives a type judgment Γ `m P Q : τ̂ . c. We say that this use of the
(@) rule is wild if it has a premiss Γ′ `m Q : (F,0, σ) . c′ such that for some (k, a) ∈ F �>ord(Q) it is the
case that Mk(τ̂)(l) > 0 for all l ∈ {k, k + 1, . . . ,m}. A type derivation is wild if, at some moment, it uses
the (@) rule in a wild way.

Lemma 5.5. There is no wild derivation of Γ `m P : ρ̂allm . c, where P is a closed lambda-term of sort o
and of complexity at most m+ 1.

This lemma is proven in Section 7. We remark that we do not use this lemma in Sections 6 and 7, only
in Section 9. Right now we only prove the following auxiliary lemma.

Lemma 5.6. There is no wild derivation of Γ `m S : τ̂ . c if Mk(τ̂)(m) = 0 and ord(S) ≤ m.

Proof: Suppose that some use of the (@) rule is wild in a derivation of this type judgment. Let ∆ `m P Q :
σ̂ . d be the conclusion of this rule. The wildness condition requires in particular that Mk(σ̂)(m) > 0, but
by Lemma 5.3 we have Mk(σ̂)(m) = 0, so all this could not happen.

A Type System Describing Unboundedness 27

6 Completeness
In this section we prove the left-to-right implication of Theorem 3.2. We divide the proof into the following
four lemmata. Recall that P →β(k) Q denotes a beta-reduction of order k, that is, a reduction on a redex
(λx.R)S with ord(x) = k.

Lemma 6.1. Let P be a finite closed lambda-term of sort o and of complexity at most n. Then there
exist lambda-terms Qn, Qn−1, . . . , Q0 such that P = Qn, and for every k ∈ {0, . . . , n − 1}, Qk is of
complexity at most k and Qk+1 →∗β(k) Qk, and Q0 = BT (P).

Lemma 6.2. Suppose that T ∈ L(P) is a word, and that c : Σ→ N is such that for every a ∈ Σ, c(a) is
the number of occurrences of a in T . Then we can derive ε `0 P : ρ̂all0 . c.

Lemma 6.3. Suppose that P →β(m) Q, where m ≥ 0. If we can derive Γ `m Q : τ̂ . c, then we can also
derive Γ `m P : τ̂ . c.

Lemma 6.4. If we can derive ε `m−1 P : ρ̂allm−1 . c, then we can also derive ε `m P : ρ̂allm . c′ for some

c′ such that c′(a) ≥
⌊

1
|Σ| log2 c(a)

⌋
for all a ∈ Σ.

Now the left-to-right implication of Theorem 3.2 easily follows. Indeed, take a word-recognizing closed
lambda-term P of sort o and of complexity at most m+ 1 and a set A ⊆ Σ such that SUPA(L(BT (P)))

holds, and take any n ∈ N. Let us denote f0(l) = l and fk(l) =
⌊

1
|Σ| log2 fk−1(l)

⌋
for k ≥ 1. We can find

a number n′ such that fm(n′) ≥ n, as well as a word T ∈ L(BT (P)) such that every letter fromA appears
in T at least n′ times. We first apply Lemma 4.2, obtaining a finite lambda-term P ′ such that P ′ 4 P and
T ∈ L(BT (P ′)). Clearly the complexity of P ′ remains at most m + 1. Then we apply Lemma 6.1 to
P ′, obtaining lambda-terms Qm+1, Qm, . . . , Q0 with T ∈ L(Q0) = L(BT (P ′)). By Lemma 6.2 we can
derive ε `0 Q0 : ρ̂all0 . c0 with c0(a) ≥ n′ = f0(n′) for all a ∈ A. Next, we repeatedly apply Lemma 6.3
to every beta-reduction (of order 0) between Q1 and Q0, obtaining a derivation of ε `0 Q1 : ρ̂all0 . c0.
Then, consecutively for every k ∈ {1, . . . ,m} we perform two steps. First, we apply Lemma 6.4, obtaining
a derivation of ε `k Qk : ρ̂allk . ck for some ck such that ck(a) ≥ f1(fk−1(n′)) = fk(n′) for all
a ∈ A. Then, we repeatedly apply Lemma 6.3 to every beta-reduction (of order k) between Qk+1 and
Qk, obtaining a derivation of ε `k Qk+1 : ρ̂allk . ck. We end up with a derivation of ε `m P ′ : ρ̂allm . cm,
where cm(a) ≥ fm(n′) ≥ n for all a ∈ A. Using Lemma 4.1 we can convert it into a derivation of
ε `m P : ρ̂allm . cm, as needed.

Lemma 6.1 comes from our previous work (Parys, 2018a, Lemma 11). In the remaining part of this
section we prove Lemmata 6.2-6.4.

Remark. We notice that Lemma 6.1 would be false if we have allowed lambda-terms involving non-
homogeneous sorts. For example, in a lambda-term of the form (λx.λy.P)QR with ord(x) = 0 and
ord(y) = 1 we have to perform a beta-reduction of order 0 concerning x before a beta-reduction of order 1
concerning y. Homogeneity of sorts should not be seen, however, as a miracle that is necessary to construct
the whole type system considered in the paper; it is rather an assumption made for technical convenience.
Indeed, Lemma 6.1 would work also for lambda-terms involving non-homogeneous sorts if we have
defined the order of a beta-reduction (λx.R)S →β R[S/x] as ord(λx.R)− 1, not as ord(x) (notice that
these two numbers coincide for homogeneous sorts). However then it would be necessary to alter the
definition of a type environment (and similarly the (VAR) rule): Γ(x) should not be ord(x)-bounded, but
rather (ord(λx.R) − 1)-bounded, where λx.R is the superterm binding the variable x. This would be

28 Paweł Parys

uncomfortable, as ord(λx.R)− 1 is contextual information, not determined by x itself. For this reason we
prefer to restrict ourselves to homogeneous sorts.

6.1 Proof of Lemma 6.2
Basically, in order to prove Lemma 6.2 we simply apply the rules of our type system, namely the rules
(CON0), (CON1), and (ND), in every nd-labeled node choosing the subtree in which T continues; then the
flag counter computes exactly the number of occurrences of every letter in T .

Formally, we proceed by induction on |T | + n, where n is the smallest number such that P →n
nd T

(recall that T ∈ L(P) by definition means that P →n
nd T for some n ∈ N, that T is finite, and that it is

Σ-labeled). Recall that we intend to derive ε `0 P : ρ̂all0 . c, where c stores the number of occurrences of
particular letters in T .

We have three possibilities. One possibility is that P = nd〈P1, . . . , Pr〉. In this case, the reduction
sequence witnessing P →n

nd T starts with P →nd Pi for some i ∈ {1, . . . , r}, and then we have a reduction
sequence witnessing Pi →n−1

nd T . The induction assumption gives us a derivation of ε `0 Pi : ρ̂all0 . c,
where, for all a ∈ Σ, c(a) is the number of occurrences of a in T . To this type judgment we apply the (ND)
rule, deriving ε `0 P : ρ̂all0 . c, as needed.

Another possibility is that P = b〈〉 for some b ∈ Σ. Then necessarily T = b〈〉, so c(b) = 1 and
c(a) = 0 for all a ∈ Σ \ {b}. We have that (∅, c) ∈ Comp0({|0|}; ({(1, b)},0)), so the (CON0) rule derives
ε `0 P : ρ̂all0 . c. We recall here that Mk(ρ̂all0) = {|0|}, and that the flag set in ρ̂all0 is ∅.

Because P →∗nd T , and T is a word, the only remaining case is that P = b〈P1〉 for some b ∈ Σ.
Then necessarily T = b〈T1〉, and out of the reduction sequence witnessing P →n

nd T we can extract a
reduction sequence witnessing P1 →n

nd T1. By the induction assumption we know that we can derive
ε `0 P1 : ρ̂all0 . c1, where c1 : Σ→ N is such that, for all a ∈ Σ, c1(a) is the number of occurrences of a
in T1. Obviously, c(a) = c1(a) for a ∈ Σ \ {b}, and c(b) = 1 + c1(b). Directly from the definition of the
Comp0 predicate it follows that (∅, c) ∈ Comp0({|0|}; ({(1, b)},0), (∅, c1)). By applying the (CON1) rule
we obtain ε `0 P : ρ̂all0 . c, as needed.

6.2 Proof of Lemma 6.3
Before going into details, let us sketch the proof. Knowing that we can derive Γ `m Q : τ̂ . c, we want to
derive the same for a given lambda-term P such that P →β(m) Q. Let us consider the base case when
P = (λx.R)S and Q = R[S/x]; the general situation (redex being deeper in P) is easily reduced to
this one. In the derivation of Γ `m Q : τ̂ . c we identify the set I of places (nodes) where we derive
a type for S substituted for x. For i ∈ I , let ∆i `m S : σ̂i . di be the type judgment in i. We change
the nodes in I into leaves, where we instead derive ε[x 7→ {|σ̂i|}] `m x : σ̂i . 0 (here we need to know
that ord(x) = m, since a type environment should map x into an ord(x)-bounded triple container, while
σ̂i is m-bounded). It is tedious but straightforward to repair the rest of the derivation, by changing type
environments, replacing S by x in lambda-terms, and decreasing flag counters. In this way we obtain
derivations of ∆i `m S : σ̂i . di for every i ∈ I , and a derivation of Υx `m R : τ̂ . e, where(ii)

Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ = Υ t
⊔
i∈I ∆i, and c = e+

∑
i∈I di. To the latter type judgment we

apply the (λ) rule, and then we merge it with the type judgments for S using the (@) rule, which results
in a derivation of Γ `m P : τ̂ . c (where again we use the fact that ord(S) = ord(x) = m). We remark
that different i ∈ I may give identical type judgments for S; this is absolutely allowed in the (@) rule. We

(ii) Recall that whenever we write Υ[x 7→ . . .], we implicitly assume that Υ(x) = 0.

A Type System Describing Unboundedness 29

also need to know that {|σ̂i | i ∈ I|} is indeed a triple container, that is, that every unbalanced type triple
appears as σ̂i for at most |Σ| indices i ∈ I; this is a consequence of Lemma 5.2.

We now come to a lemma that splits a type derivation concerning R[S/x] into parts concerning R and
concerning S.

Lemma 6.5. Suppose that we can derive Γ `m R[S/x] : τ̂ . c, where ord(x) = m. Then, for some
finite set I , we can derive ∆i `m S : σ̂i . di for every i ∈ I , and Υx `m R : τ̂ . e, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ = Υ t

⊔
i∈I ∆i, and c = e+

∑
i∈I di.

Proof: The proof is by induction on the structure of some fixed derivation of Γ `m R[S/x] : τ̂ . c.
One possibility is that x is not free in R. Then R[S/x] = R, and Γ(x) = 0. We can take I = ∅, and

Υx = Υ = Γ, and e = c. We need to derive the type judgment Υx `m R : τ̂ . e, but it actually equals the
type judgment that we can derive by assumption.

In the sequel we assume that x is free in R. In particular, R is not of the form a〈〉, nor R is a variable
other than x. We have several cases depending on the shape of R.

Suppose first that R = x is a variable. Then we take I = {1}, and (∆1, σ̂1, d1) = (Γ, τ̂ , c), and Υ = ε,
and e = 0. Obviously Γ = Υ t∆1 and c = e+ d1. Because σ̂1 is m-bounded, and ord(x) = m, we have
that Υx = Υ[x 7→ {|σ̂1|}] is a valid type environment. We can derive ∆1 `m S : σ̂1 . d1 by assumption,
and Υx `m R : τ̂ . e using the (VAR) rule.

Next, suppose that R = nd〈P1, . . . , Pr〉. The original derivation ends with the (ND) rule whose premiss
is Γ `m Pk[S/x] : τ̂ . c for some k ∈ {1, . . . , r}. By applying the induction assumption for this premiss,
we obtain derivations almost as required; we only need to apply again the (ND) rule to the obtained
derivation Υx `m Pk : τ̂ . e

Next, suppose that R = λy.P . We have y 6= x (because x is free in R), and, as always during a
substitution, we assume (by performing alpha-conversion) that y is not free in S. The original derivation
ends with the (λ) rule, whose premiss is Γ[y 7→ C ′] `m P [S/x] : τ̂ ′ . c. We apply the induction
assumption to this premiss, and we obtain a derivation of ∆i `m S : σ̂i . di for every i ∈ I , and of
Υx[y 7→ C ′′] `m P : τ̂ ′ . e, where Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ[y 7→ C ′] = Υ[y 7→ C ′′]t

⊔
i∈I ∆i,

and c = e +
∑
i∈I di. Notice that ∆i(y) = 0 for all i ∈ I , because y is not free in S; it follows that

C ′′ = C ′ and Γ = Υ t
⊔
i∈I ∆i. To the type judgment Υx[y 7→ C ′] `m P : τ̂ ′ . e we apply again the (λ)

rule, which gives Υx `m R : τ̂ . e.
Another possibility is that R = a〈P 〉, where a 6= nd. Then the original derivation ends with the (CON1)

rule, whose premiss is Γ `m P[S/x] : τ̂1 . c1. We apply the induction assumption to this premiss.
We obtain a derivation of ∆i `m S : σ̂i . di for every i ∈ I , and of Υx `m P : τ̂1 . e1, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}], and Γ = Υ t

⊔
i∈I ∆i, and c1 = e1 +

∑
i∈I di. A side condition of the

(CON1) rule says that (F, c) ∈ Compm(M ; ({(1, a)},0), (F1, c1)) for appropriate arguments M,F, F1.
Taking e = c+ (e1 − c1) we also have that (F, e) ∈ Compm(M ; ({(1, a)},0), (F1, e1)). Thus, we can
apply the (CON1) rule again, deriving Υx `m R : τ̂ . e. Simultaneously we observe that c = e+

∑
i∈I di.

Finally, suppose that R = P Q. The original derivation ends with the (@) rule, whose premisses are
Γ0 `m P [S/x] : τ̂0 . c0 and Γj `m Q[S/x] : τ̂j . cj for j ∈ J , where we assume that 0 6∈ J . We apply
the induction assumption to all these premisses. Assuming without loss of generality that the resulting
sets Ij are disjoint, and taking I =

⋃
j∈{0}∪J Ij , we obtain a derivation of ∆i `m S : σ̂i . di for every

i ∈ I , and of Υx
0 `m P : τ̂0 . e0, and of Υx

j `m Q : τ̂j . ej for every j ∈ J , where, for every
j ∈ {0} ∪ J , we have Υx

j = Υj [x 7→ {|σ̂i | i ∈ Ij |}], and Γj = Υj t
⊔
i∈Ij ∆i, and cj = ej +

∑
i∈Ij di.

Let Υ =
⊔
j∈{0}∪J Υj . Because Γ =

⊔
j∈{0}∪J Γj , we see that Γ = Υ t

⊔
i∈I ∆i. For j ∈ {0} ∪ J

30 Paweł Parys

we have by Lemma 5.2 that Mk(Υx
j) ≤ Mk(τ̂j), hence in particular

∑
i∈Ij Mk(σ̂i) ≤ Mk(τ̂j). Since

Mk(τ̂) =
∑
j∈{0}∪J Mk(τ̂j) (which follows from the (@) rule) we obtain that

∑
i∈I Mk(σ̂i) ≤ Mk(τ̂).

Because Mk(τ̂) is a marker multiset (i.e., contains every marker at most |Σ| times), we can deduce that
every unbalanced type triple appears as σ̂i for at most |Σ| indices i ∈ I , and thus {|σ̂i | i ∈ I|} is a valid
triple container and Υx = Υ[x 7→ {|σ̂i | i ∈ I|}] is a valid type environment. By applying the (@) rule
again, we derive Υx `m R : τ̂ . e, where e = c+

∑
j∈{0}∪J(ej − cj). Side conditions of this rule remain

satisfied, since the derived type triples are the same as in the original derivation (only the flag counters
in particular premisses are modified by ej − cj , which modifies the flag counter in the conclusion by∑
j∈{0}∪J(ej − cj)). Moreover, c = e+

∑
i∈I di.

Before actually proving Lemma 6.3, we need an auxiliary lemma concerning the Compm predicate.

Lemma 6.6. If F ∈ Fm, and M ∈Mm, and M(k) = 0 for all (k, a) ∈ F then

(F ′, c) ∈ Compm(M ; (F, e), ((∅, di))i∈I) ⇔ F ′ ⊆ F ∧ c = e+
∑
i∈I

di .

Proof: Consider the numbers fk,a and f ′k,a appearing in the definition of the Compm predicate. Looking
at them consecutively for k = 1, . . . ,m + 1 we notice that f ′k,a = 0 and fk,a = |F ∩ {(k, a)}|. Indeed,
f ′k,a = 0 implies fk,a = |F ∩ {(k, a)}|, and if k = 1 or M(k − 1) = 0, we have f ′k,a = 0, while if k > 1
andM(k−1) > 0, we have f ′k,a = fk−1,a = |F∩{(k−1, a)}| = 0, because (k−1, a) ∈ F impliesM(k−
1) = 0 by assumption. It follows that F = {(k, a) | fk,a > 0}, and that fm+1,a = |F ∩{(m+ 1, a)}| = 0
for all a ∈ Σ (since F is m-bounded). Finally, recall that (F ′, c) ∈ Compm(M ; (F, e), ((∅, di))i∈I) if
and only if F ′ ⊆ {(k, a) | fk,a > 0} (i.e., F ′ ⊆ F) and c(a) = fm+1,a + e(a) +

∑
i∈I di(a) for all a ∈ Σ

(i.e., c = e+
∑
i∈I di).

Proof of Lemma 6.3: Recall that we are given a derivation of Γ `m Q : τ̂ . c, and a beta-reduction
P →β Q that is of order m, and our goal is to derive Γ `m P : τ̂ . c.

Suppose first that P = (λx.R)S and Q = R[S/x], where ord(x) = m. From Lemma 6.5 we obtain a
derivation of ∆i `m S : σ̂i . di for every i ∈ I (for some set I), and a derivation of Υ[x 7→ C] `m R :
τ̂ . e, where C = {|σ̂i | i ∈ I|}, and Γ = Υt

⊔
i∈I ∆i, and c = e+

∑
i∈I di. Let us write τ̂ = (F,M, τ),

and σ̂i = (Fi,Mi, σi) for i ∈ I . To the type judgment Υ[x 7→ C] `m R : τ̂ . e we apply the (λ) rule,
deriving Υ `m λx.R : (F,M −Mk(C), C→ τ) . e. Notice that Mk(C) ≤ Mk(Υ[x 7→ C]) ≤ M by
Lemma 5.2, so it makes sense to use M −Mk(C). Denoting τ = C1→ . . .→Cs→ o, we also need to
know that (M −Mk(C) + Mk(C) +

∑s
i=1 Mk(Ci))(0) = 1 (this is required by the definition of a type

triple), but it follows immediately from (M +
∑s
i=1 Mk(Ci))(0) = 1.

To this type judgment, and to ∆i `m S : σ̂i . di for i ∈ I , we want to apply the (@) rule. By the
definition of a type judgment, the type triples σ̂i, hence also the sets Fi and Mi, are m-bounded. Recalling
that ord(S) = ord(x) = m we have that the type {|(Fi�≤ord(S),Mi�≤ord(S), σi) | i ∈ I|}→ τ that we
have to derive for λx.R is indeed C→ τ , and the side condition ord(S) ≤ m is satisfied. The resulting
marker multiset is (M−Mk(C))+

∑
i∈IMi = M , and the resulting type environment is Υt

⊔
i∈I ∆i = Γ.

Notice that the sets Fi�>ord(S) are empty, and that M(k) = 0 for all (k, a) ∈ F by the definition of a type
triple (τ̂ = (F,M, τ) is a type triple), and hence (F, c) ∈ Compm(M ; (F, e), ((Fi�>ord(S), di))i∈I) by
Lemma 6.6. The condition {(k, a) ∈ F | M(k) = 0} ⊆ F is clearly satisfied. Thus the (@) rule can be
applied, and it derives Γ `m P : τ̂ . c.

A Type System Describing Unboundedness 31

It remains to consider the general situation: the redex involved in the beta-reduction P →β(m) Q is
located somewhere deeper in P . Then the proof is by a trivial induction on the depth of this redex. Formally,
we have several cases depending on the shape of P , but let us consider only a representative example:
suppose that P = T U and Q = T V with U →β(m) V . In the derivation of Γ `m Q : τ̂ . c we apply the
induction assumption to those premisses of the final (@) rule that concern the subterm V , and we obtain
type judgments in which V is replaced by U . We can apply the (@) rule to them, and to the premiss talking
about T , and derive Γ `m P : τ̂ . c.

6.3 Proof of Lemma 6.4
Recall that in Lemma 6.4 we are given a type derivation of order m− 1, and we want to convert it into a
type derivation of order m, without decreasing the flag counter too much. The order of the derivation can
be raised without any problem, we only need to additionally place |Σ| markers of order m in some leaves
of the derivation. We notice, however, that in the original derivation the flag counter computed the number
of order-m flags, while in the new derivation it computes the number of order-(m+ 1) flags. We thus have
to ensure that many order-(m+ 1) flags are created in the new derivation. To this end, we appropriately
choose where the order-m markers are placed. Let us now give more details.

For the rest of the subsection fix an order m ≥ 1. We shall see derivations as trees. A derivation tree is a
finite tree with nodes labeled by type judgments, such that for every node, the label of this node can be
obtained by applying some rule of the type system to labels of children of this node. We consider derivation
trees only for type judgments of order m− 1 (that is, only the derivation that we receive as the input to the
lemma is seen as a tree, not the one that we produce). For a derivation tree t and for its node v, by tv we
denote the subtree of t starting at v, and by cv we denote the flag counter being part of the type judgment
written in v.

The proof is done in two steps: first, we label the derivation tree by some additional flags and markers,
and then, based on such a labeling, we construct a derivation of order m. For B ⊆ Σ, and for a derivation
tree t, a B-labeling of t assigns some number of order-m markers to every leaf of t, and for every a ∈ B,
some number of (m, a)-flags to every node of t. In the sequel, we simply talk about assigning markers and
a-flags, having implicitly in mind that they are of order m. A B-labeling ρ of t is consistent, if:

• for every node v of t having children v1, . . . , vk, and for every a ∈ B, ρ assigns at most cv(a) −
cv1(a)− · · · − cvk(a) a-flags to v, and

• in every subtree of t in which ρ assigns no markers, ρ assigns at most one flag.
Observe that our type system ensures that the number cv(a)− cv1

(a)− · · · − cvk(a) appearing above is
always nonnegative: the flag counter in every node is not smaller than the sum of flag counters coming
from the premisses.

We start by showing how to construct B-labelings in the case when B consists of a single letter.

Lemma 6.7. Let t be a derivation tree with root r, and let a ∈ Σ. Then there exists a consistent
{a}-labeling ρa of t that assigns in total exactly one marker and at least log2 cr(a) a-flags.

Proof: Induction on the size of t. If t consists of a single node, then to this node we assign one marker,
and cr(a) a-flags. Such a labeling is consistent, and we have cr(a) ≥ log2 cr(a).

Suppose now that r has some children v1, . . . , vk with k ≥ 1. Fix some s for which cvs(a) is maximal,
that is, such that cvs(a) ≥ cvi(a) for all i ∈ {1, . . . , k}. We apply the induction assumption to the subtree
tvs ; it gives us a consistent {a}-labeling of this subtree, which assigns in total exactly one marker and at

32 Paweł Parys

least log2 cvs(a) a-flags. Moreover, for every i ∈ {1, . . . , k} \ {s} such that cvi(a) > 0, we choose some
node wi in the subtree tvi so that cwi(a) > 0 but cu(a) = 0 for every child u of wi (clearly such a node
exists), and we assign an a-flag to the chosen node wi. Finally, we denote l = cr(a)−cv1(a)−· · ·−cvk(a),
and to the root of t we assign l a-flags. It should be clear that the obtained {a}-labeling is consistent.

It remains to observe that the number f of assigned a-flags is at least log2 cr(a). In the degenerate case
of cvs(a) = 0 we have cvi(a) = 0 for all i ∈ {1, . . . , k}, and thus f = l = cr(a) ≥ log2 cr(a). Suppose
now that cvs(a) > 0, and denote l′ = |{i ∈ {1, . . . , k} | cvi(a) > 0}|. Then by construction we have
f ≥ l + (l′ − 1) + log2 cvs(a). Recalling that cvs(a) > 0 and cvs(a) ≥ cvi(a) for all i ∈ {1, . . . , k}, we
obtain

f ≥ l + l′ − 1 + log2 cvs(a) ≥ log2(l + l′) + log2 cvs(a)

= log2((l + l′) · cvs(a))

≥ log2(l + l′ · cvs(a))

≥ log2(l + cv1
(a) + · · ·+ cvk(a)) = log2 cr(a) .

Having labelings concerning particular letters, we now show how to merge them into a single labeling
concerning all letters.

Lemma 6.8. Let t be a derivation tree with root r. Then there exists a consistent Σ-labeling of t that
assigns exactly |Σ| markers and at least

⌊
1
|Σ| log2 cr(a)

⌋
a-flags, for every a ∈ Σ.

Proof: We start by applying Lemma 6.7 for every letter a ∈ Σ, which results in a consistent a-labeling
ρa of t. Based on these labelings we construct the resulting labeling ρ. For every node v of t, if k among
labelings ρa assign a marker to v, then in ρ we assign k markers to v. This assigns |Σ| markers in total. For
every node v of t such that ρ assigns some markers in tv , and for every a ∈ Σ, if ρa assigns k a-flags to v,
then in ρ we also assign k a-flags to v.

Let now V be the set of all nodes v such that ρ assigns no markers in tv , but it assigns some markers in
the subtree starting in the parent of v. In subtrees starting in v ∈ V there may be plenty of flags assigned by
the labelings ρa, and we have not yet taken these flags to ρ. We do this now, using the following algorithm:
we repeat the big step as long as it gives something new. In a big step, we execute the small step for every
letter a ∈ Σ. In a small step concerning some letter a, we choose some v ∈ V such that ρa assigns an
a-flag to some node w in the subtree tv, but ρ does not assign any flag in this subtree yet; if such nodes
v, w exist, then in ρ we assign an a-flag to w.

We notice that ρ assigns in every node of t at most as many a-flags as ρa did. Moreover, in every subtree
starting in a node of V (and thus in every subtree of t in which ρ assigns no markers), ρ assigns at most
one flag. This means that ρ is consistent.

It remains to observe that the number of assigned flags is large enough. Fix some a ∈ Σ. Let fa be the
total number of a-flags assigned by ρa; by Lemma 6.7 we have fa ≥ log2 cr(a). These flags are of two
kinds: we have fa = ga + ha, where ga is the total number of a-flags assigned by ρa to nodes w such that
ρ assigns some marker in tw, and ha is the number of a-flags assigned by ρa to remaining nodes. The ga
flags of the first kind are simply copied to ρ. Let us now look closer on the flags of the second kind. Every
node w such that ρ assigns no markers in tw, belongs to tv for some v ∈ V . Moreover, for every v ∈ V , ρa
assigns at most one a-flag in tv . It follows that ha equals the number of nodes v ∈ V such that ρa assigns
some a-flag in tv. In every small step we assign a flag in the subtree tv for at most one node v ∈ V , and

A Type System Describing Unboundedness 33

thus in every big step we assign a flag in the subtrees tv for at most |Σ| nodes v ∈ V . This means that
during the first

⌊
ha
|Σ|

⌋
big steps there still exists a node v ∈ V such that ρa assigns an a-flag in tv, but ρ

does not assign any flag in this subtree yet, and thus a new a-flag is assigned by ρ. In consequence, the
number of a-flags assigned by ρ is at least ga +

⌊
ha
|Σ|

⌋
≥
⌊
fa
|Σ|

⌋
≥
⌊

1
|Σ| log2 cr(a)

⌋
.

Next, we show how to raise the order of a type derivation based on a consistent labeling. In this part,
it is convenient to assume that the labeling is maximal, in the following sense: a consistent Σ-labeling
ρ of a derivation tree t is called maximal if for every a ∈ Σ and for every node v of t having children
v1, . . . , vk, if ρ assigns some marker in tv , then ρ assigns exactly cv(a)− cv1(a)− · · · − cvk(a) a-flags to
v. Notice that in such nodes this is the maximal number of flags allowed by the first point in the definition
of consistency. We cannot require anything similar from nodes v such that no marker is assigned in tv , as
the number of flags in those nodes is strongly restricted by the second point of the definition.

We now define functions NewM and NewFc: we say that NewM(M,µ) = M ′ and NewFc(F, µ, f) =
(F ′, c′) if

• M ′(k) = M(k) for k 6= m, and M ′(m) = µ,
• if µ > 0, then F ′ = F and c′ = f , and
• if µ = 0, then F ′ = F ∪ {(m, a) | f(a) > 0} and c′ = 0.

The intended meaning is that if M and F are a marker multiset and a flag set derived in some node v of a
derivation tree, and in tv a labeling assigns µ markers and f(a) a-flags for every a ∈ Σ, then in the new
derivation that we construct, we use M ′ as the marker multiset, F ′ as the flag set, and c′ as the flag counter.
Notice that the previous value of the flag counter is not taken into account. We now have a lemma saying
that the Comp predicate remains satisfied after applying the transformation.

Lemma 6.9. Suppose that (F, c) ∈ Compm−1(M ; ((Fi, ci))i∈I), where F ∈ Fm−1. For i ∈ I let µi ∈ N
and fi : Σ → N. Suppose also that µ ≥

∑
i∈I µi, and f ≤

∑
i∈I fi + c −

∑
i∈I ci, and if µ > 0 then

f =
∑
i∈I fi + c−

∑
i∈I ci. Finally, for every i ∈ I suppose that if µi = 0 then fi(a) ≤ 1 for all a ∈ Σ,

and that either
• Fi ∈ Fm−1, or
• fi = 0 and Fi = {(1, a)} for some a ∈ Σ.

In such a situation, NewFc(F, µ, f) ∈ Compm(NewM(M,µ); (NewFc(Fi, µi, fi))i∈I).

Proof: Denote M ′ = NewM(M,µ), (F ′, c′) = NewFc(F, µ, f), and (F ′i , c
′
i) = NewFc(Fi, µi, fi) for

i ∈ I . We consider the numbers fk,a and f ′k,a appearing in the definition of Compm−1(M ; ((Fi, ci))i∈I).
We also consider analogous numbers defined by the predicate Compm(M ′; ((F ′i , c

′
i))i∈I), and we call

them gk,a and g′k,a. Since M ′�≤m−1 = M�≤m−1 and F ′i �≤m−1 = Fi�≤m−1 for i ∈ I , for every
a ∈ Σ we clearly have that gk,a = fk,a for k ≤ m − 1, and g′k,a = f ′k,a for k ≤ m. Moreover,
gm+1,a = g′m+1,a +

∑
i∈I |F ′i ∩ {(m + 1, a)}| = g′m+1,a since the sets F ′i are m-bounded (notice that

Fi = {(1, a)} does not need to be (m− 1)-bounded, but surely is m-bounded).
Let us now see that for all i ∈ I and a ∈ Σ it is the case that

|Fi ∩ {(m, a)}|+ fi(a) = |F ′i ∩ {(m, a)}|+ c′i(a) . (1)

Indeed:
• if µi > 0, then F ′i = Fi and c′i = fi;
• if µi = 0 and fi(a) = 0, then c′i(a) = 0 and F ′i = Fi;

34 Paweł Parys

• if µi = 0 and fi(a) > 0, then c′i(a) = 0, and (m, a) 6∈ Fi (since Fi ∈ Fm−1), and F ′i contains
(m, a) (by the definition of F ′i), and fi(a) ≤ 1 (by assumption), which gives Equality (1).

Using Equality (1) we observe that for every a ∈ Σ,∑
i∈I

fi(a) + c(a)−
∑
i∈I

ci(a) =
∑
i∈I

fi(a) + fm,a

= f ′m,a +
∑
i∈I
|Fi ∩ {(m, a)}|+

∑
i∈I

fi(a)

= g′m,a +
∑
i∈I
|F ′i ∩ {(m, a)}|+

∑
i∈I

c′i(a)

= gm,a +
∑
i∈I

c′i(a) . (2)

In order to obtain the conclusion of the lemma, we need to prove two facts: that F ′ ⊆ {(k, a) | gk,a > 0},
and that c′(a) = gm+1,a +

∑
i∈I c

′
i(a) for all a ∈ Σ. We first concentrate on the part F ′ ⊆ {(k, a) |

gk,a > 0}. By assumption we have that F ⊆ {(k, a) | fk,a > 0}, and thus also F ⊆ {(k, a) | gk,a > 0}
since F is (m− 1)-bounded, and since gk,a = fk,a for k ≤ m− 1. When µ > 0, we have F ′ = F , and
we are done. Suppose thus that µ = 0. Then F ′ contains also elements (m, a) for all a ∈ Σ such that
f(a) > 0. Concentrate on one such a. By assumption and by Equality (2) we obtain that

0 < f(a) ≤
∑
i∈I

fi(a) + c(a)−
∑
i∈I

ci(a) = gm,a +
∑
i∈I

c′i(a) .

Since 0 = µ ≥
∑
i∈I µi, for every i ∈ I we have µi = 0 = c′i(a), and thus gm,a > 0 by the above

inequality. We thus have (m, a) ∈ {(k, a) | gk,a > 0}, as required.
Next, we fix some a ∈ Σ, and we prove that c′(a) = g′m+1,a +

∑
i∈I c

′
i(a), which is what we need

since gm+1,a = g′m+1,a. Suppose first that µ = 0. Then c′(a) = 0 and c′i(a) = 0 for all i ∈ I , since
µ = 0 implies µi = 0. We also have M ′(m) = µ = 0, and thus g′m+1,a = 0, which gives the thesis. Next,
suppose that µ > 0. In such a case, using Equality (2), we obtain that

c′(a) = f(a) =
∑
i∈I

fi(a) + c(a)−
∑
i∈I

ci(a) = gm,a +
∑
i∈I

c′i(a) = g′m+1,a +
∑
i∈I

c′i(a) .

In the next lemma we show how a labeling is used to construct a derivation of order m.

Lemma 6.10. Let t be a derivation tree deriving Γ `m−1 R : (F,M, τ) . c such that ord(R) ≤ m, and
Γ(x) 6= 0 only for variables x of order at most m − 1. Let also ρ be a maximal consistent Σ-labeling
of t, which assigns (in total) µ ≤ |Σ| markers and f(a) a-flags, for every a ∈ Σ. Then we can derive
Γ `m R : (F ′,M ′, τ) . c′, where M ′ = NewM(M,µ) and (F ′, c′) = NewFc(F, µ, f).

Proof: Denote τ̂ = (F,M, τ) and τ̂ ′ = (F ′,M ′, τ). We first prove that τ̂ ′ is indeed an m-bounded type
triple. By assumption τ̂ is an (m − 1)-bounded type triple, so M ∈ Mm−1. Since M ′ differs from M
only on order m, and M ′(m) = µ ≤ |Σ|, we obtain that M ′ ∈ Mm (recall that m ≥ 1). We also have
F ∈ Fm−1 ⊆ Fm. The set F ′ differs from F only when µ = 0, and then it additionally contains those pairs
(m, a) for which f(a) > 0. By consistency of ρ we know that if µ = 0 (i.e., if ρ assigns no markers) then

A Type System Describing Unboundedness 35∑
a∈Σ f(a) ≤ 1. Thus (m, a), (m, b) ∈ F ′ implies a = b, which establishes that F ′ ∈ Fm. We also need

to know that M ′(k) = 0 for all (k, a) ∈ F ′. For k ≤ m− 1 this is the case because M ′�≤m−1 = M and
F ′�≤m−1 = F , and by definition of F ′ we have (m, a) ∈ F ′ only when M ′(m) = µ = 0. Additionally,
we need to know that M ′(0) +

∑s
i=1 Mk(Ci)(0) = 1, where τ = C1→ . . .→Cs→ o; this is the case

because M(0) +
∑s
i=1 Mk(Ci)(0) = 1 and M ′(0) = M(0) due to m ≥ 1.

The rest of the proof is by induction on the size of t. We have several cases depending on the shape of R.
Suppose first that R = x is a variable. Then the (VAR) rule used in the only node of t ensures that

c = 0 and that Γ = ε[x 7→ {|(F,M�≤ord(x), τ)|}]. By assumptions of the lemma ord(x) ≤ m − 1, so
M ′�≤ord(x) = M�≤ord(x). Moreover F ′ = F and c′ = 0 since f ≤ c = 0 by consistency of ρ. Thus the
(VAR) rule can equally well derive Γ `m R : τ̂ ′ . c′ (notice that c′ = 0).

Next, suppose that R = nd〈P1, . . . , Pr〉. Then the root of t has exactly one child v, labeled by the
premiss of the (ND) rule, Γ `m−1 Pi : τ̂ . c for some i ∈ {1, . . . , r}. Since the flag counter is the same as
in the root, ρ assigns no flags to the root of t (by consistency of ρ). Thus the induction assumption applied
to tv gives us a derivation of Γ `m Pi : τ̂ ′ . c′. Applying back the (ND) rule we derive Γ `m R : τ̂ ′ . c′.

Suppose now thatR = λx.P . Then the root of t has exactly one child v, labeled by the premiss of the (λ)
rule, Γ[x 7→ C ′] `m−1 P : (F,Mλ, τλ) . c, where τ = C→ τλ, and M = Mλ −Mk(C), and C ′ v C.
As in the previous case, no flags are assigned to the root of t. Because ord(R) ≤ m, we have ord(P) ≤ m
and ord(x) ≤ m− 1, so assumptions of the lemma are satisfied for tv; the induction assumption gives us a
derivation of Γ[x 7→ C ′] `m P : (F ′,M ′λ, τλ) . c′, whereM ′λ = NewM(Mλ, µ). The triple containerC is
ord(x)-bounded, thus since ord(x) ≤ m−1 we haveM ′(m) = µ = M ′λ(m) = M ′λ(m)−Mk(C)(m), and
henceM ′ = M ′λ−Mk(C). Thus after applying back the (λ) rule we obtain a derivation of Γ `m R : τ̂ ′ . c′.

Next, suppose that R = a〈P 〉, where a 6= nd. The root of t has exactly one child v, labeled by
the premiss of the (CON1) rule, Γ `m−1 P : (F1,M, o) . c1. Denote by f1(a) the number of a-
flags assigned by ρ in tv , for every a ∈ Σ. By the induction assumption, we can derive Γ `m P :
(F ′1,M

′, o) . c′1, where (F ′1, c
′
1) = NewFc(F1, µ, f1). The (CON1) rule ensures that τ = o, and that

(F, c) ∈ Compm−1(M ; ({(1, a)},0), (F1, c1)). We want to apply Lemma 6.9 with I = {0, 1}, µ0 = 0,
f0 = 0, F0 = {(1, a)}, c0 = 0, µ1 = µ; let us check its assumptions. Clearly µ ≥

∑
i∈I µi. By

consistency of ρ, and because f0 = c0 = 0, we have that f ≤
∑
i∈I fi + c −

∑
i∈I ci, and that for

every i ∈ I , if µi = 0 then fi(a) ≤ 1 for all a ∈ Σ. By maximality of ρ we have that if µ > 0 then
f =

∑
i∈I fi + c −

∑
i∈I ci. Moreover, NewFc(F0, µ0, f0) = ({(1, a)},0). Thus, by Lemma 6.9 we

obtain that (F ′, c′) ∈ Compm(M ′; ({(1, a)},0), (F ′1, c
′
1)). Applying back the (CON1) rule we can derive

Γ `m R : τ̂ ′ . c′.
The case R = a〈〉 with a 6= nd is similar. The root of t is a leaf using the (CON0) rule, and Γ = ε,

and τ = o, and (F, c) ∈ Compm−1(M ; ({(1, a)},0)). We apply Lemma 6.9 with I = {0}, µ0 = 0,
f0 = 0, F0 = {(1, a)}, c0 = 0; its assumptions are easily satisfied. This lemma implies that (F ′, c′) ∈
Compm(M ′; ({(1, a)},0)), so applying back the (CON0) rule we can derive Γ `m R : τ̂ ′ . c′.

Finally, suppose that R = P Q. Let Γ0 `m−1 P : (F0,M0, C→ τ) . c0 and Γi `m−1 Q :
(Fi,Mi, τi) . ci for each i ∈ I be the premisses of the (@) rule used in the root of t, where C =
{|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ I|}, and where without loss of generality we assume that 0 6∈ I .
Denote the children of the root of t having these type judgments as labels by vi for i ∈ {0}∪I , respectively.
For i ∈ {0}∪I denote by µi the number of markers assigned by ρ in tvi , and by fi(a) the number of a-flags
assigned by ρ in tvi , for every a ∈ Σ. The (@) rule ensures that Γ =

⊔
i∈{0}∪I Γi and ord(Q) ≤ m− 1,

and by homogeneity of the sort of P we obtain that ord(P) ≤ ord(Q) + 1 ≤ m. This allows us to
apply the induction assumption, which gives us derivations of Γ0 `m P : (F ′0,M

′
0, C→ τ) . c′0 and

36 Paweł Parys

Γi `m Q : (F ′i ,M
′
i , τi) . c

′
i for each i ∈ I , whereM ′i = NewM(Mi, µi) and (F ′i , c

′
i) = NewFc(Fi, µi, fi)

for all i ∈ {0} ∪ I . To these type judgments we would like to apply the (@) rule, but we need to check its
conditions.

• Since F ′i �≤m−1 = Fi�≤m−1 and M ′i�≤m−1 = Mi�≤m−1 for all i ∈ I , and ord(Q) ≤ m− 1, we
have that C = {|(F ′i �≤ord(Q),M

′
i�≤ord(Q), τi) | i ∈ I|}.

• Notice that M =
∑
i∈{0}∪IMi, due to the original use of the (@) rule, and that µ =

∑
i∈{0}∪I µi,

by definition. Recalling that M ′i and M ′ are obtained from Mi and M by inserting µi and µ at order
m, we obtain that M ′ =

∑
i∈{0}∪IM

′
i .

• The original use of the (@) rule gives us that (F, c) ∈ Compm−1(M ; (F0, c0), ((Fi�>ord(Q), ci))i∈I).
Assumptions of Lemma 6.9 are satisfied: µ ≥

∑
i∈{0}∪I µi by definition; f ≤

∑
i∈{0}∪I fi + c−∑

i∈{0}∪I ci by consistency of ρ; for every i ∈ {0} ∪ I , if µi = 0 then fi(a) ≤ 1 for all a ∈ Σ,
again by consistency of ρ; finally, if µ > 0 then f =

∑
i∈{0}∪I fi + c−

∑
i∈{0}∪I ci by maximality

of ρ. Moreover, since the NewFc function modifies only order m, and ord(Q) ≤ m − 1, we
have NewFc(Fi�>ord(Q), µi, fi) = (F ′i �>ord(Q), c

′
i). Thus by Lemma 6.9 we obtain that (F ′, c′) ∈

Compm(M ′; (F ′0, c
′
0), ((F ′i �>ord(Q), c

′
i))i∈I).

• We also need to prove that {(k, a) ∈ F ′0 |M ′(k) = 0} ⊆ F ′. We know that {(k, a) ∈ F0 |M(k) =
0} ⊆ F , and since F ′0,M

′, F ′ differ from F0,M, F only on order m, we only need to check for all
a ∈ Σ that if M ′(m) = 0 and (m, a) ∈ F ′0 then also (m, a) ∈ F ′. This is clear: (m, a) ∈ F ′0 may
only happen when f0(a) > 0, but then f(a) ≥ f0(a) > 0, which in the case of µ = M ′(m) = 0
implies that (m, a) ∈ F ′.

All this allows us to apply back the (@) rule, and derive Γ `m R : τ̂ ′ . c′.

Proof of Lemma 6.4: Consider a derivation tree t that derives ε `m−1 P : ρ̂allm−1 . c. Using Lemma 6.8

we construct a consistent Σ-labeling ρ of t that assigns exactly |Σ| markers and at least
⌊

1
|Σ| log2 c(a)

⌋
a-flags, for every a ∈ Σ. Without loss of generality we can assume that ρ is maximal: if not, we simply
add more flags in some nodes, as required by the maximality condition.(iii) Then Lemma 6.10 gives
us a derivation of ε `m P : ρ̂allm . c′ for some c′ such that c′(a) ≥

⌊
1
|Σ| log2 c(a)

⌋
for all a ∈ Σ, as

required.

7 Soundness
In this section we prove the right-to-left implication of Theorem 3.2. As a side effect, we also obtain a proof
of Lemma 5.5. We, basically, need to reverse the proof from the previous section. We give the following
three lemmata (corresponding to Lemmata 6.2-6.4; Lemma 6.1 is used also in this section, without any
change).

Lemma 7.1. Suppose that P →β(m) Q, where m ≥ 0. If we can derive Γ `m P : τ̂ . c, then we can also
derive Γ′ `m Q : τ̂ . c for some Γ′ v Γ. Moreover, if the original derivation was wild, then the resulting
one is also wild.

Lemma 7.2. Let P be a closed lambda-term of complexity at most m. If we can derive ε `m P : ρ̂allm . c,
where m ≥ 1, then we can also derive ε `m−1 P : ρ̂allm−1 . c

′ for some c′ ≥ c. Moreover, if the original
derivation was wild, then the resulting one is also wild.
(iii) We notice that usually the labeling constructed by Lemma 6.8 is not maximal.

A Type System Describing Unboundedness 37

Lemma 7.3. Suppose that we can derive ε `0 P : ρ̂all0 . c, where P is a lambda-term of complexity 0.
Then there exists a word T ∈ L(P) such that for every a ∈ Σ, the number of occurrences of a in T is c(a).

Let us now see how the right-to-left implication of Theorem 3.2 follows from these lemmata. Thus, take
a closed lambda-term P of sort o and of complexity at most m + 1, and a set A ⊆ Σ, and suppose that
for every n ∈ N we can derive ε `m P : ρ̂allm . cm for some cm such that cm(a) ≥ n for all a ∈ A. We
want to prove that for every n ∈ N there is a tree T ∈ L(P) in which every letter a ∈ A appears at least n
times. To this end, take some n ∈ N, and the type judgment corresponding to this n. Using Lemma 4.1
we can find a finite lambda-term P ′ 4 P for which we can also derive ε `m P ′ : ρ̂allm . cm. Then, we
apply Lemma 6.1 to P ′, obtaining lambda-terms Qm+1, Qm, . . . , Q0 such that, for every k ∈ {0, . . . ,m},
the complexity of Qk is at most k, and Qk+1 →∗β(k) Qk, and Qm+1 = P ′. Next, consecutively for
k = m,m− 1, . . . , 0 we perform two steps. First, we repeatedly apply Lemma 7.1 to every beta-reduction
(of order k) between Qk+1 and Qk, obtaining a derivation of ε `k Qk : ρ̂allk . ck. Then, if k ≥ 1, we
apply Lemma 7.2, obtaining a derivation of ε `k−1 Qk : ρ̂allk−1 . ck−1 for some ck−1 ≥ ck. We end up
with a derivation of ε `0 Q0 : ρ̂all0 . c0, where c0(a) ≥ cm(a) ≥ n for all a ∈ A. By Lemma 7.3 we can
find a word T ∈ L(Q0) = L(BT (P ′)) such that for every a ∈ A, the number of occurrences of a in T as
at least n. Due to Lemma 4.2, we also have T ∈ L(BT (P)), as needed.

We also obtain a proof of Lemma 5.5. Indeed, suppose that we have a wild derivation of ε `m P : ρ̂allm .
cm for a closed lambda-term P of sort o and of complexity at most m+ 1. Lemma 4.1 implies that we can
find a finite lambda-term P ′ 4 P for which we can also derive ε `m P ′ : ρ̂allm . cm. By inspecting the
proof of this lemma we notice that if the derivation for P was wild, then the derivation for P ′ is also wild
(because this is essentially the same derivation). Then, by applying the same arguments as above, we obtain
a derivation of ε `0 Q0 : ρ̂all0 . c0 for some lambda-term Q0 of complexity 0. Moreover, this derivation is
wild, since Lemmata 7.1 and 7.2 preserve wildness. On the other hand, a lambda-term of complexity 0
does not contain any applications, so our derivation does not use the (@) rule at all, and hence it cannot be
wild. This is a contradiction implying that there could not exist a wild derivation of ε `m P : ρ̂allm . cm.

In the remaining part of this section we prove the three lemmata.

7.1 Proof of Lemma 7.1
The overall idea of the proof is very simple: when P = (λx.R)S and Q = R[S/x], we perform a
surgery on the derivation concerning P and we obtain a derivation concerning Q. Namely, whenever the
subderivation concerning R uses the (VAR) rule for the variable x, we should insert there a subderivation
that derives the same type triple for S. We need to notice that every unbalanced type triple derived for S is
used for exactly one occurrence of x in the derivation concerning R. Balanced type triples may be used
many times, or not used at all, but we can see that duplicating or removing the corresponding derivations
for S is not problematic; in particular it does not change the flag counter, as shown in Lemma 5.4.

We start the proof by showing in Lemma 7.4 how type derivations may be composed during a substitution.
This lemma can be seen as a converse of Lemma 6.5.

Lemma 7.4. Suppose that we can derive ∆i `m S : σ̂i . di for i ∈ I , and Υx `m R : τ̂ . e, where
Υx = Υ[x 7→ {|σ̂i | i ∈ I|}] for a variable x of order m and of the same sort as S, and Γ = Υ t

⊔
i∈I ∆i

is a type environment. Then we can also derive Γ′ `m R[S/x] : τ̂ . c for c = e+
∑
i∈I di and for some

Γ′ v Γ. Moreover, if some of the original derivations are wild, then the resulting derivation is also wild.

Proof: The proof is by induction on the structure of some fixed derivation of Υx `m R : τ̂ . e.

38 Paweł Parys

One possibility is that x is not free in R. In such a situation R[S/x] = R and Υx(x) = 0, so I = ∅, and
Γ = Υ = Υx, and c = e, thus we can derive Γ `m R[S/x] : τ̂ . c by assumption.

In the sequel we assume that x is free in R; in particular, R is not of the form a〈〉, nor R is a variable
other than x. We analyze the shape of R.

Suppose first that R = x is a variable. Then R[S/x] = S, and the derivation for R consists of a single
use of the (VAR) rule, thus e = 0 and Υx = ε[x 7→ {|τ̂ |}] (since ord(x) = m, no new markers could be
added). It means that Υ = ε, and {|τ̂ |} = {|σ̂i | i ∈ I|}. We have two subcases.

• Suppose first that τ̂ is unbalanced. Then necessarily |I| = 1, say I = {1}. It follows that Γ = ∆1,
and c = d1, so we can derive Γ `m R[S/x] : τ̂ . c by assumption.

• The situation of an unbalanced τ̂ is slightly different. We only know that |I| ≥ 1 and τ̂ = σ̂i for all
i ∈ I . Then from Lemma 5.2 we obtain that Mk(∆i) ≤ Mk(σ̂i) = 0 for all i ∈ I , that is, that all
type triples in all ∆i are balanced. In consequence, ∆i v Γ (due to Γ =

⊔
i∈I ∆i). Similarly, from

Lemma 5.4 we obtain that di = 0 for all i ∈ I , so c = di. Thus as the resulting derivation we can
take ∆i `m S : σ̂i . di for any i ∈ I .

Next, suppose that R = nd〈P1, . . . , Pr〉. Then the derivation for R ends with the (ND) rule, whose
premiss is Υx `m Pk : τ̂ . e for some k ∈ {1, . . . , r}. The induction assumption applied to this premiss
gives us a derivation of Γ′ `m Pk[S/x] : τ̂ . c for some Γ′ v Γ. By applying back the (ND) rule we derive
Γ′ `m R[S/x] : τ̂ . c, as required.

Next, suppose that R = λy.P . We have y 6= x, and, as always during a substitution, we assume (by
performing alpha-conversion) that y is not free in S. The derivation for R ends with the (λ) rule, whose
premiss is Υx[y 7→ C ′] `m P : τ̂ ′ . e. While writing Υx[y 7→ C ′] we mean that Υx(y) = 0, and since y
is not free in S, we have ∆i(y) = 0 for i ∈ I; thus we can write Γ[y 7→ C ′] = Υx[y 7→ C ′]t

⊔
i∈I ∆i. By

applying the induction assumption to our premiss we obtain a derivation of Γ′[y 7→ C ′′] `m P [S/x] : τ̂ ′ . c
for some Γ′ v Γ and some C ′′ v C ′. We then apply again the (λ) rule obtaining Γ′ `m R[S/x] : τ̂ . c, as
needed.

Another possibility is that R = a〈P 〉, where a 6= nd. Then the derivation for R ends with the
(CON1) rule, whose premiss is Υx `m P : τ̂1 . e1. We apply the induction assumption to this
premiss, and we obtain a derivation of Γ′ `m P[S/x] : τ̂1 . c1 for c1 = e1 +

∑
i∈I di and for

some Γ′ v Γ. To the obtained type judgment we apply the (CON1) rule, and we derive Γ′ `m
R[S/x] : τ̂ . c for c = e +

∑
i∈I di. We need to notice here that c − e = c1 − e1, and thus if

(F, e) ∈ Compm(M ; ({(1, a)},0), (F1, e1)) for some arguments M,F, F1 (as ensured by the original use
of the rule), then also (F, c) ∈ Compm(M ; ({(1, a)},0), (F1, c1)) (as needed for the new use of the rule).

Finally, suppose that R = P Q. The derivation for R ends with the (@) rule, whose premisses are
Υx

0 `m P : τ̂0 . e0 and Υx
j `m Q : τ̂j . ej for j ∈ J , where we assume that 0 6∈ J . We have that

Υ[x 7→ {|σ̂i | i ∈ I|}] = Υx =
⊔
j∈{0}∪J Υx

j . Let us see that we can find sets (Ij)j∈{0}∪J such that
I =

⋃
j∈{0}∪J Ij and {|σ̂i | i ∈ Ij |} = Υx

j (x) for all j ∈ {0} ∪ J . Indeed, recall that triple containers
behave like sets for balanced type triples, and like multisets for unbalanced type triples. Thus, if σ̂i is
balanced for some i ∈ I , we can simply add this i to Ij for all these j ∈ {0}∪ J for which Υx

j (x)(σ̂i) > 0.
On the other hand, for an unbalanced type triple σ̂, there exist exactly Υx(x)(σ̂) elements i ∈ I for which
σ̂i = σ̂; simultaneously Υx(x)(σ̂) =

∑
j∈{0}∪J Υx

j (x)(σ̂), so we can split these elements i into sets
(Ij)j∈{0}∪J so that exactly Υx

j (x)(σ̂) of them are taken to Ij (for j ∈ {0} ∪ J).
Having these sets, for every j ∈ {0}∪ J we can write Υx

j = Υj [x 7→ {|σ̂i | i ∈ Ij |}]. For these i ∈ I for
which the type triple σ̂i is balanced, from Lemma 5.2 we obtain that all type triples in ∆i are balanced, and

A Type System Describing Unboundedness 39

thus ∆i t∆i = ∆i, and from Lemma 5.4 we obtain that di = 0. The latter lemma can be used because
ord(S) = ord(x) = m ≤ m. If we recall that every i ∈ I with unbalanced σ̂i belongs to exactly one
among the sets Ij , and every i ∈ I with balanced σ̂i belongs to at least one among the sets Ij , we can
observe that

⊔
i∈I ∆i =

⊔
j∈{0}∪J

⊔
i∈Ij ∆i and

∑
i∈I di =

∑
j∈{0}∪J

∑
i∈Ij di. In consequence, if we

denote Γj = Υj t
⊔
i∈Ij ∆i and cj = ej +

∑
i∈Ij di for j ∈ {0} ∪ J , and c = e+

∑
i∈I di, we have that

Γ =
⊔
j∈{0}∪J Γj and c − e =

∑
j∈{0}∪J(cj − ej). In particular Γj(y) ≤ Γ(y) for every j ∈ {0} ∪ J

and every variable y, so Γj is a type environment (i.e., Γj(x) contains every unbalanced type triple at most
|Σ| times).

We then apply the induction assumption to all premisses, and we obtain derivations of Γ′0 `m P [S/x] :
τ̂0 . c0 and of Γ′j `m Q[S/x] : τ̂j . cj for j ∈ J , where Γ′j v Γj for j ∈ {0} ∪ J . By applying the (@)
rule again, we derive Γ′ `m R[S/x] : τ̂ . c for Γ′ =

⊔
j∈{0}∪J Γ′j v Γ (the side conditions of the rule are

satisfied, because we consider the same type triples as in the original derivation).
We also need to see that if some of the original derivations are wild, then the resulting derivation is wild

as well. To this end, suppose that in the derivation of Υx `m R : τ̂ . e there is a wild use of the (@) rule.
Then in the resulting derivation the (@) rule is used in a similar way, only the type environments and the
considered lambda-terms are changed, but this is still a wild use of the (@) rule. Next, suppose that there is
a wild use of the (@) rule in the derivation of ∆i `m S : σ̂i . di for some i ∈ I . By Lemma 5.6 this can
happen only when σ̂i is unbalanced (recall that ord(S) = m, which allows us to use this lemma). This
means that the derivation is inserted somewhere in the resulting derivation (we discard only derivations for
balanced σ̂i), and the wild use of the (@) rule remains present.

Proof of Lemma 7.1: Recall that we are given a derivation of Γ `m P : τ̂ . c, and a beta-reduction
P →β Q that is of order m, and our goal is to derive Γ′ `m Q : τ̂ . c for some Γ′ v Γ.

Suppose first that P = (λx.R)S and Q = R[S/x], where ord(x) = m. Then the given derivation
ends with the (@) rule, whose premisses are Υ `m λx.R : τ̂λ . e and ∆i `m S : σ̂i . di for i ∈ I .
Let us write τ̂ = (F,M, τ), and τ̂λ = (F ′,M ′, C→ τ), and σ̂i = (Fi,Mi, σi) for i ∈ I . The type
judgment for λx.R is in turn derived by the (λ) rule, whose premiss is Υx `m R : (F ′,M ′′, τ) . e, where
Υx = Υ[x 7→ C ′] for some C ′ v C, and M ′ = M ′′ −Mk(C). Because all Fi and Mi are m-bounded,
and ord(S) = ord(x) = m, for all i ∈ I we have that Fi�≤ord(S) = Fi, and Mi�≤ord(S) = Mi, and
Fi�>ord(S) = ∅. Conditions of the (@) rule imply that

1. Γ = Υ t
⊔
i∈I ∆i,

2. C = {|(Fi�≤ord(S),Mi�≤ord(S), σi) | i ∈ I|} = {|σ̂i | i ∈ I|},
3. M = M ′ +

∑
i∈IMi = M ′′ −Mk(C) +

∑
i∈IMi = M ′′,

4. (F, c) ∈ Compm(M ; (F ′, e), ((Fi�>ord(S), di))i∈I), which by Lemma 6.6 implies that F ⊆ F ′

and c = e+
∑
i∈I di (where M(k) = M ′′(k) = 0 for all (k, a) ∈ F ′ because (F ′,M ′′, τ) is a type

triple), and
5. {(k, a) ∈ F ′ |M(k) = 0} ⊆ F , so F ′ = F , and thus the type triple derived for R is actually τ̂ .

Since C ′ v C, we can find some I ′ ⊆ I such that C ′ = {|σ̂i | i ∈ I ′|}. Moreover, for every i ∈ I \ I ′
the type triple σ̂i is necessarily balanced, so Mk(∆i) = 0 by Lemma 5.2, and di = 0 by Lemma 5.4. In
consequence, Υt

⊔
i∈I′ ∆i v Γ (in particular Υt

⊔
i∈I′ ∆i is a type environment) and c = e+

∑
i∈I′ di.

We apply Lemma 7.4 to Υx `m R : τ̂ . e and to ∆i `m S : σ̂i . di for i ∈ I ′; we obtain a derivation of
Γ′ `m Q : τ̂ . c for some Γ′ v Υ t

⊔
i∈I′ ∆i v Γ, as required.

We also need to see that if the original derivation was wild, then the new one is also wild. Notice that
the final use of the (@) rule in the original derivation cannot be wild: for its wildness we would need an

40 Paweł Parys

element (k, a) ∈ Fi�>ord(Q) = ∅ for some i ∈ I . Moreover, the removed subderivations ending with
∆i `m S : σ̂i . di for i ∈ I \ I ′ cannot be wild by Lemma 5.6. Thus the wild use of the (@) rule is located
in some of the subderivations passed to Lemma 7.4, and thus it is preserved.

It remains to consider the general situation: the redex involved in the beta-reduction P →β(m) Q is
located somewhere deeper in P . Then the proof is by an easy induction on the depth of this redex. In the
induction step we apply the induction assumption to appropriate premisses of the final rule, and we observe
that after applying it, the rule can still be used. For the (@) rule we need the trivial observation that if Γ′ v Γ
and ∆′ v ∆ then Γ′ t∆′ v Γt∆. We have to be slightly more careful only for the (λ) rule: if its premiss
is Γ[x 7→ C ′] `m R : (F,M, τ) . c and its conclusion is Γ `m λx.R : (F,M −Mk(C), C→ τ) . c, by
the induction assumption we obtain a derivation of Γ′[x 7→ C ′′] `m S : (F,M, τ) . c with Γ′ v Γ and
C ′′ v C ′ v C; we can then apply the (λ) rule and derive Γ′ `m S : (F,M −Mk(C), C→ τ) . c.

Remark. Recall that the (λ) rule allows to forget about some balanced type triples provided by an argument,
that is, we can have C ′ v C. We notice, however, that in derivations constructed in Section 6 we use the
(λ) rule only for C ′ = C. This means that Theorem 3.2 holds also for a more restrictive type system in
which the condition C ′ v C in the (λ) rule is replaced by C ′ = C. On the other hand, in Lemma 7.4 it is
necessary to discard some type judgments for S (cf. the case of a variable), so the type environment Γ′ in
the resulting type judgment only satisfies Γ′ v Γ, not Γ′ = Γ. In consequence, in surrounding (λ) rules
C ′ v C starts to hold instead of C ′ = C. Thus, even if we start from a derivation in the more restrictive
type system (i.e., with C ′ = C), in the soundness proof we pass through derivations in the original type
system (i.e., with C ′ v C).

7.2 Proof of Lemma 7.2
The proof is easy; we simply replace `m by `m−1 in all derived type judgments, and we ignore flags of
order m+ 1 and markers of order m. To obtain the inequality c′ ≥ c we observe that when the complexity
is at most m, information about flags of order m goes only from descendants to ancestors, and thus every
flag of order m+ 1 is created because of a different flag of order m.

We now give more details. The first lemma describes the behavior of the Compm predicate.

Lemma 7.5. Suppose that (F, c) ∈ Compm(M ; ((Fi, ci))i∈I), and m ≥ 1, and that M(k) = 0 for all
(k, a) ∈ F . Suppose also that for every i ∈ I either

• Fi ∈ Fm, and F ′i = Fi�≤m−1, and c′i : Σ→ N is such that c′i(a) ≥ ci(a) + |Fi ∩ {(m, a)}| for all
a ∈ Σ, or

• (Fi, ci) = (F ′i , c
′
i) = ({(1, a)},0) for some a ∈ Σ.

Then (F �≤m−1, c
′) ∈ Compm−1(M�≤m−1; ((F ′i , c

′
i))i∈I) for some c′ : Σ→ N such that c′(a) ≥ c(a) +

|F ∩ {(m, a)}| for all a ∈ Σ.

Proof: We consider the numbers fk,a and f ′k,a appearing in the definition of Compm(M ; ((Fi, ci))i∈I).
We also consider analogous numbers defined by the predicate Compm−1(M�≤m−1; ((F ′i , c

′
i))i∈I), and

we call them gk,a and g′k,a. Since the arguments are the same up to order m − 1, for every a ∈ Σ we
have gk,a = fk,a for k ≤ m− 1, and g′k,a = f ′k,a for k ≤ m. In consequence, the requirements given by
Compm−1 on the set F (i.e., that gk,a > 0 for all (k, a) ∈ F �≤m−1) follow directly from the requirements
given by Compm (saying that fk,a > 0 for all (k, a) ∈ F). We take c′(a) = gm,a +

∑
i∈I c

′
i(a) for all

a ∈ Σ, as required by the definition of Compm−1.

A Type System Describing Unboundedness 41

It remains to prove that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. For the rest of the proof fix some
a ∈ Σ. We have that

c′(a) = gm,a +
∑
i∈I

c′i(a) = g′m,a +
∑
i∈I
|F ′i ∩ {(m, a)}|+

∑
i∈I

c′i(a) .

For every i ∈ I we have one of two cases: either
• c′i(a) ≥ ci(a) + |Fi ∩ {(m, a)}|, or
• (Fi, ci) = (F ′i , c

′
i) = ({(1, b)},0) for some b ∈ Σ.

In both cases we see that |F ′i ∩ {(m, a)}|+ c′i(a) ≥ |Fi ∩ {(m, a)}|+ ci(a). Recalling that g′m,a = f ′m,a
we obtain that

c′(a) ≥ f ′m,a +
∑
i∈I
|Fi ∩ {(m, a)}|+

∑
i∈I

ci(a) = fm,a +
∑
i∈I

ci(a) .

Next, let us observe that fm,a ≥ f ′m+1,a + |F ∩ {(m, a)}|. Indeed, if M(m) > 0, we have f ′m+1,a =
fm,a and (m, a) 6∈ F . Conversely, if M(m) = 0, we have f ′m+1,a = 0, and if fm,a = 0 then also
(m, a) 6∈ F .

Moreover, because all Fi are m-bounded (recall that m ≥ 1), we have that fm+1,a = f ′m+1,a +∑
i∈I |Fi ∩ {(m+ 1, a)}| = f ′m+1,a. We thus obtain that

c′(a) ≥ f ′m+1,a +
∑
i∈I

ci(a) + |F ∩ {(m, a)}|

= fm+1,a +
∑
i∈I

ci(a) + |F ∩ {(m, a)}| = c(a) + |F ∩ {(m, a)}| .

The statement of Lemma 7.2 is not suitable for an inductive proof (it talks only about type judgments for
closed lambda-terms of sort o). Thus, in order to prove this lemma, we now generalize it to arbitrary type
judgments.

Lemma 7.6. Let P be a lambda-term of complexity at most m ≥ 1, whose all free variables are of
order at most m − 1. If we can derive Γ `m P : (F,M, τ) . c, then we can also derive Γ `m−1 P :
(F �≤m−1,M�≤m−1, τ) . c′ for some c′ : Σ→ N such that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ.
Moreover, if the original derivation was wild, then the resulting one is also wild.

Proof: Denote τ̂ = (F,M, τ) and σ̂ = (F �≤m−1,M�≤m−1, τ). The proof is by induction on the structure
of some fixed derivation of Γ `m P : τ̂ . c. We distinguish several cases depending on the shape of P .

Suppose first that P is a variable, P = x. Then the (VAR) rule used in the derivation implies that
Γ = ε[x 7→ (F,M�≤ord(x), τ)]), and c = 0. By assumption of the lemma we have ord(x) ≤ m− 1, so
(M�≤m−1)�≤ord(x) = M�≤ord(x) and F �≤m−1 = F (because F is ord(x)-bounded). In consequence,
we can use the (VAR) rule to derive Γ `m−1 P : σ̂ . 0.

Next, suppose that P = nd〈P1, . . . , Pr〉. Then the final (ND) rule has a premiss Γ `m Pk : τ̂ . c
for some k ∈ {1, . . . , r}. The induction assumption applied to this premiss gives us a derivation of
Γ `m−1 Pk : σ̂ . c′ with c′ such that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. We apply back the
(ND) rule, obtaining Γ `m−1 P : σ̂ . c′.

Next, suppose that P = λx.Q. Then the final (λ) rule has a premiss Γ[x 7→ C ′] `m Q : (F,M ′, τ ′) . c,
where τ = C→ τ ′, and M = M ′ −Mk(C), and C ′ v C. Using the induction assumption for our premiss

42 Paweł Parys

(which is allowed, because ord(x) ≤ ord(P)− 1 ≤ m− 1) we obtain a derivation of Γ[x 7→ C ′] `m−1

Q : (F �≤m−1,M
′�≤m−1, τ

′) . c′ with c′ such that c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. Because
C is ord(x)-bounded, and ord(x) ≤ m−1, we have thatM ′�≤m−1−Mk(C) = (M ′−Mk(C))�≤m−1 =
M�≤m−1, so by applying back the (λ) rule we derive Γ `m−1 P : σ̂ . c′.

Next, suppose that P = b〈P1〉 with b 6= nd. Then τ = o, and the final (CON1) rule has a pre-
miss Γ1 `m P1 : (F1,M, o) . c1. By the induction assumption, we can derive Γ `m−1 P1 :
(F1�≤m−1,M�≤m−1, o) . c

′
1 for some c′1 such that c′1(a) ≥ c1(a) + |F1 ∩{(m, a)}| for all a ∈ Σ. A side

condition says that (F, c) ∈ Compm(M ; ({(1, b)},0), (F1, c1)), and we need to see that (F �≤m−1, c
′) ∈

Compm−1(M�≤m−1; ({(1, b)},0), (F1�≤m−1, c
′
1)) for some c′ such that c′(a) ≥ c(a) + |F ∩ {(m, a)}|

for all a ∈ Σ; this follows directly from Lemma 7.5. Thus, we can apply back the (CON1) rule, and derive
Γ `m−1 P : σ̂ . c′.

Suppose now that P = b〈〉 with b 6= nd. Then τ = o, and (F, c) ∈ Compm(M ; ({(1, b)},0)). From
Lemma 7.5 it follows that (F �≤m−1, c

′) ∈ Compm−1(M�≤m−1; ({(1, b)},0)) for some c′ such that
c′(a) ≥ c(a) + |F ∩ {(m, a)}| for all a ∈ Σ. We apply the (CON0) rule, and we derive Γ `m−1 P : σ̂ . c′.

Finally, suppose that P = QR. Then the final (@) rule has premisses Γ′ `m Q : (F ′,M ′, C→ τ) . e
and Γi `m R : (Fi,Mi, τi) . di for i ∈ I , where we have that C = {|(Fi�≤ord(R),Mi�≤ord(R), τi) |
i ∈ I|}. The induction assumption applied to all premisses gives us a derivation of Γ′ `m−1 Q :
(F ′�≤m−1,M

′�≤m−1, C→ τ) . e′ with e′ such that e′(a) ≥ e(a) + |F ′ ∩ {(m, a)}| for all a ∈ Σ,
and, for all i ∈ I , a derivation of Γi `m−1 R : (Fi�≤m−1,Mi�≤m−1, τi) . d′i with d′i such that
d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| for all a ∈ Σ. The side condition M = M ′ +

∑
i∈IMi implies

M�≤m−1 = M ′�≤m−1 +
∑
i∈IMi�≤m−1, and the side condition {(k, a) ∈ F ′ | M(k) = 0} ⊆ F

implies {(k, a) ∈ F ′�≤m−1 | M�≤m−1(k) = 0} ⊆ F �≤m−1. Another side condition says that
(F, c) ∈ Compm(M ; (F ′, e), (Fi�>ord(R), di)i∈I). Because the complexity of P is at most m, we
have ord(R) ≤ ord(Q) − 1 ≤ m − 1. In consequence, d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| = di(a) +
|Fi�>ord(R) ∩ {(m, a)}| for all i ∈ I and a ∈ Σ, thus by Lemma 7.5 we obtain (F �≤m−1, c

′) ∈
Compm−1(M�≤m−1; (F ′�≤m−1, e

′), ((Fi�>ord(R))�≤m−1, d
′
i)i∈I) for some c′ such that c′(a) ≥ c(a) +

|F ∩ {(m, a)}| for all a ∈ Σ. Clearly, (Fi�>ord(R))�≤m−1 = (Fi�≤m−1)�>ord(R). Moreover, C =
{|(Fi�≤m−1)�≤ord(R), (Mi�≤m−1)�≤ord(R), τi) | i ∈ I|}, again because ord(R) ≤ m − 1. Having all
this, we can apply back the (@) rule, and derive Γ `m−1 P : σ̂ . c′.

Still staying in the case of P = QR, suppose now that the original derivation ends with a wild use of the
(@) rule. This means that for some i ∈ I and for some (k, a) ∈ Fi�>ord(R) we have Mi = 0 and M(l) > 0
for all l ∈ {k, k + 1, . . . ,m}. If k = m, the type judgment derived by the induction assumption, Γi `m−1

R : (Fi�≤m−1,Mi�≤m−1, τi) . d
′
i, satisfies Mi�≤m−1 = 0 and d′i(a) ≥ di(a) + |Fi ∩ {(m, a)}| ≥ 1,

which is impossible by Lemma 5.4 (we use here the fact that ord(R) ≤ m − 1). Thus k < m, so we
have as well (k, a) ∈ (Fi�≤m−1)�>ord(R). It is also true that Mi�≤m−1 = 0 and M�≤m−1(l) > 0 for all
l ∈ {k, k + 1, . . . ,m− 1}. Thus the (@) rule is used wildly also in the resulting derivation.

We notice that the proof does not remove any fragment of the original derivation. Thus, by the above, if
the original derivations contains some wild use of the (@) rule, the resulting derivation also contains a wild
use of the (@) rule, in the same place.

Lemma 7.2 is obtained by specializing Lemma 7.6 to the situation when P is closed, and (F,M, τ) =
ρ̂allm . Notice that then (F �≤m−1,M�≤m−1, τ) = ρ̂allm−1.

A Type System Describing Unboundedness 43

7.3 Proof of Lemma 7.3
In this lemma, we are given a derivation of ε `0 P : ρ̂all0 . c, where P is of complexity 0. The proof is by
induction on the structure of some fixed derivation of ε `0 P : ρ̂all0 . c. Let us analyze the shape of P .
Because the type environment is empty, and because P has complexity 0, P cannot be a variable, nor a
lambda-binder, nor an application. Thus P starts with a node constructor. We have three cases.

The first case is that P = nd〈P1, . . . , Pr〉. Then the final (ND) rule has one premiss ε `0 Pi : ρ̂all0 . c
for some i ∈ {1, . . . , r}. The induction assumption gives us a word T such that Pi →∗nd T and for every
a ∈ Σ, the number of occurrences of a in T is c(a). Since P →nd Pi, this gives the thesis.

Suppose now that P = b〈P1〉. Observe that ρ̂all0 = (∅, {|0|}, o) is the only type triple in T T o0. Indeed, if
(F,M, τ) ∈ T T o0, then τ = o, and F and M are 0-bounded. For F this implies that F = ∅, and for M this
implies that M(k) = 0 for all k ≥ 1. Additionally, the definition of a type triple requires that M(0) = 1.
It follows that the premiss of the final (CON1) rule is of the form ε `0 P1 : ρ̂all0 . c1. By the induction
assumption we obtain a tree T1 such that P1 →∗nd T1 and for every a ∈ Σ, the number of occurrences
of a in T1 is c1(a). We take T = b〈T1〉; then P →∗nd T . As in the proof of Lemma 6.2, we observe that
(∅, c) ∈ Comp0(Mk(ρ̂all0); ({(1, b)},0), (∅, c1)) holds exactly when c(a) = c1(a) for a ∈ Σ \ {b}, and
c(b) = 1 + c1(b). It follows that for every a ∈ Σ, the number of occurrences of a in T is c(a).

Finally, suppose that P = b〈〉. Then (∅, c) ∈ Comp0(Mk(ρ̂all0); ({(1, b)},0)) implies that c(b) = 1 and
c(a) = 0 for all a ∈ Σ \ {b}. Taking T = b〈〉, we see that P →∗nd T and that for every a ∈ Σ, the number
of occurrences of a in T is c(a).

8 Between tree-recognizing and word-recognizing schemes
Recall that the type system presented in previous sections works only for word-recognizing schemes. It is
not difficult to improve the type system and make it working also for tree-recognizing schemes, at the cost
of increasing exponentially the number of possible types of each sort (see, e.g., Parys (2017b), where a
similar type system is presented in a version that works for all schemes). In other words, if we want to
solve SUP for word-recognizing schemes in the optimal complexity, it is necessary to have a type system
that works only for word-recognizing schemes. Instead of presenting another variant of the type system,
working for all schemes, we rather give a translation from tree-recognizing schemes to word-recognizing
schemes. This translation is presented in the current section; it increases the order of the considered scheme
by one, and increases its size only linearly. A translation similar to the one presented here is sketched
in Asada and Kobayashi (2016).

We remark that Asada and Kobayashi (2016) give also a translation in the opposite direction: from
word-recognizing schemes to tree-recognizing schemes of order lower by one. This translation, however,
severely increases the size of a transformed scheme, and thus it cannot be used to solve SUP for word-
recognizing schemes (by first reducing to a tree-recognizing scheme, and then using a type system for
tree-recognizing schemes) in the optimal complexity.

The intuition behind the translation is that instead of generating a tree, we generate a word containing all
nodes of the tree (ordered from left to right, with a node before its descendants).

Thus, for a finite tree T and a word W we define word(T,W) by induction on the size of T :

word(a〈T1, . . . , Tr〉,W) = a〈word(T1,word(T2,word(. . . ,word(Tr,W) . . .)))〉 .

Moreover, when L1 is a set of finite trees, and L2 is a set of words, let word(L1,L2) be the set containing
word(T,W) for all T ∈ L1 and W ∈ L2.

44 Paweł Parys

Next, we say how to transform sorts, lambda-terms, and schemes. For every sort α we define a sort α[,
by induction on its size:

o[= o→ o and (β→ γ)[= β[→ γ[.

For every variable x of sort α (including all nonterminals), let x[be a corresponding variable of sort α[.
For a lambda-term R we define R[by coinduction on its structure:

x[= x[, (P Q)[= P [Q[, (λx.P)[= λx[.P [,

(nd〈P1, . . . , Pr〉)[= λz.nd〈P [1 z, . . . , P [r z〉 , and

(a〈P1, . . . , Pr〉)[= λz.a〈P [1 (P [2 (. . . (P [r z) . . .))〉 for a 6= nd ,

where z is a fresh variable of sort o. For a scheme G = (N ,R, N0) we define a scheme G[to have
nonterminals N [for all N ∈ N and a fresh starting nonterminal N ′0 of sort o, and to have rulesR[(N [) =
(R(N))[andR[(N ′0) = N0 (e〈〉) (for a fixed letter e).

Example 8.1. Let GM = (NM,RM,M) be a tree-recognizing scheme (of order 1), where NM = {M,N}
with M of sort o and N of sort o→ o, and where

R(M) = N (a〈〉) , R(N) = λx.nd〈x,N (a〈x, x〉)〉 .

We have G[M = (N [
M,R[M,M′), where N [

M = {M[,N[,M′} with M[of sort o[= o→ o, and N[of sort
(o→ o)[= (o→ o)→ o→ o, and M′ of sort o, and where, for x[of sort o[= o→ o and for z of sort o,

R[(M[) = (R(M))[= N[(λz.a〈z〉) , R[(M′) = M[(e〈〉) ,
R[(N[) = (R(N))[= λx[.λz.nd〈x[z,N[(λz.a〈x[(x[z)〉) z〉 .

Observe that L(GM) contains balanced binary trees of every height i ≥ 1 (the tree of height i has
2i − 1 a-labeled nodes). On the other hand, L(G[M) contains words consisting of 2i − 1 a-labeled nodes,
followed by an e-labeled node, for every i ≥ 1. We thus have word(L(GM), e〈〉) = L(G[M) (for example,
word(a〈a〈〉, a〈〉〉, e〈〉) = a〈a〈a〈e〈〉〉〉〉).

We are now ready to state a lemma constituting the expected properties of the translation.

Lemma 8.1.
1. If P is a closed lambda-term of sort o, then

(a) L(BT (P [(e〈〉))) = word(L(BT (P)), e〈〉), and
(b) for every set of letters A we have SUPA(L(BT (P [(e〈〉)))) if and only if SUPA(L(BT (P)));

2. if G is a scheme of order m, then
(a) G[is a word-recognizing scheme of order m+ 1,
(b) |G[| ≤ 6|G|+ 4 (and thus G[can be constructed in logarithmic space),
(c) for every lambda-term R it is the case that (ΛG(R))[= ΛG[(R

[),
(d) L(G[) = word(L(G), e〈〉), and
(e) for every set of letters A, we have SUPA(L(G)) if and only if SUPA(L(G[)).

In order to establish Lemma 8.1, we first say that the translation commutes with substitutions and
beta-reductions.

A Type System Describing Unboundedness 45

Lemma 8.2. For all lambda-terms R,S and for every variable x of the same sort as S it holds that
(R[S/x])[= R[[S[/x[].

Proof: A trivial coinduction on the structure of R.

Lemma 8.3. If P h−→β Q then P [h−→β Q
[.

Proof: By assumption P = (λx.R)S S1 . . . Ss and Q = R[S/x]S1 . . . Ss. Observe that

P [= (λx[.R[)S[S[1 . . . S
[
s
h−→β R

[[S[/x[]S[1 . . . S
[
s = (R[S/x])[S[1 . . . S

[
s = Q[,

where the equality R[[S[/x[] = (R[S/x])[holds by Lemma 8.2.

We now give two lemmata, implying directly the two inclusions corresponding to the equality from
Lemma 8.1(1a).

Lemma 8.4. If P,Q are closed lambda-terms of sort o, where Q is word-recognizing, and if T is a finite
Σ-labeled tree such that BT (P)→n

nd T , then word(T,L(BT (Q))) ⊆ L(BT (P [Q)).

Proof: The proof is by induction on n + |T |. Because BT (P) →n
nd T , we can be sure that BT (P) 6=

nd〈〉, and thus P h−→∗β a〈P1, . . . , Pr〉 for some a ∈ Σnd and some lambda-terms P1, . . . , Pr such that
BT (P) = a〈BT (P1), . . . ,BT (Pr)〉. By Lemma 8.3 (applied to every head beta-reduction in the sequence
witnessing that P h−→∗β a〈P1, . . . , Pr〉) we have that P [h−→∗β (a〈P1, . . . , Pr〉)[, hence also P [Q h−→∗β
(a〈P1, . . . , Pr〉)[Q. We have two cases.

Suppose first that a 6= nd. In this case BT (P) →n
nd T implies that T = a〈T1, . . . , Tr〉, where

BT (Pi)→ni
nd Ti with ni ≤ n and |Ti| < |T | (i.e., ni+ |Ti| < n+ |T |) for all i ∈ {1, . . . , r}. Denote Lr =

L(BT (Q)) and Qr = Q, and then consecutively for i = r, r − 1, . . . , 1 denote Li−1 = word(Ti, Li) and
Qi−1 = P [i Qi. By a (reversed) internal induction we prove that Li ⊆ L(BT (Qi)) for all i ∈ {0, . . . , r}.
For i = r this amounts to showing that L(BT (Q)) ⊆ L(BT (Q)), which is trivial. Assume now that the
thesis holds for some i ≥ 1, that is, that Li ⊆ L(BT (Qi)). This implies that Li−1 = word(Ti, Li) ⊆
word(Ti,L(BT (Qi)). Due to BT (Pi)→ni

nd Ti, the induction assumption (of the external induction, used
with Qi as Q) implies that word(Ti,L(BT (Qi))) ⊆ L(BT (P [i Qi)) = L(BT (Qi−1)), which altogether
gives us the required thesis Li−1 ⊆ L(BT (Qi−1)). In particular, we have L0 ⊆ L(BT (Q0)). This means
that for every W ∈ L(BT (Q)),

word(T1,word(T2,word(. . . ,word(Tr,W) . . .))) ∈ L(BT (Q0)) .

By appending a node-constructor (for the letter a) in the front, we obtain that

a〈word(T1,word(T2,word(. . . ,word(Tr,W) . . .)))〉 ∈ L(a〈BT (Q0)〉) ,

hence also word(T,W) ∈ L(a〈BT (Q0)〉), because by definition

word(T,W) = word(a〈T1, . . . , Tr〉,W) = a〈word(T1,word(T2,word(. . . ,word(Tr,W) . . .)))〉 .

The above holds for every W ∈ L(BT (Q)), so it implies that word(T,L(BT (Q))) ∈ L(a〈BT (Q0)〉).
Recall now that

P [Q h−→∗β (a〈P1, . . . , Pr〉)[Q = (λz.a〈P [1 (P [2 (. . . (P [r z) . . .))〉)Q h−→β a〈P [1 (P [2 (. . . (P [r Q) . . .))〉
= a〈Q0〉 ,

46 Paweł Parys

meaning that BT (P [Q) = a〈BT (Q0)〉; we thus have word(T,L(BT (Q))) ⊆ L(BT (P [Q)), as we
wanted to prove.

It remains to consider the situation when a = nd. In this case BT (P) →nd BT (Pi) →n−1
nd T for

some i ∈ {1, . . . , r}. The induction assumption implies that word(T,L(BT (Q))) ⊆ L(BT (P [i Q)).
Additionally,

P [Q h−→∗β (nd〈P1, . . . , Pr〉)[Q = (λz.nd〈P [1 z, . . . , P [r z〉)Q h−→β nd〈P [1 Q, . . . , P [r Q〉 ,

meaning that BT (P [Q) = nd〈BT (P [1 Q), . . . ,BT (P [r Q)〉. In particular BT (P [Q) →nd BT (P [i Q),
which implies that L(BT (P [i Q)) ⊆ L(BT (P [Q)). We thus again have word(T,L(BT (Q))) ⊆
L(BT (P [Q)), as needed.

Lemma 8.5. If P,Q are closed lambda-terms of sort o, where Q is word-recognizing, and if W is a finite
Σ-labeled word such that BT (P [Q)→n

nd W , then W ∈ word(L(BT (P)),W ′) for some finite Σ-labeled
word W ′ and some number n′ such that BT (Q)→n′

nd W
′ and n′ + |W ′| < n+ |W |.

Proof: The proof is by induction on n+ |W |. Suppose first that there exists an infinite sequence of head
beta-reductions P = P0

h−→β P1
h−→β P2

h−→β In such a case, by Lemma 8.3 we have as well that
P [0

h−→β P
[
1

h−→β P
[
2

h−→β . . . , thus also P [0 Q
h−→β P

[
1 Q

h−→β P
[
2 Q

h−→β In consequence, there is no
sequence of head beta-reductions from P [Q to a lambda-term starting with a node constructor, which
implies that BT (P [Q) = nd〈〉. This contradicts the assumption BT (P [Q)→n

nd W , finishing the proof
in this case.

Next, suppose that P h−→∗β R for a lambda-term R such that R h−→β S does not hold for any S, but S
does not start with a node constructor. Because P (hence also R) is closed and of order o, this can only
happen when R is an infinite application, R = . . . R3R2R1. Using Lemma 8.3 and appending Q, we
obtain that P [Q h−→∗β R[Q = . . . R[3R

[
2R

[
1Q. In this case we again have that there is no sequence of

head beta-reductions from P [Q to a lambda-term starting with a node constructor, which implies that
BT (P [Q) = nd〈〉, contrary to the assumption BT (P [Q)→n

nd W .
The remaining (and the only interesting) case is when P h−→∗β a〈P1, . . . , Pr〉 for some a ∈ Σnd and some

lambda-terms P1, . . . , Pr such that BT (P) = a〈BT (P1), . . . ,BT (Pr)〉. As previously, using Lemma 8.3
and appending Q, we obtain that P [Q h−→∗β (a〈P1, . . . , Pr〉)[Q. We have two cases.

Suppose first that a 6= nd. Similarly to the previous proof, taking Qr = Q and Qi−1 = P [i Qi
consecutively for i = r, r − 1, . . . , 1, we have that BT (P [Q) = a〈BT (Q0)〉. Denote n0 = n. The
assumption BT (P [Q) →n

nd W implies that W = a〈W0〉 for a word W0 such that BT (Q0) →n0

nd W0;
notice that n0 + |W0| = n + |W | − 1 < n + |W |. Next, we consider consecutive i ∈ {1, . . . , r},
and assuming that we have Wi−1 and ni−1 satisfying BT (Qi−1) →ni−1

nd Wi−1 and ni−1 + |Wi−1| <
n + |W |, we construct Wi and nI satisfying BT (Qi) →ni

nd Wi and ni + |Wi| < n + |W | and Wi−1 ∈
word(L(BT (Pi)),Wi). To this end, we recall that Qi−1 = P [i Qi, thus the induction assumption (which
can be used for Pi, Qi,Wi−1, ni−1 as P,Q,W, n, respectively, because ni−1 + |Wi−1| < n + |W |)
gives us Wi and ni such that Wi−1 ∈ word(L(BT (Pi)),Wi) and BT (Qi) →ni

nd Wi, and ni + |Wi| <
ni−1 + |Wi−1| < n+ |W |. Having all the words Wi and numbers ni, as W ′ we take Wr, and as n′ we
take nr. We already know that BT (Q) = BT (Qr)→n′

nd W
′ and n′ + |W ′| < n+ |W |. The conditions

Wi−1 ∈ word(L(BT (Pi)),Wi) imply that for every i ∈ {1, . . . , r} there exists a tree Ti ∈ L(BT (Pi))

A Type System Describing Unboundedness 47

such that Wi−1 = word(Ti,Wi). Observe that

W = a〈word(T1,word(T2,word(. . . ,word(Tr,W
′) . . .)))〉 = word(a〈T1, . . . , Tr〉,W ′) ,

and that a〈T1, . . . , Tr〉 ∈ L(BT (P)) (because BT (P) = a〈BT (P1), . . . ,BT (Pr)〉). In consequence,
W ∈ word(L(BT (P)),W ′), as needed.

The second case is that a = nd. As in the previous proof, we obtain that BT (P [Q) = nd〈BT (P [1 Q),
. . . ,BT (P [r Q)〉, thus the assumption BT (P [Q)→n

nd W implies that BT (P [i Q)→n−1
nd W for some i ∈

{1, . . . , r}. The induction assumption implies gives us a finite Σ-labeled wordW ′ and a number n′ such that
W ∈ word(L(BT (Pi)),W

′), and BT (Q)→n′

nd W
′, and n′ + |W ′| < n+ |W |. Because L(BT (Pi)) ⊆

L(nd〈BT (P1), . . . ,BT (Pr)〉) = L(BT (P)), we also have that W ∈ word(L(BT (P)),W ′), as needed.

Finally, we bound the size of lambda-terms after the translation.

Lemma 8.6. If P is a finite lambda-term, then |P [| ≤ 6|P | − 2.

Proof: We first prove that |α[| = 2|α| + 1 for every sort α, by induction on the size of α. Indeed,
|o[| = |o→ o| = 3 = 2|o|+ 1, and |(β→ γ)[| = |β[|+ 1 + |γ[| = 2(|β|+ 1 + |γ|) + 1 = 2|β→ γ|+ 1.

We now prove the statement of the lemma, by induction on the size of P . A simple calculation shows
the thesis for each of the possible forms of P :

• if P = x, then |x[| = 1 ≤ 4 = 6|P | − 2;
• if P = QR, then |P [| = |Q[|+1+|R[| ≤ 6|Q|−2+1+6|R|−2 ≤ 6(|Q|+1+|R|)−2 = 6|P |−2;
• if P = λx.Q for a variable x of sort α, then

|P [| = |λx[.Q[| = |α[|+ 1 + |Q[| ≤ 2|α|+ 2 + 6|Q| − 2 ≤ 6(|α|+ 1 + |Q|)− 2 = 6|P | − 2 ;

• if P = nd〈P1, . . . , Pr〉, then

|P [| = |λz.nd〈P [1 z, . . . , P [r z〉| = |o|+ 1 + 1 +
∑r
i=1(|P [i |+ 1 + 1)

≤ 3 +
∑r
i=1(6|Pi| − 2 + 2) ≤ 6(1 +

∑r
i=1 |Pi|)− 2 = 6|P | − 2 ;

• if P = a〈P1, . . . , Pr〉 for a 6= nd, then

|P [| = |λz.a〈P [1 (P [2 (. . . (P [r z) . . .))〉 = |o|+ 1 + 1 +
∑r
i=1(|P [i |+ 1) + 1

≤ 4 +
∑r
i=1(6|Pi| − 2 + 1) ≤ 6(1 +

∑r
i=1 |Pi|)− 2 = 6|P | − 2 .

We are now ready to prove Lemma 8.1.

Proof of Lemma 8.1: In order to obtain Point 1(a), consider a closed lambda-term P of sort o. Ev-
ery element W of L(BT (P [(e〈〉))) is a finite Σ-labeled word, and satisfies BT (P [(e〈〉)) →n

nd W
for some number n ∈ N. By Lemma 8.5, there is a word W ′ such that BT (e〈〉) →∗nd W ′ and
W ∈ word(L(BT (P)),W ′). The only possibility is that W ′ = e〈〉; thus W ∈ word(L(BT (P)), e〈〉),
which establishes the inclusion L(BT (P [(e〈〉))) ⊆ word(L(BT (P)), e〈〉). For the opposite inclu-
sion, take some W ∈ word(L(BT (P)), e〈〉). By definition there is T ∈ L(BT (P)) such that W =
word(T, e〈〉) ∈ word(T,L(BT (e〈〉))); moreover, T is a finite Σ-labeled tree such that BT (P) →n

nd T

48 Paweł Parys

for some n ∈ N. Lemma 8.4 implies that W ∈ L(BT (P [(e〈〉))), which finishes the proof of the equality
L(BT (P [(e〈〉))) = word(L(BT (P)), e〈〉).

Next, observe that word(T, e) (for any finite Σ-labeled tree T) contains exactly the same letters as T ,
in the same quantity, except that it has one more occurrence of the letter e. In consequence, for every
language L of finite Σ-labeled trees, and for every set of letters A, we have SUPA(word(L, e〈〉)) if and
only if SUPA(L). Thanks to this property, Point 1(b) follows from Point 1(a), and in the same way Point
2(e) follows from Point 2(d).

For Point 2, consider a scheme G = (N ,R, N0). It follows directly from the definition that G[has order
higher by one, and that it is word-recognizing (Point 2(a)). Point 2(b), bounding the size of the resulting
scheme G[= (N [,R[, N ′0), is obtained by the following calculation, using Lemma 8.6:

|G[| = |o|+ |R[(N ′0)|+
∑
Nα∈N (|α[|+ |R[(N [)|) = 1 + |N0 (e〈〉)|+

∑
Nα∈N (|α[|+ |(R(N))[|)

≤ 4 +
∑
Nα∈N (2|α|+ 1 + 6|R(N)| − 2) ≤ 4 + 6

∑
Nα∈N (|α|+ |R(N)|) = 6|G|+ 4 .

Moreover, it should be clear that, by following the straightforward definition, G[can be constructed in
logarithmic space.

Point 2(c) follows by a trivial coinduction using the definition of G[.
Finally, the equality L(G[) = word(L(G), e〈〉) from Point 2(d) is deduced from Point 1(a) after

observing that Λ(G[) = (ΛG(N0))[(e〈〉) (which implies that L(G[) = L(BT ((ΛG(N0))[(e〈〉)))), and
that word(L(G), e〈〉) = word(L(BT (ΛG(N0))), e〈〉).

9 Complexity of SUP
Using our type system we now establish the complexity of SUP for schemes, which is as described by the
following theorem.

Theorem 9.1. Let m ∈ N.
1. If m ≥ 1, SUP for tree-recognizing order-m schemes is m-EXPTIME-complete. If m = 0, it is

NP-complete, and it is in FPT when |A| is viewed as a parameter.
2. Ifm ≥ 2, SUP for word-recognizing order-m schemes is (m−1)-EXPTIME-complete. Ifm ∈ {0, 1},

it is NP-complete, and it is in FPT when |A| is viewed as a parameter.

In the rest of this section we prove the above theorem. In the first part we concentrate on the upper
bounds; the lower bounds are shown in Section 9.4 by easy reductions.

Concerning the upper bounds, recall at the beginning that for every (tree-recognizing) scheme G we can
construct, in logarithmic space, a word-recognizing scheme G[such that solving SUP for G boils down
to solving SUP for G[; the order of the scheme grows by one (cf. Lemma 8.1, Point 2). As a result, all
the upper bounds for tree-recognizing schemes (i.e., m-EXPTIME, NP, and FPT, as given by Point 1
of Theorem 9.1) are immediate consequences of the corresponding upper bounds for word-recognizing
schemes (as given by Point 2 of Theorem 9.1).

In the proof of the upper bounds we thus assume that the considered scheme is word-recognizing;
moreover, for compatibility with previous sections, we assume that it is of order m+ 1, rather than of order
m. We are thus given a set A and a word-recognizing scheme G = (N ,R, N0) of order at most m+ 1,
and we want to decide whether SUPA(L(G)) holds. This should be done in m-EXPTIME for m ≥ 1, and

A Type System Describing Unboundedness 49

in NP for m = 0. For m = 0 we also prove that the problem is fixed-parameter tractable when |A| is
viewed as a parameter.

Due to Theorem 3.2, solving SUP boils down to checking whether for every n ∈ N we can derive
ε `m Λ(G) : ρ̂allm . cn with some cn such that cn(a) ≥ n for all a ∈ A (here we use the trivial fact that the
complexity of Λ(G) is not greater than the order of G).

Before starting the proof, let us give three definitions.

Definition 9.2. Two type judgments are equivalent if they differ only in values of the flag counter.

Definition 9.3. For a set A ⊆ Σ, a derivation is A-pumpable if for every letter a ∈ A, there are two
equivalent type judgments lying on one branch of the derivation and such that their flag counters differ on
the a coordinate.

Definition 9.4. We say that a type judgment Γ `m Q : τ̂ . d is useful (with respect to a scheme G) if Q is
a subterm of Λ(G) and Γ(x) 6= 0 only for variables x that appear in Λ(G).

Let UG be the set of useful type judgments Γ `m Q : τ̂ . d satisfying Mk(Γ) ≤ Mk(τ̂),(iv) and let UG/∼
be the set of equivalence classes of type judgments from UG .

For every rule of the type system it is easy to see that if the conclusion is useful, then also premisses
are useful. Moreover, Lemma 5.2 tells us that all type judgments that can be derived satisfy the inequality
Mk(Γ) ≤ Mk(τ̂). It follows that all derivations of ε `m Λ(G) : ρ̂allm . c contain only type judgments from
UG .

We now proceed as follows. First, in Section 9.1, we bound the number of equivalence classes in UG/∼.
Then, in Section 9.2, we observe that if a flag counter c is large enough for every letter a ∈ A, then a
derivation of ε `m Λ(G) : ρ̂allm . c needs to be A-pumpable. Moreover, the opposite implication also holds:
if we have an A-pumpable type derivation, then we can repeat (as many times as we want) its fragments
between all pairs of equivalent type judgments, increasing arbitrarily the flag counter for all a ∈ A in the
resulting type judgment. This is described in Lemma 9.9. Finally, in Section 9.3 we give an algorithm
exploiting this property.

9.1 Number of equivalence classes
In the first part, we bound the size of UG/∼.

Recall that by ΛG(P) we denote the lambda-term obtained by recursively expanding all nonterminals in
a lambda-term P (which could contain nonterminals). It is easy to see that every subterm of Λ(G) equals
ΛG(P) for some subterm P ofR(N) for some nonterminal N ∈ N . In consequence, there are at most |G|
subterms of Λ(G).

Let SG be the set of sorts of all subterms of R(N) for all nonterminals N of G, and of all subsorts of
these sorts (where we say that a sort α is a subsort of a sort β either if α = β or if β = γ→ δ and α is a
subsort of γ or δ). Notice that the sorts of all subterms of Λ(G) also belong to SG . Let us first bound the
size of sorts in SG .

Lemma 9.5. It is the case that |α| ≤ 2 · |G| for every scheme G and every sort α ∈ SG .(v)

(iv) As one can see in the proof, the inequality Mk(Γ) ≤ Mk(τ̂) is important only when m = 0.
(v) One may wonder why we prove that |α| ≤ 2 · |G| instead of |α| ≤ |G|, but it is not clear whether the stronger inequality is always

true. Surely an analogous inequality for lambda-terms is false: for example, the lambda-term λxα.xα is of size 2 + |α|, while its
sort α→α is of size 2 · |α|+ 1.

50 Paweł Parys

Proof: We prove that if P of sort α is a subterm of R(N) for some nonterminal N ∈ N , then |α| ≤
|P |+ |G| (which clearly implies that |α| ≤ 2 · |G| for all α ∈ SG). This is an induction on the size of P .
When P starts with a node constructor this is trivial, since α = o. When P = QR, this follows directly
from the inequality |β→α| ≤ |Q|+ |G| obtained from the induction assumption, where β→α is the sort
of Q, since |α| < |β→α| and |Q| < |P |. When P = λx.Q, where α = β→ γ, we obtain the thesis by
adding 1 + |β| to both sides of the induction assumption |γ| ≤ |Q|. When P = x is a variable bound by
some λx.Q somewhere inR(N), we have |α| ≤ |λx.Q| ≤ |R(N)| ≤ |P |+ |G|. Finally, P = M may be
a nonterminal, in which case |α| is also included in |G|.

Next, for n ∈ N, denote by ηGn the maximum of |T T αk | over all k ∈ {0, . . . , n} and over all sorts α ∈ SG
such that ord(α) ≤ n. The next lemma bounds ηGn .

Lemma 9.6. Let n ∈ N. The number ηGn is at most (n− 1)-fold exponential in |G| and |Σ| when n ≥ 2,
and polynomial in |G| and |Σ| when n ≤ 1.

Proof: In order to bound ηGn (for particular values of n), take a number k ∈ {0, . . . , n} and a sort
α = α1→ . . .→αs→ o ∈ SG with ord(α) ≤ n for which ηGn = |T T αk |, that is, for which the maximum is
achieved. A type triple in T T αk contains a flag set F , a marker multiset M , and a type C1→ . . .→Cs→ o.
We have three cases:

• The only sort satisfying ord(α) ≤ 0 is α = o. We have already observed in the proof of Lemma 7.3
that T T o0 contains only one element, namely ρ̂all0 ; thus ηG0 = 1.

• Suppose now that n = 1. Then αi = o for every i ∈ {1, . . . , s}, so there is only one type triple that
can be contained in the triple container Ci, namely ρ̂all0 , the only element of T T αiord(αi)

= T T o0.
Moreover, the condition M(0) +

∑s
i=1 Mk(Ci)(0) = 1 implies that the triple containers C1, . . . , Cs

can contain altogether only at most one type triple (we have Mk(ρ̂all0)(0) = 1, so every type
triple in some Ci adds one to the sum

∑s
i=1 Mk(Ci)(0)). It follows that, while storing the type

C1→ . . .→Cs→ o, we only need to remember which one of C1, . . . , Cs is nonempty (or that all of
them are empty). Beside of that, we have |Σ|+ 1 possibilities for the flag set F ∈ Fk ⊆ F1 (recall
that k ≤ n = 1): either F is empty, or it contains a (1, a)-flag for some a ∈ Σ (and no other flags
of order 1, hence no other flags at all). We also have |Σ| + 1 possibilities for M ∈ Mk ⊆ M1,
since M(0) is determined by C1, . . . , Cs due to the equation M(0) +

∑s
i=1 Mk(Ci)(0) = 1, and

M(1) ∈ {0, . . . , |Σ|}. Thus, taking into account the inequality s < |α| ≤ 2 · |G| (cf. Lemma 9.5),
for k and α maximizing ηG1 we obtain that

ηG1 = |T T αk | ≤ (|Σ|+ 1) · (|Σ|+ 1) · (1 + s) ≤ (|Σ|+ 1)2 · 2 · |G| .

In particular, ηG1 is polynomial in |G| and |Σ|.
• Finally, let n ≥ 2. In the flag set, for every order l ∈ {1, . . . , k} we either have no flags of order
l, or we have an (l, a)-flag for some a ∈ Σ (and no other flags of order l); this gives (|Σ| + 1)k

possibilities. In the marker multiset, for every order l ∈ {1, . . . , k} the number of order-l markers is
in {0, . . . , |Σ|} (and, as previously, the number of order-0 markers is determined by C1, . . . , Cs);
this also gives (|Σ|+ 1)k possibilities. Every triple container Ci is a function from T T αiord(αi)

to

{0, . . . , |Σ|}; this gives (|Σ|+ 1)
|T T αi

ord(αi)
| possibilities. Because ord(αi) ≤ ord(α)− 1 ≤ n− 1,

and because αi (as a subsort of α) belongs to SG , we have |T T αiord(αi)
| ≤ ηGn−1. Since moreover

A Type System Describing Unboundedness 51

s ≤ |α| ≤ 2 · |G| (cf. Lemma 9.5) and k ≤ n, for n ≥ 2 we obtain that

ηGn = |T T αk | ≤ (|Σ|+ 1)k · (|Σ|+ 1)k ·
s∏
i=1

(|Σ|+ 1)
|T T αi

ord(αi)
| ≤ (|Σ|+ 1)2n+2·|G|·ηGn−1 .

It follows that for every n ≥ 2 the number ηGn is at most (n− 1)-fold exponential in |G| and |Σ|.

We now bound the size of UG/∼, that is, the number of equivalence classes of useful type judgments
Γ `m Q : τ̂ . d satisfying Mk(Γ) ≤ Mk(τ̂).

Lemma 9.7. Let m ∈ N. The size of UG/∼ over all schemes G of order at most m + 1 is at most m-fold
exponential in |G| and |Σ| (where by “0-fold exponential” we mean “polynomial”).

Proof: Consider a type judgment Γ `m Q : τ̂ . d in UG . As already said, there are at most |G| choices for
Q. The order of Q is at most m+ 1, and the sort of Q belongs to SG , so there are at most ηGm+1 choices
for τ̂ ; by Lemma 9.6 the number ηGm+1 is at most m-fold exponential in |G| and |Σ|. We now bound the
number of choices for the type environment Γ. Recall that we may have Γ(x) 6= 0 only for variables x that
appear in Λ(G), so there exist at most |G| of them. Moreover, every such a variable x is bound by some
subterm λx.R in Λ(G); since ord(λx.R) ≤ m + 1, we have ord(x) ≤ m. We now consider two cases,
depending on m.

• Suppose first that m ≥ 1. Consider a variable xα that appears in Λ(G). Its sort α belongs to SG ,
so we obtain |T T αord(α)| ≤ ηGm. The type environment Γ assigns to xα a triple container from
T Cα, that is, a function from T T αord(α) to {0, . . . , |Σ|}. The number of such functions is at most

(|Σ|+ 1)η
G
m . By taking a product over all variables appearing in Λ(G), we obtain that the number of

possible type environments Γ is at most (|Σ|+ 1)|G|·η
G
m . This number is at most m-fold exponential

in |G| and |Σ| (cf. Lemma 9.5).
• Suppose now that m = 0 (then the bound from the previous item is exponential, while we need a

polynomial one). In this case all variables that appear in Λ(G) are of order 0 (thus of sort o). As
already noticed, the only type in T T oord(o) = T T o0 is ρ̂all0 , and it satisfies Mk(ρ̂all0)(0) = 1. On
the other hand Mk(τ̂)(0) ≤ 1 (by the definition of a marker multiset). Since we only consider
type judgments satisfying Mk(Γ) ≤ Mk(τ̂), the whole Γ assigns at most one type triple ρ̂all0 , to at
most one variable. We thus only need to remember to which variable it is assigned (or that it is not
assigned to any variable). We have at most 1 + |G| possibilities (thus polynomially many).

Altogether, it follows that |UG/∼| is at most m-fold exponential in |G| and |Σ|.

Notice that without loss of generality we can assume that |Σ| ≤ |G|, since in Σ we do not need letters
not appearing in G (actually, we can even assume that |Σ| = |A|+ 1, since a single letter name can be used
for all letters that are not in A). Thus, we can simply say that |UG/∼| is at most m-fold exponential in |G|.

9.2 Pumpable derivations
In the second subsection, we argue that we are actually interested in finding an A-pumpable derivation.
We shall see here derivations as trees, similarly as in Section 6.3. For a node v of a derivation tree, by cv
we denote the flag counter being part of the type judgment written in v. We start by the following lemma,
saying that the flag counter cannot grow too much in a single place.

52 Paweł Parys

Lemma 9.8. When m and Σ are fixed, there exists a constant C such that for every a ∈ Σ, for every closed
lambda-term S of sort o, for every derivation tree t that derives ε `m S : ρ̂allm . d (for some d), and for
every node u of t, if cu(a) ≥ C, then there exists a child v of u such that cv(a) ≥ 1

C · cu(a).

Proof: As C we take a number such that

C > 2m+ 3 and C > (m+ 2) · (1 + |Σ| · (m+ 1)) .

Fix now some a ∈ Σ, and consider a type judgment Γ `m R : (F,M, τ) . c appearing in t, such that
c(a) ≥ C. We have several cases, depending on the rule used to derive this type judgment. This cannot be
the (VAR) rule, since it requires that c(a) = 0, while we have c(a) ≥ C > 0. If this is the (ND) rule or the
(λ) rule, the flag counter in the unique premiss of the rule is also c, so we trivially have c(a) ≥ 1

C · c(a).
Suppose now that the considered type judgment is derived using the (CON1) rule, that is, that R is of

the form b〈P 〉, where b 6= nd. Let Γ `m P : (F1,M, o) . c1 be the premiss of this rule. We have that
(F, c) ∈ Compm(M ; ({(1, b)},0), (F1, c1)). Consider the numbers fk,a and f ′k,a as in the definition of
the Compm predicate. We have that fk,a = f ′k,a + |{(1, b)} ∩ {(k, a)}| + |F1 ∩ {(k, a)}| ≤ f ′k,a + 2
for k ∈ {1, . . . ,m + 1}, and f ′k,a ≤ fk−1,a for k ∈ {2, . . . ,m + 1}, and f ′1,a = 0. It follows that
fm+1,a ≤ 2 · (m+ 1) ≤ 2 · (m+ 1) · 1

C · c(a) (the latter inequality holds because c(a) ≥ C). Suppose
now, contrary to the thesis, that c1(a) < 1

C · c(a). Then we have that

c(a) = fm+1,a + c1(a) ≤ 2 · (m+ 1) · 1

C
· c(a) +

1

C
· c(a) ,

which gives

C ≤ 2 · (m+ 1) + 1 = 2m+ 3 .

This contradicts the assumption that C > 2m+ 3, thus necessarily c1(a) ≥ 1
C · c(a).

In the case of the (CON0) rule, when R = b〈〉, we simply have that (F, c) ∈ Compm(M ; ({(1, b)},0)),
so also (F, c) ∈ Compm(M ; ({(1, b)},0), (∅,0)). The analysis from the previous paragraph gives us that
0 = 0(a) ≥ 1

C · c(a), which is a clear contradiction with the assumption c(a) ≥ C.
It remains to consider the case of the (@) rule, when R = P Q. Premisses of this rule are Γ0 `m P :

(F0,M0, τ0) . c0 and Γi `m Q : (Fi,Mi, τi) . ci for i ∈ I , where we assume that 0 6∈ I . We have
that (F, c) ∈ Compm(M ; (F0, c0), ((Fi�>ord(Q), ci))i∈I). Again, we consider the numbers fk,a and f ′k,a.
Let l be the smallest positive natural number such that M(k) > 0 for all k ∈ {l, l + 1, . . . ,m} (when
M(m) = 0, we simply take l = m + 1). Then by definition we have f ′l,a = 0 (since either l = 1 or
M(l − 1) = 0) and f ′k,a = fk−1,a for all k ∈ {l + 1, l + 2, . . . ,m + 1}. We now prove that for all
k ∈ {l, l + 1, . . . ,m+ 1},

fk,a ≤ f ′k,a + 1 + |Σ| · (m+ 1) . (3)

To this end, we consider two cases. Suppose first that l ≤ k ≤ ord(Q). Then Fi�>ord(Q) ∩ {(k, a)} = ∅
for all i ∈ I , so we obtain Inequality (3):

fk,a = f ′k,a + |F0 ∩ {(k, a)}|+
∑
i∈I
|Fi�>ord(Q) ∩ {(k, a)}|

≤ f ′k,a + 1 ≤ f ′k,a + 1 + |Σ| · (m+ 1) .

A Type System Describing Unboundedness 53

Next, suppose that max(ord(Q) + 1, l) ≤ k ≤ m + 1. Notice that every index i ∈ I with Mi 6= 0
adds at least one to the sum

∑
i∈I
∑∞
j=0Mi(j). This sum cannot be greater than |Σ| · (m + 1), since∑

i∈IMi ≤
∑
i∈{0}∪IMi = M ∈ Mm. It follows that there are at most |Σ| · (m + 1) indices i ∈ I

for which Mi 6= 0. On the other hand, from Lemma 5.5 we know that the derivation is not wild; in
particular the considered use of the (@) rule is not wild. This means that for all i ∈ I with Mi = 0 we have
(k, a) 6∈ Fi�>ord(Q) (since k ≥ l, we haveM(j) > 0 for all j ∈ {k, k+1, . . . ,m}, so (k, a) ∈ Fi�>ord(Q)

implies wildness). Thus, Inequality (3) follows also in this case:

fk,a = f ′k,a + |F0 ∩ {(k, a)}|+
∑
i∈I
|Fi�>ord(Q) ∩ {(k, a)}| ≤ f ′k,a + 1 + |Σ| · (m+ 1) .

Using Inequality (3) for all possible k, and the assumption that c(a) ≥ C, we obtain that

fm+1,a ≤ (m− l + 2) · (1 + |Σ| · (m+ 1)) ≤ (m+ 1) · (1 + |Σ| · (m+ 1)) · 1

C
· c(a) .

Suppose now, contrary to the thesis, that ci(a) < 1
C · c(a) for all i ∈ {0} ∪ I . For every i ∈ I such that

Mi = 0, by Lemma 5.4 (which can be applied because ord(Q) ≤ m) we actually have that ci(a) = 0.
There are at most |Σ| · (m+ 1) indices i ∈ I for which Mi 6= 0, that is, for which ci(a) can be nonzero
(plus one more index i = 0). We thus obtain:

c(a) = fm+1,a +
∑

i∈{0}∪I

ci(a)

≤ (m+ 1) · (1 + |Σ| · (m+ 1)) · 1

C
· c(a) + (1 + |Σ| · (m+ 1)) · 1

C
· c(a) ,

which gives

C ≤ (m+ 2) · (1 + |Σ| · (m+ 1)) .

This contradicts the assumption that C > (m+ 2) · (1 + |Σ| · (m+ 1)), thus necessarily ci(a) ≥ 1
C · c(a)

for some i ∈ {0} ∪ I .

In the next lemma we argue that it is enough to consider A-pumpable derivations.

Lemma 9.9. Let S be a closed lambda-term of sort o. There exists an A-pumpable derivation of ε `m S :
ρ̂allm . c for some flag counter c if and only if for every n ∈ N we can derive ε `m S : ρ̂allm . cn with some
cn such that cn(a) ≥ n for all a ∈ A.

Proof: Let us first justify the left-to-right implication. Suppose that a derivation tree t that derives
ε `m S : ρ̂allm . c is A-pumpable. By definition, this means that for every letter a ∈ A, there are two nodes
ua, va of t such that ua is an ancestor of va, they contain equivalent type judgments, and cua(a) 6= cva(a).
Our type system has the property that the flag counter in the conclusion of a rule is always not smaller
than the flag counter in all the premisses, which implies that cua(a) > cva(a), and cua(b) ≥ cva(b) for
all b ∈ Σ. In the considered situation, for every a ∈ A we can repeat (as many times as we want) the
fragment of the derivation tree between the nodes ua and va, increasing arbitrarily the a coordinate of the
flag counter in the resulting type judgment. This is possible thanks to the following additivity property of

54 Paweł Parys

our type system: if out of Γ `m P : σ̂ . c we can derive Γ′ `m P ′ : σ̂′ . c′, then out of Γ `m P : σ̂ . d
we can derive Γ′ `m P ′ : σ̂′ . c′ + d− c.

We now prove the right-to-left implication. Let C be the constant from Lemma 9.8, and let K = |UG/∼|.
Take n = CK , and consider a derivation tree t that derives ε `m S : ρ̂allm . cn for some cn such that
cn(a) ≥ n for all a ∈ A; it exists by assumption. We claim that t is A-pumpable. In order to prove
this, take some letter a ∈ A. As already mentioned, cw(a) ≤ cu(a) whenever w is a child of u in t. We
now construct a sequence v0, . . . , vK of K + 1 nodes lying on one branch in t, such that cvi(a) ≥ CK−i
for i ∈ {0, . . . ,K}, and cvi(a) < cvi−1

(a) for i ∈ {1, . . . ,K}. As v0 we take the root of t; then
cv0(a) = cn(a) ≥ CK . Next, suppose that v0, . . . , vi−1 are already constructed, and we want to construct
vi (we do this by induction, for i = 1, 2, . . . ,K). Let u be some node in the subtree starting in vi−1, such
that cu(a) = cvi−1

(a) but cw(a) < cvi−1
(a) for all children w of u (such a node u has to exist, as t is

finite). Then, as vi we take a child of u such that cvi(a) ≥ 1
C · cu(a), which exists by Lemma 9.8. Because

cu(a) = cvi−1
(a) ≥ CK−i+1, it follows that cvi(a) ≥ CK−i; we also have cvi(a) < cvi−1

(a).
Once v0, . . . , vK are constructed, we notice that there is more of them than equivalence classes in UG/∼.

As already noticed, only type judgments from UG/∼ may appear in t. It follows that among the nodes
v0, . . . , vK there are two, vi and vj for i < j, labeled by equivalent type judgments. By construction vi
and vj are located on the same branch, and we have that cvi(a) > cvj (a). Such a pair of nodes can be
found for every a ∈ A, so t is A-pumpable.

9.3 Algorithms

We now give an algorithm that checks whether an A-pumpable derivation of ε `m Λ(G) : ρ̂allm . c exists
for some c; in consequence, it solves SUP for schemes. Recall that Parys (2017b) proposes an approach
that is doubly exponential in UG/∼: list all type derivations of height smaller than some number, and search
among them for an A-pumpable derivation. We show how to search for A-pumpable derivations in a more
systematic way.

Actually, we present two algorithms. Our first algorithm is deterministic, and works in time polynomial
in |UG/∼|+ |G|+ f(|A|) for some exponential function f (notice that when |UG/∼| is exponential in |G|, the

component f(|A|) is anyway dominated by |UG/∼|). The second algorithm is nondeterministic, and works

in time polynomial in |UG/∼|+ |G|, so it avoids the exponential dependence on |A|. The existence of these

algorithms proves the upper bounds required by Point 2 of Theorem 9.1, once we recall the bound on UG/∼
from Lemma 9.7.

A type judgment is called basic if its flag counter is 0. Basic type judgments can be used to represent
equivalence classes of type judgments, as in every equivalence class there is exactly one basic type
judgment.

We denote type judgments using letters J , K, and L (possibly with some subscripts or superscripts).
While denoting basic type judgments, we put 0 in the superscript, like in J0. For a type judgment J , let J↓
be the basic type judgment equivalent to J , and let cJ be the flag counter appearing in J .

Recall that while using the (@) rule, it may be needed to repeat the same premiss more than once. Thus,
we should think about a multiset of premisses of a rule. In practice, it is more convenient to write a list of
premisses, listing elements of the multiset in some particular order, which is arbitrary but fixed (the list is
commutative: we can reorder premisses on the list, and the use of the rule will remain valid).

A Type System Describing Unboundedness 55

Our algorithm computes several sets, which we now define; their desired properties are described by
Lemma 9.10. The set D (containing basic type judgments from UG) is the smallest set such that:

• if by applying a rule to type judgments J0
1 , . . . , J

0
r ∈ D one can derive a type judgment J ∈ UG ,

then J↓ ∈ D.
In the above definition we allow any r ≥ 0 (in particular, we also consider rules that do not need any
premiss). The set E (being a subset of D ×D) is the smallest set such that:

• (J0, J0) ∈ E for all J0 ∈ D, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D, where r ≥ 1, one can derive a type

judgment J ∈ UG , and (J0
1 ,K

0) ∈ E , then (J↓,K0) ∈ E .
For every a ∈ A, the set Da (being a subset of D) is the smallest set such that:

• if by applying a rule to type judgments J0
1 ∈ Da and J0

2 , . . . , J
0
r ∈ D (where r ≥ 1) one can derive

a type judgment J ∈ UG , then J↓ ∈ Da, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D one can derive a type judgment J ∈ UG

satisfying cJ(a) > 0, then J↓ ∈ Da.
Finally, for every a ∈ A, the set Ea (being a subset of Da ×D) is the smallest set such that:

• if by applying a rule to type judgments J0
1 , . . . , J

0
r ∈ D, where r ≥ 1, one can derive a type

judgment J ∈ UG , and (J0
1 ,K

0) ∈ Ea, then (J↓,K0) ∈ Ea,
• if by applying a rule to type judgments J0

1 ∈ Da and J0
2 , . . . , J

0
r ∈ D, where r ≥ 2, one can derive

a type judgment J ∈ UG , and (J0
2 ,K

0) ∈ E , then (J↓,K0) ∈ Ea, and
• if by applying a rule to type judgments J0

1 , . . . , J
0
r ∈ D, where r ≥ 1, one can derive a type

judgment J ∈ UG satisfying cJ(a) > 0, and (J0
1 ,K

0) ∈ E , then (J↓,K0) ∈ Ea.

Lemma 9.10. In the setting as above:
(a) the set D consists of projections J↓ of all type judgments J ∈ UG that can be derived,
(b) the set E consists of pairs (J↓,K↓) for all type judgments J ∈ UG that can be derived so that K

appears in a derivation of J ,
(c) for every a ∈ A, the set Da consists of projections J↓ of all type judgments J ∈ UG that can be

derived and that satisfy cJ(a) > 0, and
(d) for every a ∈ A, the set Ea consists of pairs (J↓,K↓) for all type judgments J ∈ UG that can be

derived so that K appears in a derivation of J , and where cJ(a) > cK(a).

Proof: We first argue that every element in D (in Da) is of the form J↓ for some type judgment J ∈ UG
that can be derived (and satisfies cJ(a) > 0, respectively). This is shown by induction on the order in
which type judgments are added to the set D (or Da) in its definition. By definition, some J ′↓ is added to
D, if it can be derived by applying some rule to basic type judgments J0

1 , . . . , J
0
r ∈ D, where from the

induction assumption we know for i ∈ {1, . . . , r} that J0
i = Ji↓ for some type judgment Ji ∈ UG that can

be derived. The same rule can be applied to the type judgments J1, . . . , Jr, and results in a type judgment
J equivalent to J ′, where cJ = cJ′ + cJ1 + · · ·+ cJr . If J0

1 ∈ Da (the first item in the definition of Da),
by the induction assumption we actually know that cJ1

(a) > 0, so also cJ(a) > 0. If cJ′(a) > 0 (the
second item in the definition of Da) then automatically also cJ(a) > 0.

The opposite inclusion is shown by induction on the size of a fixed derivation of the considered
derivable type judgment J ∈ UG . Consider the final rule used in the derivation; let J1, . . . , Jr be its
premisses. As already said, J1, . . . , Jr necessarily belong to UG . By the induction assumption we have
that J1↓, . . . , Jr↓ ∈ D. The application of the final rule remains valid if we replace the flag counters in
J1, . . . , Jr by 0, and we appropriately decrease the flag counter in J . This proves that J↓ ∈ D.

56 Paweł Parys

When additionally cJ(a) > 0, and we want to prove that J↓ ∈ Da, we have two cases.
• Suppose first that cJk(a) > 0 for some k ∈ {1, . . . , r}. By reordering premisses of the considered

rule, we can assume that k = 1. We have J1↓ ∈ Da by the induction assumption, so J↓ ∈ Da
according to the first item in the definition of Da.

• Otherwise, cJi(a) = 0 for all i ∈ {1, . . . , r}. Then, while replacing the flag counters in J1, . . . , Jr
by 0, we do not change the a coordinate of the flag counter in J , so it remains positive. Thus
J↓ ∈ Da according to the second item in the definition of Da.

The argumentation for the sets E and Ea is very similar, and thus it is left to the reader.

We now come to pumpable derivations. Here we need one more definition: for a nonempty subset B of
A we define a B-skeleton (we use B-skeletons to describe a general shape of B-pumpable derivations).
For B = {a} we have only one B-skeleton, which is a. For B of size at least 2, a B-skeleton is of the form
either:

• a[S], where S is a (B \ {a})-skeleton, or
• (S1), . . . , (Ss), where Si is a Bi-skeleton for i ∈ {1, . . . , s}, for some partition of B into disjoint

nonempty subsets B1, . . . , Bs, where s ≥ 2.
Example {a, b, c}-skeletons are a[b[c]], and c[(b), (a)], and (b), (a), (c), and (a), ((b), (c)). It should be
clear that an A-skeleton can be represented in a space polynomial in |A|, so the number of A-skeletons is
at most exponential in |A|.

For every skeleton S we define a set PS as the smallest set such that
• if by applying a rule to type judgments J0

1 ∈ PS and J0
2 , . . . , J

0
r ∈ D (where r ≥ 1) one can derive

a type judgment J ∈ UG , then J↓ ∈ PS ,
• if S equals a, and (J0, J0) ∈ Ea, then J0 ∈ PS ,
• if S equals a[S′], and (J0, J0) ∈ Ea, and J0 ∈ PS′ , then J0 ∈ PS , and
• if S equals (S1), . . . , (Ss), and by applying a rule to type judgments J0

1 ∈ PS1
, . . . , J0

s ∈ PSs and
J0
s+1, J

0
s+2, . . . , J

0
r ∈ D (where r ≥ s) one can derive a type judgment J ∈ UG , then J↓ ∈ PS .

Lemma 9.11. Let J0 ∈ UG be a basic type judgment, and let B ⊆ A be nonempty. Then there exists a
B-pumpable derivation of a type judgment equivalent to J0 if and only if J0 ∈ PS for some B-skeleton S.

Proof: We first suppose that J0 ∈ PS for some B-skeleton S, and we show a B-pumpable derivation of a
type judgment equivalent to J0. This is an induction on the size of B, and internally on the order in which
type judgments are added to PS . We have several cases:

• Suppose that by applying a rule to type judgments J0
1 ∈ PS and J0

2 , . . . , J
0
r ∈ D one can derive a

type judgment equivalent to J0 (the first item in the definition). Then by the induction assumption we
have a B-pumpable derivation of a type judgment equivalent to J0

1 , and for each i ∈ {2, . . . , r} by
Lemma 9.10(a) we have a derivation of a type judgment equivalent to J0

i . We finish the derivation by
applying the considered rule, and we obtain a B-pumpable derivation of a type judgment equivalent
to J0.

• Suppose that S equals a, and (J0, J0) ∈ Ea (the second item in the definition). In this case B = {a}.
Lemma 9.10(d) implies that there is a derivation of a type judgment J1 equivalent to J0 in which
some J2 equivalent to J0 appears, where cJ1

(a) > cJ2
(a). By definition such a derivation is

B-pumpable.
• Suppose that S equals a[S′], and (J0, J0) ∈ Ea, and J0 ∈ PS′ (the third item in the definition).

Recall that S′ is a B′-skeleton for B′ = B \ {a}. Lemma 9.10(d) implies that there is a derivation

A Type System Describing Unboundedness 57

tree t deriving a type judgments J1 equivalent to J0 in which some J2 equivalent to J0 appears,
where cJ1

(a) > cJ2
(a). Moreover, the induction assumption implies that there is a B′-pumpable

derivation tree t′ deriving a type judgment J3 equivalent to J0. We now insert t′ in a node of t
in which J2 was written (cutting off all children of that node), and we modify appropriately flag
counters on the path from this node to the root of t. This way, we obtain a B-pumpable derivation of
a type judgment equivalent to J0.

• Finally, suppose that S equals (S1), . . . , (Ss), and by applying a rule to type judgments J0
1 ∈

PS1
, . . . , J0

s ∈ PSs and J0
s+1, J

0
s+2, . . . , J

0
r ∈ D (where r ≥ s) one can derive a type judgment

equivalent to J0 (the fourth item in the definition). Then B = B1 ∪ · · · ∪ Bs, where Si is a
Bi-skeleton for i ∈ {1, . . . , s}. For i ∈ {1, . . . , s}, by the induction assumption we have a Bi-
pumpable derivation of a type judgment equivalent to J0

i . Moreover, for i ∈ {s+ 1, s+ 2, . . . , r} by
Lemma 9.10(a) we have a derivation of a type judgment equivalent to J0

i . We finish the derivation by
applying the considered rule, and we obtain a B-pumpable derivation of a type judgment equivalent
to J0.

Next, we prove the opposite implication. Consider thus a B-pumpable derivation of a type judgment J
equivalent to J0. We proceed by induction on the size of this derivation. Let J1, . . . , Jr be the premisses
of the final rule used in this derivation. We have several possibilities here:

• It is possible that already a subderivation resulting in Jk for some k ∈ {1, . . . , r} is B-pumpable.
By reordering premisses, we can assume that k = 1. By the induction assumption, J1↓ ∈ PS for
some B-skeleton S. Moreover, J2↓, . . . , Jr↓ ∈ D by Lemma 9.10(a). By scaling down flag counters
in the rule used in the root of the derivation, we obtain a situation as in the first item of the definition,
so J0 ∈ PS .

• Suppose now that a type judgment J ′ equivalent to J0 appears somewhere inD, with cJ(a) > cJ′(a)
for some a ∈ B. Then (J0, J0) ∈ Ea by Lemma 9.10(d). If B = {a}, as S we take a, and we obtain
J0 ∈ PS by the second item of the definition. Suppose thus that |B| ≥ 2. Let B′ = B \ {a}. A
B-pumpable derivation is also B′-pumpable, so by the induction assumption we have that J0 ∈ PS′
for some B′-skeleton S′. As S we take a[S′], and then J0 ∈ PS by the third item of the definition.

• Finally, suppose that the two above possibilities do not hold. Then necessarily there is a subsequence
Jj1 , . . . , Jjs of J1, . . . , Jr, and a partition of B into disjoint nonempty subsets B1, . . . , Bs (where
s ≥ 2) such that for every i ∈ {1, . . . , s} the subderivation resulting in Jji is Bi-pumpable. By re-
ordering premisses, we can assume that (j1, . . . , js) = (1, . . . , s). For every i ∈ {1, . . . , s} by the in-
duction assumption we have that Ji↓ ∈ PSi for some Bi-skeleton Si. Moreover, Js+1↓, Js+2↓, . . . ,
Jr↓ ∈ D by Lemma 9.10(a). By scaling down flag counters in the rule used in the root of the
derivation, we obtain a situation as in the fourth item of the definition, so J0 ∈ PS .

Finally, let us see that all the sets can be quickly computed. We start by a lemma describing a single rule.

Lemma 9.12. Given a set of basic type judgments D ⊆ UG , and its subsets D1, . . . ,Ds ⊆ D, and a basic
type judgment J0 ∈ UG , and a letter a+ ∈ Σ, it can be decided in time polynomial in |UG/∼|+ s whether
there exist type judgments J0

1 ∈ D1, . . . , J
0
s ∈ Ds and J0

s+1, J
0
s+2, . . . , J

0
r ∈ D (for some r ≥ s) such that

by applying a type system rule to J0
1 , . . . , J

0
r one can derive:

(a) a type judgment J that is equivalent to J0;
(b) a type judgment J that is equivalent to J0 and such that cJ(a+) > 0.

Proof: This lemma is not completely obvious, as the number r of premisses can be arbitrarily large (the

58 Paweł Parys

same type judgment can be even repeated in the list of premisses), so we cannot iterate through all possible
lists of type judgments from D. But let analyze every rule separately.

The rules (VAR) and (CON0) have no premisses, so they require s = 0. It can be easily checked whether
some J equivalent to J0 can be derived, and whether its flag counter cJ can satisfy cJ(a+) > 0.

For the rules (ND), (λ), and (CON1) the situation is also easy, as they require exactly one premiss. We
can thus loop over all type judgments J0

1 ∈ D. For s = 1 we require that J0
1 ∈ D1, and for s ≥ 2 we

always fail. When the premiss and the conclusion are fixed (modulo the value of the flag counter in the
conclusion), it is straightforward to check whether the rule can be applied, and whether the flag counter c
in the conclusion can satisfy c(a+) > 0.

Consider now the (@) rule. It is useful to define a predicate Comp′m(k, a,M,F ′) which is true if
k ∈ {1, . . . ,m+ 1}, and a ∈ Σ, and there exists l ∈ {1, . . . , k} such that (l, a) ∈ F ′ and M(i) > 0 for all
i satisfying l ≤ i ≤ k − 1. It follows directly from the definition of Compm that for any M,F1, . . . , Fn
the set

{F | (F, c) ∈ Compm(M ; (F1,0), . . . , (Fn,0)) for some c}

contains exactly these sets F for which

∀(k, a) ∈ F . ∃i ∈ {1, . . . , n} .Comp′m(k, a,M,Fi) .

Moreover, the set

{F | (F, c) ∈ Compm(M ; (F1,0), . . . , (Fn,0)) for some c with c(a+) > 0}

contains exactly these sets F for which

∀(k, a) ∈ F ∪ {(m+ 1, a+)} .∃i ∈ {1, . . . , n} .Comp′m(k, a,M,Fi) .

Suppose that Γ `m P Q : (F,M, τ) . c is the considered conclusion (where c is not fixed). We need to
have one premiss concerning P , and an arbitrary number of premisses concerning Q, but the key point is
that we do not need to know all premisses simultaneously. Having some number of premisses concerning
Q, namely Γi `m Q : (Fi,Mi, τi) . 0 for i ∈ {1, . . . , n}, and a premiss Γ0 `m P : (F0,M0, C→ τ) . 0
concerning P , we only need to remember

• the premiss JP concerning P , or information saying that this premiss is not yet selected,
• the union Γ′ = Γ1 t · · · t Γn,
• the sum M ′ = M1 + · · ·+Mn,
• the set F ′ of these (k, a) ∈ F ∪ {(m+ 1, a+)} for which Comp′m(k, a,M,Fi�>ord(Q)) is satisfied

for some i ∈ {1, . . . , n},
• the triple container C ′ = {|(Fi�≤ord(Q),Mi�≤ord(Q), τi) | i ∈ {1, . . . , n}|}, and
• the number s′ < s of selected premisses, or information that we have already selected s or more

premisses.
These tuples (JP ,Γ

′,M ′, F ′, C ′, s′) satisfy Γ′ ≤ Γ, and M ′ ≤ M , and F ′ ⊆ F ∪ {(m + 1, a+)}, and
C ′ ≤ C, and s′ ≤ s. The number of such tuples is at most 2 · (|UG/∼|+ 1) · |UG/∼|

4 · (s+ 1), because all
possible choices for Γ′ (and similarly for M ′, for F ′ ∩ F , for C ′, and for JP) can appear in some type
judgments from UG .

A Type System Describing Unboundedness 59

In the algorithm we make a saturation loop, storing the set of already discovered tuples (JP ,Γ
′,M ′,

F ′, C ′, s′) that can be obtained after selecting some number of premisses. We begin with the tuple
(−, ε,0, ∅,0, 0) corresponding to the empty list of premisses. Then, we take a tuple (JP ,Γ

′,M ′, F ′, C ′,
s′) from the set (the tuple corresponds to an imaginary list of premisses), and we take a candidate for the
next premiss, which should be from Ds′+1 if s′ < s, and from D otherwise. Knowing the tuple and the
premiss, we can easily compute the tuple obtained after including this premiss; we add the computed tuple
to the set of discovered tuples. When the set is computed (i.e., no more new tuples can be added), we
determine for each tuple in the set whether a list of premisses described by this tuple allows to derive the
desired conclusion. Such an algorithm is polynomial in |UG/∼|+s (recall that each of the setsD,D1, . . . ,Ds
is of size at most |UG/∼|).

Having established Lemma 9.12, we come back to the main algorithm.

Lemma 9.13. Let m ∈ N. If m ≥ 1, then there is an m-EXPTIME algorithm that given a scheme G of
order at most m + 1, a set A ⊆ Σ, a subterm Rα of Λ(G), and a type triple τ̂ ∈ T T αm, checks whether
there exists an A-pumpable derivation of ε `m R : τ̂ . c for some flag counter c. If m = 0, the same can
be done in NP, and in FPT when |A| is viewed as a parameter.

Proof: We need to compute all the sets described above. Let us start with the set D. It can be computed by
a saturation algorithm, following its definition. We start by taking D = ∅. Then, in a loop, we check for
every basic type judgment J0 ∈ UG whether some type judgment J equivalent to J0 can be obtained by
applying some rule to some type judgments J0

1 , . . . , J
0
r belonging to the current version of D; if so, we

add J0 to D. Every such check can be done quickly due to Lemma 9.12(a) (where we take s = 0). We
enlarge the set D at most |UG/∼| times, and after every change of D we need to check at most |UG/∼| basic

type judgments. Overall, the computation works in time polynomial in |UG/∼|.
The sets Da can be computed similarly. Here, we need to check whether some type judgment J

equivalent to J0 can be obtained by applying some rule to some type judgments J0
2 , . . . , J

0
r belonging

to the set D, and J0
1 belonging to the current version of Da (the first item of the definition); this can be

done by Lemma 9.12(a), where as D1 we take Da, and s = 1. We also need to check whether some type
judgment J equivalent to J0 and with flag counter satisfying cJ(a) > 0 can be obtained by applying some
rule to some type judgments J0

1 , . . . , J
0
r belonging to the set D (the second item of the definition); this can

be done by Lemma 9.12(b) (where s = 0 and a+ = a).
The set E is also computed by a saturation algorithm. Here we loop over triples of basic type judgments

J0,K0, L0 such that (L0,K0) ∈ E , and in a simple check we fire Lemma 9.12(a) with D1 = {L0} and
s = 1. While computing sets Ea we have three kinds of checks, but again all of them can be handled by
Lemma 9.12, where s ≤ 2.

Finally, we show how to compute the set PS for a fixed skeleton S, assuming that we have already
computed the set PS′ if S = a[S′], and the sets PS1 , . . . ,PSs if S equals (S1), . . . , (Ss). Here we have
four kinds of checks, corresponding to the four items of the definition. The first of them is similar to
what we did previously. The next two do not even require to use Lemma 9.12. The fourth item is more
complicated, but Lemma 9.12(a) is perfectly suited to solve it.

Recall that our goal is to check whether there exists an A-pumpable derivation of ε `m R : τ̂ . c for
some flag counter c. If A = ∅, every derivation is A-pumpable, so (due to Lemma 9.10(a)) it is enough
to check whether ε `m R : τ̂ . 0 belongs to D. Suppose now that A 6= ∅. In this case, due to the
equivalence given by Lemma 9.11, we need to check whether the type judgment ε `m R : τ̂ . 0 belongs

60 Paweł Parys

to PS for some A-skeleton S. Here is the only place where nondeterminism helps. If we can proceed
nondeterministically, then we simply guess an A-skeleton S, we compute PS only for this skeleton (and
recursively for its subskeletons), and we check whether the type judgment belongs there. As already said, a
single set PS can be computed in time polynomial in |UG/∼|. If we want to be deterministic, we compute
the sets PS for all A-skeletons S (their number is exponential in |A|), and we check whether the type
judgment belongs to some of them. This finishes the proof once we recall from Lemma 9.7 that |UG/∼| is at
most m-fold exponential (polynomial if m = 0) in |G| and |Σ|.

From Theorem 3.2 we know that SUPA(L(G)) holds for a word-recognizing scheme G of order at
most m+ 1 if and only if for every n ∈ N we can derive ε `m Λ(G) : ρ̂allm . cn with some cn such that
cn(a) ≥ n for all a ∈ A; by Lemma 9.9 the latter holds if and only if there exists anA-pumpable derivation
of ε `m Λ(G) : ρ̂allm . c for some flag counter c. Thus, Lemma 9.13 implies all the upper bounds from
Theorem 9.1 (recall that m is shifted by one with respect to the statement of this theorem).

9.4 Lower bounds
We now prove the lower bounds appearing in Theorem 9.1. We base here on the language nonemptiness
problem for higher-order recursion schemes.

Lemma 9.14. Let m ≥ 1. It is m-EXPTIME-hard to decide, given a scheme G of order at most m,
whether L(G) is nonempty.

Proof: Kobayashi and Ong (2011, Corollary 3.7) prove that for m ≥ 1 the following problem is m-
EXPTIME-hard: given a scheme G of order at most m, and a trivial alternating parity tree automaton B,
decide whether B accepts BT (Λ(G)). Instead of recalling the definition of a trivial alternating parity tree
automaton, we notice that G and B produced by their reduction are of a special form. Namely, the tree
BT (Λ(G)) consists of n-ary nodes (for some n ∈ N) labeled by A or E, and of leaves labeled by T or R.
Let L be the smallest language such that:

• L contains the tree T〈〉,
• if L contains a tree T , then L contains every tree of the form E〈T1, . . . , Tn〉 in which T = Ti for

some i ∈ {1, . . . , n}, and
• if L contains trees T1, . . . , Tn, then L contains the tree A〈T1, . . . , Tn〉.

In other words: if T and R are seen as “true” and “false”, and A and E are seen as conjunction and
disjunction, the language L contains expressions that evaluate to “true”. The automaton B produced in the
reduction is always the same (modulo the fact that n can vary), and it accepts those trees of the above form
that do not belong to L. Let us rename all E and R letters appearing in G to nd; call the resulting scheme G′.
It is not difficult to see that BT (Λ(G)) ∈ L (i.e., B rejects BT (Λ(G))) if and only if L(G′) is nonempty.
The m-EXPTIME complexity class is closed under taking the complement of a language. It follows that it
is m-EXPTIME-hard to decide, given a scheme G′ of order at most m, whether L(G′) is nonempty.

A lower bound for SUP follows immediately.

Corollary 9.15. Let m ≥ 1. SUP for tree-recognizing order-m schemes is m-EXPTIME-hard.

Proof: For the special case of A = ∅, SUP checks precisely whether the language is nonempty, that
is, SUP∅(L(G)) holds if and only if L(G) 6= ∅. This way, the language nonemptiness problem for tree-
recognizing order-m schemes reduces to SUP for tree-recognizing order-m schemes; thus m-EXPTIME-
hardness of the former (cf. Lemma 9.14) implies m-EXPTIME-hardness of the latter.

A Type System Describing Unboundedness 61

One may wonder whether the hardness result also holds when A is nonempty or, in particular, when A
contains all letters appearing in the scheme. As expected, this is the case.

Corollary 9.16. Let m ≥ 1. It is m-EXPTIME-hard to decide, given a scheme G of order at most m and
using only one letter a (besides the nd symbol), whether SUP{a}(L(G)) holds.

Proof: Let us reduce the problem of nonemptiness of L(G) to the problem of deciding SUP{a}(L(G′)),
where G′ is a scheme using only one letter a. To produce G′ we add to G a fresh starting nonterminal N ′0
with a rule R(N ′0) = nd〈N0, a〈N ′0〉〉, where N0 is the starting nonterminal of G. Moreover, we rename
every letter appearing in G, other than nd, to a. Notice that G′ allows to precede every tree from L(G) by a
sequence of any number of letters a; thus SUP{a}(L(G′)) holds if and only if L(G) 6= ∅. Moreover, the
orders of G and G′ are the same.

Recall from Section 8 that we can (in logarithmic space) translate a tree-recognizing scheme G of order
at most m into a word-recognizing scheme G[of order at most m+ 1. Thus, the above corollaries imply
also m-EXPTIME-hardness of SUP for word-recognizing order-(m+ 1) schemes (assuming m ≥ 1).

In the last part, we prove that SUP for word-recognizing order-0 schemes is NP-hard. Of course this
problem is a special case of SUP for word-recognizing order-1 schemes, and of SUP for tree-recognizing
order-0 schemes, so the latter two problems are also NP-hard.

Lemma 9.17. SUP for word-recognizing order-0 schemes is NP-hard.

Proof: We reduce from the undirected Hamiltonian cycle problem, known to be NP-complete (Karp,
1972). We are thus given an undirected graph G, and we construct a word-recognizing scheme G of order
0 such that SUPA(G) holds if and only if there exists a Hamiltonian cycle in G. Suppose that the nodes
of G are named 1, . . . , s, and s ≥ 2. In G we use letters a1, . . . , as, and we take all of them to the set A.
The nonterminals of G are Nij for i ∈ {0, . . . , s} and j ∈ {1, . . . , s}, all of sort o. For i, j ∈ {1, . . . , s} the
rules are:

R(Nij) = aj〈nd〈Nij ,Ni−1
v1

, . . . ,Ni−1
vr 〉〉 ,

where v1, . . . , vr are all neighbors of j in G. Moreover,

R(N0
1) = a1〈〉, and

R(N0
j) = nd〈〉 for j ∈ {2, . . . , s}.

As the starting nonterminal we take Ns1.
By induction on i ∈ {0, . . . , s} we can see that L(BT (ΛG(Nij))) contains words of the form

(aji)
ni(aji−1

)ni−1 . . . (aj1)n1aj0 ,

where n1, . . . , ni are arbitrary positive numbers, and ji, ji−1, . . . , j0 is a path in G such that ji = j
and j0 = 1. It follows that L(G) contains words of the form (ajs)

ns(ajs−1
)ns−1 . . . (aj1)n1aj0 , where

n1, . . . , ns are arbitrary positive numbers, and js, js−1, . . . , j0 is a path in G such that js = j0 = 1.
If G contains Hamiltonian cycles, as js, js−1, . . . , j0 we can take one of them, starting and ending in
node 1 (by definition all Hamiltonian cycles have length s). Then the words (ajs)

n(ajs−1)n . . . (aj1)naj0
for all n ≥ 1 are in L(G) and contain every letter from A = {a1, . . . , as} at least n times, so they

62 Paweł Parys

witness that SUPA(G) holds. Conversely, if G does not contain Hamiltonian cycles, then on every path
js, js−1, . . . , j0 with js = j0 = 1 some node k ∈ {2, . . . , s} is missing. In consequence, in every word
(ajs)

ns(ajs−1)ns−1 . . . (aj1)n1aj0 ∈ L(G) some letter ak ∈ A does not appear at all, so SUPA(G) does
not hold. This proves that the reduction is correct.

10 Reflection for SUP
In this section we establish the reflection property for SUP (Theorem 10.2). We recall that this property
is a key ingredient used while proving decidability of model-checking trees generated by schemes with
respect to the WMSO+U logic (Parys, 2018b).

The notion of reflection can be defined for an arbitrary property of trees. We describe the property by a
relation Ξ between trees and letters.

Definition 10.1. Let Ξ be a relation between trees and letters. We define by coinduction when a tree T ′

is a Ξ-reflection of a tree T : if T = a〈T1, . . . , Tr〉, and T ′ = b〈T ′1, . . . , T ′r〉, and (T, b) ∈ Ξ, and T ′i is a
Ξ-reflection of Ti for every i ∈ {1, . . . , r}, then T ′ is a Ξ-reflection of T .

In other words, a Ξ-reflection of T has the same shape as T and is obtained by replacing the label of
every node v in T by a letter that is related by Ξ to the subtree of T starting in v. Notice that if Ξ is a
function, then every tree has a unique Ξ-reflection (while in general there may be multiple choices for the
new labels).

We describe SUP using the function ΞSUP defined by ΞSUP (T) = (a, {A ⊆ Σ | SUPA(L(T))}) if
T = a〈T1, . . . , Tr〉 6= nd〈〉, and ΞSUP (nd〈〉) = nd. This implies that in the ΞSUP -reflection of T we
decorate every node v by the collection of all sets A for which the answer to SUP for A and for the subtree
of T starting in v is positive. For technical convenience we do not relabel nd-labeled leaves to (nd, {∅}),
but rather we leave them nd-labeled (the reason is that some nd-labeled leaves in a Böhm tree are not
created explicitly by a node constructor, but rather because some subterms do not reduce to terms starting
with a node constructor, and we do not want to detect these subterms).

In Theorem 10.2 we claim that ΞSUP -reflections of trees generated by schemes are also generated by
schemes.

Theorem 10.2. Let m ∈ N. For every scheme G of order at most m one can construct a scheme GSUP

of order at most m such that BT (Λ(GSUP)) is a ΞSUP -reflection of BT (Λ(G)). Moreover, GSUP can
be constructed in time at most max(m, 1)-fold exponential in |G|, and doubly exponential in |Σ|; if G is
word-recognizing, then GSUP can be constructed in time at most max(m− 1, 1)-fold exponential in |G|,
and doubly exponential in |Σ| (in both cases, this is simultaneously a bound on the size of GSUP).

It can be assumed that |Σ| ≤ |G|, so the part saying that the running time is doubly exponential in |Σ| is
meaningful only when the complexity in |G| would be singly exponential (i.e., when m ≤ 1 for general
schemes, and when m ≤ 2 for word-recognizing schemes).

Theorem 10.2 is obtained by instantiating (and adapting) a general construction of Haddad (2012,
Section 4.2), which allows to obtain reflection for any property described by a morphism from closed
lambda-terms to a finitary applicative structure. An applicative structure D consists of

• a set D[α] for each sort α,
• an application operation that to all elements χ ∈ D[α→β] and χ′ ∈ D[α] assigns an element

(χχ′) ∈ D[β], and

A Type System Describing Unboundedness 63

• an abstraction operation that to every element χ ∈ D[β] assigns an element λα.χ ∈ D[α→β].(vi)

The two operations should be defined for every (homogeneous) sort of the form α→β. We say that D is
finitary when D[α] is finite for every sort α. A morphismM to an applicative structure D is defined as a
mapping that to each closed lambda-term Pα assigns an element of D[α] denoted [[P]]M, such that

• for every closed lambda-term of the form P Q it is the case that [[P]]M [[Q]]M = [[P Q]]M, and
• for every lambda-term of the form λxα.P , where P is closed, it is the case that [[λx.P]]M =
λα.[[P]]M.

Let us emphasize that the second condition concerns only a situation where P is closed (i.e., where the
variable x is not used is P).

For a morphismM, and for a number m ∈ N, we let ΞmM to be the set of pairs (BT (P), (a, [[P]]M))
over all closed lambda-terms P of sort o and of complexity at most m, where a is the label of the root of
BT (P), containing additionally the pair (nd〈〉, nd). Notice that in a ΞmM-reflection we decorate every node
v by [[P]]M for some closed lambda-term P of sort o and of complexity at most m such that BT (P) equals
the subtree starting in v. There are multiple choices for the lambda-term P , and in general [[P]]M may
depend on the choice of P (but clearly at least one such P exists, namely P equal to the subtree starting in
v itself; thus every tree has some ΞmM-reflection). The construction of Haddad can be summarized by the
following lemma (recall from Section 9.1 that SG denotes the set of all sorts appearing in G).

Lemma 10.3. Let m ∈ N. For every scheme G of order at most m, and for every morphismM to a finitary
applicative structure D, one can construct a scheme GM of order at most m such that BT (Λ(GM)) is a
ΞmM-reflection of BT (Λ(G)). Moreover,

|GM| ≤ |G| ·

 max
α∈SG

ord(α)≤m−1

|D[α]|

|G|
2

,

and GM can be constructed in time polynomial in |GM| and in the time needed to
(A) compute the value [[ΛG(P)]]M, given a closed lambda-term P of complexity at most m and of size

polynomial in |G|,
(B) compute the composition χχ′, given two elements χ ∈ D[α→β], χ′ ∈ D[α], where α→β is of

order at most m and of size polynomial in |G|,
(C) compute the abstraction λα.χ, given a sort α→β of order at most m and of size polynomial in |G|,

and an element χ ∈ D[β], and
(D) enumerate all elements of D[α] for α ∈ SG such that ord(α) ≤ m− 1.

A construction of GM is presented in Haddad (2012, Section 4.2) for a particular morphismM. In
Haddad (2013b, Theorem 4) (with a proof in an unpublished appendix (Haddad, 2013a, Appendix A))
it is claimed to work for an arbitrary morphism that is invariant under beta-reductions, which means
that if P →β Q then necessarily [[P]]M = [[Q]]M. We remark that our morphisms (defined below) are
not invariant under beta-reductions. Nevertheless, one can notice that the construction remains correct
even without this assumption. Indeed, the only problem that may be caused by lack of invariance under

(vi) As one can see in Appendix B, the abstraction operation (and second condition in the definition of a morphism) is needed only
because we assume that all sorts are homogeneous (in particular [[P]]M is defined only for lambda-terms of homogeneous sorts).
If [[P]]M was defined also for lambda-terms of non-homogeneous sorts, an analogue of Lemma 10.3 would work already for
structures without the abstraction operation.

64 Paweł Parys

beta-reductions is that some node, instead of being annotated by [[P]]M for some P , will be annotated by
[[Q]]M for some Q that is beta-equivalent to P . This is not a problem, though, since for beta-equivalent
lambda-terms we have BT (P) = BT (Q), and thus if (T, (a, [[P]]M)) is in ΞmM then also (T, (a, [[Q]]M))
is in ΞmM. For completeness, we give the construction and we justify its correctness in details in Appendix B.

We remark that Salvati and Walukiewicz (2015, Section 5) give another construction proving Lemma 10.3.
It has the disadvantage that the resulting scheme GM is not of the same order as G; the order grows by one.
For this reason we prefer to refer to the construction of Haddad.

Word-recognizing schemes. In the remaining part of this section we show how Theorem 10.2 follows
from Lemma 10.3. We first solve the case of word-recognizing schemes. To this end, fix some number
m ∈ N and some word-recognizing scheme G of order at most m+ 1 (notice the shift by 1 with respect to
the statement of the theorem).

Having in mind some fixed m, we define the value of a closed lambda-term P , denoted [[P]]Mm , as the
set of pairs (A, τ̂) for which there exists an A-pumpable derivation of ε `m P : τ̂ . c for some c. When P
is of sort α, [[P]]Mm

belongs to the finite set Dm[α] = P(P(Σ)× T T αm).
We remark that [[P]]Mm

contains in particular pairs of the form (∅, τ̂) (i.e., with A = ∅), which simply
contain all type triples that can be derived for P .

We now equip Dm with operations of application and abstraction, and we prove (in Lemmata 10.4-
10.5) that Mm is a morphism. For every sort of the form α→β, and for χ ∈ Dm[α→β] and
χ′ ∈ Dm[α], let χχ′ ∈ Dm[β] be the set of pairs (A, τ̂) such that for some pairs (A0, σ̂0) ∈ χ and
(A1, σ̂1), . . . , (An, σ̂n) ∈ χ′ with A = A0]A1] · · ·]An one can apply the (@) rule to type judgments
ε `m P : σ̂0 . c0 and ε `m Q : σ̂i . ci for i ∈ {1, . . . , n} and derive ε `m P Q : τ̂ . c (for some lambda-
terms Pα→ β , Qβ , and for some flag counters c, c0, c1, . . . , cn; they are irrelevant here). Additionally, for
every sort of the form α→β, and for χ ∈ Dm[β], let λα.χ ∈ Dm[α→β] be the set of pairs (A, τ̂) such
that for some (A, τ̂ ′) ∈ χ one can apply the (λ) rule to ε `m P : τ̂ ′ . c and derive ε `m λx.P : τ̂ . c (for
some lambda-term λxα.P β with P being closed, and for some flag counter c; they are irrelevant here).

Lemma 10.4. For every closed lambda-term of the form P Q it is the case that [[P]]Mm
[[Q]]Mm

=
[[P Q]]Mm

.

Proof: Suppose that (A, τ̂) ∈ [[P Q]]Mm
. This implies that there exists an A-pumpable derivation tree t

that derives ε `m P Q : τ̂ . c for some c. By the definition of A-pumpability, for every a ∈ A there is a
pair of nodes ua, va of t such that ua is an ancestor of va, the type judgments in ua and in va are equivalent,
and the flag counters in ua and in va differ on the a coordinate.

First, let us justify that without loss of generality we can assume that none of ua points to the root of t.
To this end, suppose that ua for some a is located in the root of t. Then we copy the fragment of t lying
between ua and va, we adjust appropriately flag counters on the path from ua to va in the copy, and we
attach the copy above ua (i.e., above the previous root). In this way we obtain a new derivation tree t′,
which derives ε `m P Q : τ̂ . c′ for some c′, and which is again A-pumpable, but now none of ua equals
the root of t′, because all ua and va belong to t, which is a proper subtree of t′.

Thus, we assume that none of ua points to the root of t. Let w0, w1, . . . , wn be the children of the root
of t (with w0 corresponding to P), and, for i ∈ {0, . . . , n}, let Ai be the set of those a ∈ A for which ua
and va belong to the subtree of t starting in wi. Clearly A = A0]A1] · · ·]An, and the subtree starting
in wi is Ai-pumpable, for every i ∈ {0, . . . , n}. If the type judgment in wi is ε `m Ri : σ̂i . ci (where Ri

A Type System Describing Unboundedness 65

equals either P or Q), we have that (Ai, σ̂i) ∈ [[Ri]]Mm
. By the definition of the application operation in

Dm, it follows that (A, τ̂) ∈ [[P]]Mm
[[Q]]Mm

.
For the opposite inclusion, consider a pair (A, τ̂) ∈ [[P]]Mm [[Q]]Mm . By the definition of the application

operation in Dm, there are some pairs (A0, σ̂0) ∈ [[P]]Mm and (A1, σ̂1), . . . , (An, σ̂n) ∈ [[Q]]Mm with
A = A0] A1] · · ·] An such that one can apply the (@) rule to type judgments ε `m P ′ : σ̂0 . c

′
0 and

ε `m Q′ : σ̂i . c
′
i for i ∈ {1, . . . , n} and derive ε `m P Q : τ̂ . c′, for some lambda-terms P ′, Q′ and

some flag counters c′, c′0, c
′
1, . . . , c

′
n. Moreover, by the definition of [[P]]Mm

and [[Q]]Mm
, there exists an

A0-pumpable derivation of ε `m P : σ̂0 . c0, and Ai-pumpable derivations of ε `m Q : σ̂i . ci for
i ∈ {1, . . . , n} for some flag counters c0, c1, . . . , cn. Notice that in the (@) rule we can be harmlessly change
the lambda-terms P ′, Q′ to P,Q, and the flag counters c′0, c

′
1, . . . , c

′
n to c0, c1, . . . , cn. Thus, by attaching

the (@) rule to our Ai-pumpable derivations, we obtain an A-pumpable derivation of ε `m P Q : τ̂ . c, for
some flag counter c. This implies that (A, τ̂) ∈ [[P Q]]Mm

.

Lemma 10.5. For every lambda-term of the form λxα.P , whereP is closed, it is the case that [[λx.P]]Mm =
λα.[[P]]Mm .

Proof: Suppose that (A, τ̂) ∈ [[λx.P]]Mm
. This implies that there exists an A-pumpable derivation tree

t that derives ε `m λx.P : τ̂ . c for some c. By the definition of A-pumpability, for every a ∈ A there
is a pair of nodes ua, va of t such that ua is an ancestor of va, the type judgments in ua and in va are
equivalent, and the flag counters in ua and in va differ on the a coordinate. As in the proof of Lemma 10.4,
we can assume that none of ua points to the root of t. Then the subtree of t starting in the only child of the
root is an A-pumpable derivation tree that derives ε `m P : τ̂ ′ . c for some τ̂ ′, that is, (A, τ̂ ′) ∈ [[P]]Mm

.
Moreover, ε `m λx.P : τ̂ . c is derived by applying the (λ) rule to ε `m P : τ̂ ′ . c. By the definition of
the abstraction operation it follows that (A, τ̂) ∈ λα.[[P]]Mm

.
Conversely, suppose that (A, τ̂) ∈ λα.[[P]]Mm . By definition this means that, for some lambda-term P ′

of the same sort as P , and for some flag counter c′, one can derive ε `m λx.P ′ : τ̂ . c′ by applying the (λ)
rule to ε `m P ′ : τ̂ ′ . c′ for some τ̂ ′ such that (A, τ̂ ′) ∈ [[P]]Mm

. Moreover, by the definition of [[P]]Mm
,

there exists an A-pumpable derivation of ε `m P : τ̂ ′ . c for some flag counter c. Notice that in the (λ)
rule we can harmlessly change the lambda-term P ′ to P , and the flag counter c′ to c. Thus, by attaching
the (λ) rule to our derivation, we obtain an A-pumpable derivation of ε `m λx.P : τ̂ . c, witnessing that
(A, τ̂) ∈ [[λx.P]]Mm .

Lemmata 10.4-10.5 show thatMm is a morphism, so we are now ready to apply Lemma 10.3 to the
considered word-recognizing scheme G of order at most m+ 1. The lemma gives us a scheme GMm

of
order at most m+ 1 such that BT (Λ(GMm

)) is a Ξm+1
Mm

-reflection of BT (Λ(G)).
In order to obtain a ΞSUP -reflection, it remains to relabel nodes of the Ξm+1

Mm
-reflection. Namely, we

change the label in every node constructor of GMm from (a, χ) to (a, {A | (A, ρ̂allm) ∈ χ}); there is one
exception: node constructors of the form (nd, χ)〈〉 are changed to nd〈〉. The resulting scheme, called
GSUP , is of order at most m+ 1, as needed.

Correctness of the construction is a consequence of the following simple lemma.

Lemma 10.6. If P is a word-recognizing closed lambda-term of sort o and of complexity at most m+ 1
then, for every set A ⊆ Σ, it is the case that (A, ρ̂allm) ∈ [[P]]Mm

if and only if SUPA(L(BT (P))).

Proof: By definition, a pair (A, ρ̂allm) belongs to [[P]]Mm if and only if there is an A-pumpable derivation
of ε `m P : ρ̂allm . c for some c. By Lemma 9.9 the latter holds if and only if for every n ∈ N we can

66 Paweł Parys

derive ε `m P : ρ̂allm . cn with some cn such that cn(a) ≥ n for all a ∈ A. This in turn, by Theorem 3.2,
is equivalent to SUPA(L(BT (P))), that is, to SUPA(L(T)). We remark that in order to use Theorem 3.2
we indeed need to know that P is word-recognizing and of complexity at most m+ 1.

Using the above lemma, we now justify that BT (Λ(GSUP)) is the ΞSUP -reflection of BT (Λ(G)) (i.e.,
we prove correctness of the construction). Clearly BT (Λ(GSUP)), BT (Λ(GMm

)), and BT (Λ(G)) are of
the same shape. Consider now a subtree T of BT (Λ(G)), and the roots rMm and rSUP of the corresponding
subtrees of BT (Λ(GMm)) and BT (Λ(GSUP)), respectively. If T = nd〈〉, then rMm is either labeled by
nd or by (nd, χ) for some χ, and thus rSUP is labeled by nd. Otherwise, the label of rMm

is (a, [[P]]Mm
),

where a is the label of the root of T , and P is some closed lambda-term of sort o and of complexity at
most m+ 1 such that BT (P) = T . In consequence, the label of rSUP is (a, {A | (A, ρ̂allm) ∈ [[P]]Mm

}).
Observe that P is word-recognizing: BT (P) = T is a subtree of BT (Λ(G)), so if all elements of
L(BT (Λ(G))) are words, also all elements of L(BT (P)) are words. By Lemma 10.6, (A, ρ̂allm) ∈ [[P]]Mm

is equivalent to SUPA(L(BT (P))), that is, to SUPA(L(T)). This implies that BT (Λ(GSUP)) is indeed
the ΞSUP -reflection of BT (Λ(G)).

It remains to bound the running time. In this part, we assume that m ≥ 1. Considering m = 0 does not
make sense, as anyway we want to prove that the complexity is at most max(m, 1)-fold exponential in |G|
(and at most doubly exponential in |Σ|). Moreover, without loss of generality we assume that |Σ| ≤ |G|;
letters not appearing in G are irrelevant anyway. First, we state a general lemma.

Lemma 10.7. Let m ≥ 1. Suppose that we are given a scheme G of order at most m + 1, and that
|Σ| ≤ |G|.

1. For a sort α ∈ SG such that ord(α) ≤ m, the size of Dm[α] is at most m-fold exponential in |G|
and doubly exponential in |Σ|.

2. Given a closed lambda-term P of complexity at most m+ 1 and of size polynomial in |G|, one can
compute [[ΛG(P)]]Mm in time m-fold exponential in |G|.

3. Given two elements χ ∈ D[α→β], χ′ ∈ D[α], where α→β is of order at most m+ 1 and of size
polynomial in |G|, one can compute χχ′ in time m-fold exponential in |G|.

4. Given an element χ ∈ D[β] and a sort α, where α→β is of order at most m + 1 and of size
polynomial in |G|, one can compute λα.χ in time m-fold exponential in |G|.

Proof: Take a sort α ∈ SG of order at most m. Recalling that Dm[α] = P(P(Σ) × T T αm) we see that
|Dm[α]| = 22|Σ|·|T T αm|. In Section 9.1 we have defined a number ηGm such that |T T αm| ≤ ηGm (assuming
α ∈ SG and ord(α) ≤ m), and we have shown in Lemma 9.6 that ηGm is at most (m− 1)-fold exponential
in |G| (where “0-fold exponential” means “polynomial”). In consequence, Dm[α] is at most m-fold
exponential in |G| and doubly exponential in |Σ|, establishing Point 1.

Concerning Point 2, recall that [[ΛG(P)]]Mm is the set set of pairs (A, τ̂) for which there exists an
A-pumpable derivation of ε `m ΛG(P) : τ̂ . c for some c. We check, for every pair separately, whether
this is the case using the algorithm given by Lemma 9.13. Formally, the algorithm works only for subterms
of Λ(G). We thus consider a modified scheme G′, which is obtained from G by adding a fresh starting
nonterminal NP with ruleR(NP) = P R1 . . . Rs for some lambda-terms R1, . . . , Rs of sorts α1, . . . , αs,
respectively, where α1→ . . .→αs→ o is the sort of P (if P is a nonterminal of sort o, instead of that we
set P to be the starting nonterminal, in order to avoid a forbidden situation whenR(NP) is a nonterminal);
then ΛG(P) is a subterm of Λ(G′), and |G′| is polynomial in |G|. For every pair the running time is at most
m-fold exponential in |G|. The number of sets A to consider is at most 2|Σ|, and the number of type triples

A Type System Describing Unboundedness 67

τ̂ to consider is bounded by ηG
′

m+1 (they belong to T T αm, where α ∈ SG′ is the sort of ΛG(P), being of
order at most m+ 1), so it is at most m-fold exponential in |G′| (i.e., in |G|) by Lemma 9.6.

In Point 3 we should compute an application χχ′ given χ and χ′. Again, by considering a modified
scheme G′ we may assume that Λ(G′) has subterms of sort α→β and α. Suppose that we want to check
whether (A, τ̂) ∈ (χχ′). To this end, we need to choose pairs (A0, σ̂0) ∈ χ and (A1, σ̂1), . . . , (Ak, σ̂k) ∈
χ′ such that Ai for i ∈ {1, . . . , k} are nonempty and A = A0] A1] · · ·] Ak. As in Point 2, for every
i ∈ {0, . . . , k} the number of pairs (Ai, σ̂i) to consider is at most m-fold exponential in |G|; moreover
k ≤ |A| ≤ |Σ| ≤ |G|, so altogether the number of choices is also at most m-fold exponential in |G|. Then,
we need to check whether the type triple τ̂ can be derived by the (@) rule when for the operator we use
the type triple σ̂0, and for the argument we use the type triples σ̂1, . . . , σ̂k and, additionally, an arbitrary
number of type triples σ̂ such that (∅, σ̂) ∈ χ′. Such a check can be performed using Lemma 9.12.

Point 4 is even a bit simpler. Again, we imagine a scheme G′ such that Λ(G′) has a subterm λx.P of
sort α→β. Then, for every pair (A, τ̂ ′) ∈ χ and for every τ̂ ∈ T α→ β

m we have to check whether by
applying the (λ) rule to ε `m P : τ̂ ′ . 0 one can derive the type triple τ̂ for λx.P ; this can be done using
Lemma 9.12.

According to Lemma 10.3, the time needed to construct GMm is polynomial in five ingredients. The first
of them is |GMm

|. Recalling that we have shifted the order m by one, from Lemma 10.3 it follows that

|GMm | ≤ |G| ·

 max
α∈SG

ord(α)≤m

|Dm[α]|

|G|
2

.

By Point 1 of Lemma 10.7, all |Dm[α]| appearing in the above formula are at most m-fold exponential
in |G| and doubly exponential in |Σ|, thus the same is true for |GMm

|. Beside of that, we should bound
the running time described by Points (A)-(D) of Lemma 10.3. In Lemma 10.7 we have already said that
the time needed to compute [[ΛG(P)]]Mm

, and χχ′, and λα.χ is m-fold exponential in |G| (as needed
for Points (A), (B), and (C), respectively). Moreover, elements of Dm[α] can be enumerated in time
polynomial in |Dm[α]|, in a trivial way; according to Point (D) this is needed only when α ∈ SG and
ord(α) ≤ m, so |Dm[α]| is already included in the inequality for |GMm

|. Altogether we obtain that
GMm

can be constructed in time at most m-fold exponential in |G| and doubly exponential in |Σ|. The
same bound applies to GSUP , because while converting GMm

into GSUP we only change some labels in a
straightforward way. This finishes the proof of Theorem 10.2 for word-recognizing schemes.

Tree-recognizing schemes. Next, we prove Theorem 10.2 for tree-recognizing schemes. To this end, fix
some number m ∈ N, and some scheme G of order at most m. We are going to use the translation from
Section 8. We remark, though, that it is not enough to convert G into a word-recognizing scheme G[, and
apply the word variant of Theorem 10.2 to G[: this would only give a reflection of G[, while we want a
reflection of G. Thus, we rather modify the original scheme G, and we only apply the translation while
calculating values.

Namely, we define the [-value of a closed lambda-term P , denoted [[P]]M[
m

, as [[P []]Mm . When P is
of sort α, [[P]]M[

m
belongs to the set D[

m[α] = Dm[α[]. The application operation in D[
m is inherited

from Dm, and the abstraction operation λ[in D[
m is defined by λ[α.χ = λα[.χ. It easily follows from

Lemmata 10.4 and 10.5 thatM[
m is a morphism. Indeed, on the one hand, for every closed lambda-term of

68 Paweł Parys

the form P Q it is the case that

[[P]]M[
m

[[Q]]M[
m

= [[P []]Mm
[[Q[]]Mm

= [[P [Q[]]Mm
= [[(P Q)[]]Mm

= [[P Q]]M[
m
.

On the other hand, for every lambda-term of the form λxα.P , where P is closed, it is the case that

[[λx.P]]M[
m

= [[(λx.P)[]]Mm
= [[λx[.P []]Mm

= λα[.[[P []]Mm
= λ[α.[[P]]M[

m
.

Lemma 10.3 applied to G and to the morphismM[
m gives us a scheme GM[

m
of order at most m such

that BT (Λ(GM[
m

)) is a ΞmM[
m

-reflection of BT (Λ(G)).

Then, we change the label in every node constructor of GM[
m

from (a, χ) to (a, {A | (A, ρ̂allm) ∈
(χ [[e〈〉]]Mm

)}), with the exception that we change node constructors of the form (nd, χ)〈〉 to nd〈〉. The
resulting scheme, called GSUP , is of order at most m, as needed.

Let us now prove that BT (Λ(GSUP)) is indeed the ΞSUP -reflection of BT (Λ(G)). By construction,
BT (Λ(GSUP)), BT (Λ(GM[

m
)), and BT (Λ(G)) are of the same shape. Consider a subtree T of BT (Λ(G)),

and the roots rM[
m

and rSUP of the corresponding subtrees of BT (Λ(GM[
m

)) and BT (Λ(GSUP)), re-
spectively. If T = nd〈〉, then rM[

m
is either labeled by nd or by (nd, χ) for some χ, and thus rSUP

is labeled by nd. Otherwise, the label of rM[
m

is (a, [[P]]M[
m

), where a is the label of the root of T ,
and P is some closed lambda-term of sort o and of complexity at most m such that BT (P) = T .
In consequence, the label of rSUP is (a, {A | (A, ρ̂allm) ∈ ([[P]]M[

m
[[e〈〉]]Mm

)}). By Lemma 10.4,
[[P]]M[

m
[[e〈〉]]Mm = [[P []]Mm [[e〈〉]]Mm = [[P [(e〈〉)]]Mm . By construction P [e〈〉 is word-recognizing,

and of complexity at most m + 1. Thus, by Lemma 10.6, (A, ρ̂allm) ∈ [[P [(e〈〉)]]Mm
is equivalent to

SUPA(L(BT (P [(e〈〉)))). By Point 1(b) of Lemma 8.1, the latter is equivalent to SUPA(L(BT (P))),
that is, to SUPA(L(T)), which finishes the proof.

Finally, we bound the running time needed to construct GM[
m

, and thus GSUP . As for words, we assume
here that m ≥ 1; this is without loss of generality, because anyway we want to prove that the complexity is
at most max(m, 1)-fold exponential in |G| (and at most doubly exponential in |Σ|). Point 1 of Lemma 10.3
implies that

|GM[
m
| ≤ |G| ·

 max
α∈SG

ord(α)≤m−1

∣∣∣D[
m[α]

∣∣∣
|G|

2

.

We recall that D[
m[α] = Dm[α[], that ord(α[) = ord(α) + 1 (so ord(α) ≤ m− 1 implies ord(α[) ≤ m),

and that α ∈ SG implies α[∈ SG[. In consequence, Point 1 of Lemma 10.7 applied to the scheme G[
(which is of order at most m+ 1, and of size linear in |G|), implies that all |D[

m[α]| = |Dm[α[]| appearing
in the above formula are at most m-fold exponential in |G| and doubly exponential in |Σ|. The same is true
for |GM[

m
|. The other ingredients of the running time can be bounded as follows.

(A) We need to compute the value [[ΛG(P)]]M[
m

, given a closed lambda-term P of complexity at most
m and of size polynomial in |G|. Such a value equals [[ΛG[(P

[)]]Mm
, where P [is of complexity at

most m+ 1. Because G[is of order at most m+ 1, the latter value can be computed in time m-fold
exponential in |G[| by Lemma 10.7, Point 2.

(B) We need to compute the composition χχ′, given two elements χ ∈ D[
m[α→β], χ′ ∈ D[

m[α], where
α→β is of order at most m and of size polynomial in |G|. Recall that the composition inM[

m is

A Type System Describing Unboundedness 69

inherited fromMm. We notice that D[
m[α→β] = Dm[α[→β[], and D[

m[α] = Dm[α[], and that
α[→β[is of order at most m+ 1, so the composition can be computed in time m-fold exponential in
|G[| by Lemma 10.7, Point 3.

(C) Given an element χ ∈ D[
m[β] = Dm[β[] and a sort α, where α→β is of order at most m and of

size polynomial in |G|, we need to compute the abstraction λ[.χ = λα[.χ. This can be done in time
m-fold exponential in |G| by Lemma 10.7, Point 4 (the order of α[→β[is at most m+ 1).

(D) We need to enumerate all elements of DM[
m

[α] for α ∈ SG such that ord(α) ≤ m− 1. This is trivial
(recalling that DM[

m
[α] = DMm

[α[]) and the size of DM[
m

[α] is already included in the inequality
for |GM[

m
|.

Altogether, from Lemma 10.3 it follows that the running time is at most m-fold exponential in |G[| and
doubly exponential in |Σ|, as needed for Theorem 10.2.

11 Downward closure
The downward closure of a language of words L, denoted L↓, is the set of all scattered subwords
(subsequences) of words from L. Recall that the downward closure of any set is always a regular language;
moreover, it is a finite union of ideals, that is, languages of the form Y ∗0 {x1, ε}Y ∗1 . . . {xn, ε}Y ∗n , where
x1, . . . , xn are letters, and Y0, . . . , Yn are sets of letters. The main interest on SUP comes from the fact that
this problem is closely related to computability of the downward closure of languages of words (where we
aim in presenting the result by a list of ideals, or by a finite automaton). Indeed, having a word-recognizing
scheme G, it is not difficult to compute L(G)↓ by performing multiple calls to a procedure solving SUP
(for products of G and some finite automata). The complexity of this algorithm is directly related to the
size of its output. We, however, do not know any upper bound on the size of (a representation of) L(G)↓. A
recently developed pumping lemma for nondeterministic schemes (Asada and Kobayashi, 2017) may shed
some new light on this subject (while pumping lemmata for deterministic schemes (Kartzow and Parys,
2012; Kobayashi, 2013) seem irrelevant here).

Instead of actually computing the downward closure, Zetzsche (2016) proposed to consider the following
decision problem of downward-closure inclusion: given two word-recognizing schemes G,H of order at
most m, check whether L(G)↓ ⊆ L(H)↓; he proved that this problem is co-m-NEXPTIME-hard. It would
be interesting to give some upper bound on the complexity of this problem. Although, again, we do not
know how to do this, we can at least give a partial result.

Theorem 11.1. Let m ≥ 2. Given a word-recognizing schemeH of order at most m, and an ideal I , the
problem of deciding whether I ⊆ L(H)↓ is (m− 1)-EXPTIME-complete.

We remark that schemes of order 0 are equivalent to nondeterministic finite automata, and schemes of
order at most 1 are equivalent to context-free grammars (and translations between these formalisms can
be performed in logarithmic space). Thus from Zetzsche (2016) it follows that the problem of deciding
whether I ⊆ L(H)↓ is NL-complete forH of order 0, and P-complete forH of order at most 1.

Proof of Theorem 11.1: Let us first see that the problem is (m−1)-EXPTIME-hard. This follows directly
from (m−1)-EXPTIME-hardness of the problem of deciding whether L(H) is nonempty (cf. Lemma 9.14).
Indeed, L(H) 6= ∅ if and only if {ε} ⊆ L(H)↓; we notice that the singleton containing the empty word is
a special case of an ideal.

In the remaining part of this section we prove that the problem can be actually solved in (m − 1)-
EXPTIME. We follow here the approach of Zetzsche (2015, 2016). He has shown (Zetzsche, 2015, Proof

70 Paweł Parys

of Theorem 1) that based on an ideal I one can construct a nondeterministic finite-state transducer T and a
set of letters A such that for every language L we have that I ⊆ L↓ if and only if SUPA(T (L)) holds.(vii)

Here by T (L) we mean the effect of applying the transformation defined by T to the language L (i.e.,
the set of all words w such that for some v ∈ L the pair (v, w) is in the relation recognized by T). The
construction of T and A can be performed in polynomial time, and SUP for word-recognizing schemes of
order at most m can be solved in (m− 1)-EXPTIME.

It remains to see that H and T can be combined (in polynomial time) into a scheme HT such that
L(HT) = T (L(H)). To this end, we perform the following steps.

• Treating nd as any other letter, we translateH into a deterministic tree-generating collapsible push-
down automaton (CPDA) A that generates BT (Λ(H)). Preferably, we refer here to the translation
of Salvati and Walukiewicz (2016, Sections 3.1 and 4), as this translation is given for schemes
defined similarly as in the current paper, and thus it can be easily adapted. In particular, it works
well when asR(N) we allow arbitrary lambda-terms (cf. Appendix A.3). It can be seen that their
translation works in polynomial time. We shall only remark that the size of λY -terms (appearing in
their paper as intermediate objects) should be defined as the number of different subterms; in other
words, λY -terms should be represented as (directed, acyclic) graphs, without expanding them into
trees.

• We change the deterministic tree-generating CPDA A into a nondeterministic word-recognizing
CPDA B: whenever A was generating a node with nd as its label and with r children, in B we
nondeterministically choose one of the r options; whenever A was generating a node with some
other letter as its label (and with at most one child), in B we allow to read this letter, and if this
node had no children, we accept. As a result of this construction we obtain an automaton B that
recognizes the language L(H), seen as a language of words.

• We combine B with our finite-state transducer T , so that the resulting CPDA C recognizes T (L(H)).
This amounts to taking as the state set of C the product of state sets of B and T , and appropriately
combining their transitions.

• We change the word-recognizing nondeterministic CPDA C back to a deterministic tree-generating
CPDA D; in particular, in all configurations with multiple successors, we generate an nd-labeled
node with multiple children (and in configurations with no successors, we generate an nd-labeled
leaf). The CPDA D generates a tree T such that L(T) = T (L(H)).

• We translate D back to a recursion scheme HT such that BT (Λ(HT)) = T (Hague et al., 2008),
that is, L(HT) = T (L(H)).

• Finally, we notice that all the modifications can be performed in polynomial time (so, in particular,
HT is of polynomial size). Moreover, none of them increases the order, and thus the order ofHT is
at most m, as required.

Downward closure for trees. One can also consider the downward closure of a language of trees, defined
as a set of all trees that can be homeomorphically embedded in trees from the language. By Kruskal’s
tree theorem (Kruskal, 1960) downward closures of tree languages are regular languages of trees. We
notice, however, that (unlike for words) an algorithm solving SUP is highly insufficient for the purpose of
computing the downward closure. Even in the single-letter case, in order to compute L↓, one has to check,

(vii) Definitions of finite-state transducers and collapsible pushdown automata are omitted here. We describe our procedure only on
a high level of abstraction, so details of these definitions are actually irrelevant for us. It is standard to adapt the constructions
proposed here to concrete formal definitions.

A Type System Describing Unboundedness 71

in particular, whether for every n ∈ N, a full binary tree of depth n can be embedded in some tree from L;
using SUP, we can only determine whether L contains arbitrarily large trees. Extending our techniques to
this kind of problems is an interesting direction for further work.

12 Conclusions
In this paper, we have developed a type system describing simultaneous unboundedness for higher-order
recursion schemes (actually, for simply-typed lambda-terms). This type system allowed then to establish the
complexity of the simultaneous unboundedness problem for schemes, both in the general case, and in the
case of word-recognizing schemes. Additionally, we have shown the reflection property for this problem;
this property is a key ingredient used while proving decidability of model-checking trees generated by
schemes with respect to the WMSO+U logic (Parys, 2018b). Some directions for further work are listed in
Section 11.

References
A. V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM, 15(4):647–671, 1968. doi:

10.1145/321479.321488.

K. Asada and N. Kobayashi. On word and frontier languages of unsafe higher-order grammars. In
Chatzigiannakis et al. (2016), pages 111:1–111:13. ISBN 978-3-95977-013-2. doi: 10.4230/LIPIcs.
ICALP.2016.111.

K. Asada and N. Kobayashi. Pumping lemma for higher-order languages. In I. Chatzigiannakis, P. Indyk,
F. Kuhn, and A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 97:1–
97:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. ISBN 978-3-95977-041-5. doi:
10.4230/LIPIcs.ICALP.2017.97.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages and grammars.
Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi: 10.1142/S0129054196000191.

C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion schemes.
In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy, volume 23 of LIPIcs, pages 129–148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2013. ISBN 978-3-939897-60-6. doi: 10.4230/LIPIcs.CSL.2013.129.

I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors. 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, 2016. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-013-2.

L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-pushdown systems. In P. Harsha and
G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45
of LIPIcs, pages 163–177. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. ISBN 978-3-
939897-97-2. doi: 10.4230/LIPIcs.FSTTCS.2015.163.

72 Paweł Parys

L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. The diagonal problem for higher-order recursion
schemes is decidable. In M. Grohe, E. Koskinen, and N. Shankar, editors, Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,
2016, pages 96–105. ACM, 2016. ISBN 978-1-4503-4391-6. doi: 10.1145/2933575.2934527.

W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable separability by piecewise
testable languages. In A. Kosowski and I. Walukiewicz, editors, Fundamentals of Computation Theory -
20th International Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Proceedings, volume
9210 of Lecture Notes in Computer Science, pages 173–185. Springer, 2015. ISBN 978-3-319-22176-2.
doi: 10.1007/978-3-319-22177-9_14.

W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi: 10.1016/0304-3975(82)
90009-3.

A. Haddad. IO vs OI in higher-order recursion schemes. In D. Miller and Z. Ésik, editors, Proceedings
8th Workshop on Fixed Points in Computer Science, FICS 2012, Tallinn, Estonia, 24th March 2012.,
volume 77 of EPTCS, pages 23–30, 2012. doi: 10.4204/EPTCS.77.4.

A. Haddad. Model checking and functional program transformations. HAL, 2013a. URL https:
//hal.archives-ouvertes.fr/hal-00865682.

A. Haddad. Model checking and functional program transformations. In A. Seth and N. K. Vishnoi,
editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 115–
126. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013b. ISBN 978-3-939897-64-4. doi:
10.4230/LIPIcs.FSTTCS.2013.115.

M. Hague, A. S. Murawski, C. L. Ong, and O. Serre. Collapsible pushdown automata and recursion
schemes. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 452–461. IEEE Computer Society, 2008. ISBN
978-0-7695-3183-0. doi: 10.1109/LICS.2008.34.

M. Hague, J. Kochems, and C. L. Ong. Unboundedness and downward closures of higher-order pushdown
automata. In R. Bodík and R. Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 151–163. ACM, 2016. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.
2837627.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972. ISBN 0-306-30707-3. doi: 10.1007/
978-1-4684-2001-2_9.

A. Kartzow and P. Parys. Strictness of the collapsible pushdown hierarchy. In B. Rovan, V. Sassone,
and P. Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th International
Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of

https://hal.archives-ouvertes.fr/hal-00865682
https://hal.archives-ouvertes.fr/hal-00865682

A Type System Describing Unboundedness 73

Lecture Notes in Computer Science, pages 566–577. Springer, 2012. ISBN 978-3-642-32588-5. doi:
10.1007/978-3-642-32589-2_50.

N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order programs. In
Z. Shao and B. C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages
416–428. ACM, 2009. ISBN 978-1-60558-379-2. doi: 10.1145/1480881.1480933.

N. Kobayashi. Pumping by typing. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 398–407. IEEE Computer Society, 2013.
ISBN 978-1-4799-0413-6. doi: 10.1109/LICS.2013.46.

N. Kobayashi and C. L. Ong. A type system equivalent to the modal mu-calculus model checking of higher-
order recursion schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 179–188. IEEE Computer Society,
2009. ISBN 978-0-7695-3746-7. doi: 10.1109/LICS.2009.29.

N. Kobayashi and C. L. Ong. Complexity of model checking recursion schemes for fragments of the modal
mu-calculus. Logical Methods in Computer Science, 7(4), 2011. doi: 10.2168/LMCS-7(4:9)2011.

N. Kobayashi, K. Inaba, and T. Tsukada. Unsafe order-2 tree languages are context-sensitive. In
A. Muscholl, editor, Foundations of Software Science and Computation Structures - 17th Interna-
tional Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of
Lecture Notes in Computer Science, pages 149–163. Springer, 2014. ISBN 978-3-642-54829-1. doi:
10.1007/978-3-642-54830-7_10.

G. M. Kobele and S. Salvati. The IO and OI hierarchies revisited. Inf. Comput., 243:205–221, 2015. doi:
10.1016/j.ic.2014.12.015.

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the
American Mathematical Society, 95(2):210–225, 1960. ISSN 00029947. doi: 10.2307/1993287.

P. Parys. On the significance of the collapse operation. In Proceedings of the 27th Annual IEEE Symposium
on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 521–530. IEEE
Computer Society, 2012. ISBN 978-1-4673-2263-8. doi: 10.1109/LICS.2012.62.

P. Parys. How many numbers can a lambda-term contain? In M. Codish and E. Sumii, editors, Functional
and Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6,
2014. Proceedings, volume 8475 of Lecture Notes in Computer Science, pages 302–318. Springer, 2014.
ISBN 978-3-319-07150-3. doi: 10.1007/978-3-319-07151-0_19.

P. Parys. A characterization of lambda-terms transforming numerals. Journal of Functional Programming,
26(e12), 2016. doi: 10.1017/S0956796816000113.

P. Parys. The complexity of the diagonal problem for recursion schemes. In S. V. Lokam and R. Ramanu-
jam, editors, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages

74 Paweł Parys

45:1–45:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017a. ISBN 978-3-95977-055-2.
doi: 10.4230/LIPIcs.FSTTCS.2017.45.

P. Parys. Intersection types and counting. In N. Kobayashi, editor, Proceedings Eighth Workshop on
Intersection Types and Related Systems, Porto, Portugal, 26th June 2016, volume 242 of Electronic
Proceedings in Theoretical Computer Science, pages 48–63. Open Publishing Association, 2017b. doi:
10.4204/EPTCS.242.6.

P. Parys. Homogeneity without loss of generality. In H. Kirchner, editor, 3rd International Conference on
Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume
108 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018a. ISBN
978-3-95977-077-4. doi: 10.4230/LIPIcs.FSCD.2018.27.

P. Parys. Recursion schemes and the WMSO+U logic. In R. Niedermeier and B. Vallée, editors, 35th
Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018,
Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018b. ISBN 978-3-95977-062-0. doi: 10.4230/LIPIcs.STACS.2018.53.

S. J. Ramsay, R. P. Neatherway, and C. L. Ong. A type-directed abstraction refinement approach to
higher-order model checking. In S. Jagannathan and P. Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 61–72. ACM, 2014. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535873.

S. Salvati and I. Walukiewicz. Using models to model-check recursive schemes. Logical Methods in
Computer Science, 11(2), 2015. doi: 10.2168/LMCS-11(2:7)2015.

S. Salvati and I. Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown automata. Mathe-
matical Structures in Computer Science, 26(7):1304–1350, 2016. doi: 10.1017/S0960129514000590.

G. Zetzsche. An approach to computing downward closures. In M. M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann, editors, Automata, Languages, and Programming - 42nd Inter-
national Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of
Lecture Notes in Computer Science, pages 440–451. Springer, 2015. ISBN 978-3-662-47665-9. doi:
10.1007/978-3-662-47666-6_35.

G. Zetzsche. The complexity of downward closure comparisons. In Chatzigiannakis et al. (2016), pages
123:1–123:14. ISBN 978-3-95977-013-2. doi: 10.4230/LIPIcs.ICALP.2016.123.

A Type System Describing Unboundedness 75

A Our definition of schemes
In this section we comment on differences between definitions contained in our paper and those that appear
usually.

A.1 Letters are unranked
In the context of higher-order recursion schemes one usually considers alphabets that are ranked. This
means that every letter a ∈ Σ has assigned a number rank(a), so that every a-labeled node has rank(a)
children. Since our definition is less restrictive, our type system and our algorithm carry over to the situation
of a ranked alphabet. On the other hand, reductions of our hardness proofs (Section 9.4) can be easily
adapted to produce schemes using a ranked alphabet.

A.2 Node constructors
The usual definition of lambda-terms does not include node constructors. Instead, for every letter a
of rank r one has a lambda-term a of sort o→ . . .→ o︸ ︷︷ ︸

r

→ o; after applying r arguments P1, . . . , Pr we

obtain a lambda-term equivalent to our a〈P1, . . . , Pr〉. There are easy translations between lambda-
terms in these formalisms: a〈P1, . . . , Pr〉 can be replaced by aP1 . . . Pr, and a can be replaced by
λx1. · · · .λxr.a〈x1, . . . , xr〉; these translations preserve Böhm trees, and can be performed in logarithmic
space.

A.3 Looser definition of schemes
Let us recall the classic definition of a nondeterministic recursion scheme, and of a language recognized
by such a scheme. In this definition, instead of a function R, we have a set Rcl of rules of the form
Nα1→...→αs→ o xα1

1 . . . xαss → P o, where N ∈ N is a nonterminal, and P is a finite applicative term
whose all free variables are contained N ∪ {xα1

1 , . . . , xαss }, and where the nd symbol is not used. By an
applicative term we understand a lambda-term that does not contain lambda-binders. Having a scheme Gcl ,
we define→Gcl as the smallest relation such that

• N P1 . . . Ps →Gcl Q[P1/x1, . . . , Ps/xs] if (N x1 . . . xs → Q) ∈ Rcl , and
• a〈P1, . . . , Pr〉 →Gcl a〈P ′1, . . . , P ′r〉 if Pi →Gcl P ′i for some i ∈ {1, . . . , r} and Pj = P ′j for all
j ∈ {1, . . . , r} \ {i}.

The language recognized by Gcl , denoted Lcl(Gcl), contains all finite trees T such that N0 →∗Gcl T (where
N0 is the starting nonterminal). The order of Gcl is defined as the maximum of orders of its nonterminals.

Proposition A.1. For every scheme Gcl understood in the classic sense one can construct in logarithmic
space a scheme G that sticks to our definition, is of the same order, and such that L(G) = Lcl(Gcl).

Proof: Consider a scheme Gcl = (N ,Rcl , N0) understood in the classic sense. Out of it, we construct
a scheme G = (N ,R, N0) sticking to our definition: for every nonterminal N we consider all rules
(N x1 . . . xs → P1), . . . , (N x1 . . . xs → Pm) of Gcl concerning this nonterminal, and we takeR(N) =
λx1. · · · .λxs.nd〈P1, . . . , Pm〉. Notice thatR(N) never equals a nonterminal, as required by our definition.
Clearly this translation preserves the order of the scheme and can be performed in logarithmic space. We
now show that L(G) = Lcl(Gcl).

Consider a finite Σ-labeled tree T = a〈T1, . . . , Tr〉, and a finite applicative term P with free variables in
N , and not using the nd symbol. We are going to prove by induction on n+ |T | that P →n

Gcl T if and only

76 Paweł Parys

if BT (ΛG(P))→n
nd T . This equivalence implies that L(G) = Lcl(Gcl), since by definition L(G) contains

finite Σ-labeled trees T such that BT (ΛG(N0)) →n
nd T for some n ∈ N, while Lcl(Gcl) contains finite

trees T such that N0 →n
Gcl T for some n ∈ N (all the latter trees are also Σ-labeled since Gcl does not

use the nd symbol). There are two possible shapes of P . Suppose first that P = N Q1 . . . Qs, where N
is a nonterminal. Let (N x1 . . . xs → R1), . . . , (N x1 . . . xs → Rm) be all rules of Gcl concerning N .
We have that P →n

Gcl T if and only if P = N Q1 . . . Qs →Gcl Ri[Q1/x1, . . . , Qs/xs]→n−1
Gcl T for some

i ∈ {1, . . . ,m}. On the other hand,

ΛG(P) = (λx1. · · · .λxs.nd〈ΛG(R1), . . . ,ΛG(Rm)〉) ΛG(Q1) . . . ΛG(Qs)
h−→s
β nd〈ΛG(R1[Q1/x1, . . . , Qs/xs]), . . . ,ΛG(Rm[Q1/x1, . . . , Qs/xs])〉 .

Thus BT (ΛG(P))→n
nd T if and only if

BT (ΛG(P))→nd BT (ΛG(Ri[Q1/x1, . . . , Qs/xs]))→n−1
nd T for some i ∈ {1, . . . ,m} .

We have Ri[Q1/x1, . . . , Qs/xs] →n−1
Gcl T if and only if BT (ΛG(Ri[Q1/x1, . . . , Qs/xs])) →n−1

nd T by
the induction assumption.

The other possible case is that P = b〈P1, . . . , Pk〉, where b 6= nd. Then P →n
Gcl T if and only if

b = a, k = r, and Pi →ni
Gcl Ti for all i ∈ {1, . . . , r}, where n = n1 + · · · + nr. On the other hand,

BT (ΛG(P))→n
nd T if and only if b = a, k = r, and BT (ΛG(Pi))→ni

nd Ti for all i ∈ {1, . . . , r}, where
n = n1 + · · ·+ nr. We have Pi →ni

Gcl Ti if and only if BT (ΛG(Pi))→ni
nd Ti by the induction assumption.

This finishes the proof of the equality L(G) = Lcl(Gcl).

Due to the above translation, our algorithm can be applied to schemes conforming to the classic definition.
On the other hand, it is easy to modify our hardness proofs (cf. Section 9.4) so that the reductions used
there will produce schemes conforming to the classic definition, which will show hardness also for such
schemes.(viii)

B Proof of Lemma 10.3
In this section we recall from Haddad (2012, Section 4.2) the construction of a scheme GM generating a
ΞmM-reflection of a given scheme G, and we prove its correctness. We need to adapt the construction slightly,
because Haddad uses the more restrictive definition of recursion schemes described in Appendix A.3
(without lambda-binders inside right sides of rules), because he allows non-homogeneous sorts, and because
he uses constants instead of node constructors.

For the rest of this section we fix a number m ∈ N, a morphismM to a finitary applicative structure D,
and a recursion scheme G = (N ,R, N0) of order at most m (note that here, unlike in most sections of this
paper, the order of G is at most m, not at most m+ 1).

B.1 Transformation of the scheme
For every sort α = α1→ . . .→αs→ o let Argα = D[α1]× · · · ×D[αs]; fix also some (arbitrary) linear
order � on elements of Argα, for every α. Moreover, for every lambda-term P , let Free↑(P) be the set of
lists of the form [(x1, χ1), . . . , (xk, χk)], where the variables x1, . . . , xk ∈ Vars \N are pairwise distinct,

(viii) A translation in the opposite direction is also possible, but we do not give it here, as it is more technical.

A Type System Describing Unboundedness 77

where χi ∈ D[αi] for αi being the sort of xi, for all i ∈ {1, . . . , k}, and where every free variable of P
not being a nonterminal appears as xi for some i. Furthermore, let Free(P) ⊆ Free↑(P) contain only
those lists, where every variable xi is free in P . Given a list ν ∈ Free↑(P), by ν�P we denote the sublist
in Free(P) obtained from ν by removing all pairs (x, χ) with x not being free in P . Elements of Argα

and Free(P) are used to store values of the morphism for all arguments of a lambda-term P of sort α, and
for all its free variables (other than nonterminals), respectively.

Let Λm be the set of all lambda-terms that
• are of complexity at most m,
• whose all free variables are of order at most m− 1, and
• such that in every its subterm there are only finitely many free occurrences of every variable.

In particular, every subterm of Λ(G) is in Λm. Moreover, all subterms of lambda-terms from Λm are in
Λm as well.

Next, we need to extend the morphismM to lambda-terms that are not closed. For a lambda-term
P ∈ Λm, and for a list ν = [(x1, χ1), . . . , (xk, χk)] ∈ Free(P), we would like to define the value of P as
[[λx1. · · · .λxk.P]]M χ1 . . . χk. Such a definition is, however, invalid, because the sort of λx1. · · · .λxk.P
does not need to be homogeneous (although we may list the variables x1, . . . , xk starting from those of
higher order, P may require arguments of order higher than the order of xk), whileM is defined only for
lambda-terms having homogeneous sorts. For this reason, we artificially raise the order of free variables to
m− 1, as described below.

Our definitions depend on the value of m.
• Suppose first that m ≥ 2. In this case, we fix a lambda-term Zm−2 and a variable zm−2, both of the

same sort αz
m−2 such that ord(αz

m−2) = m−2. To be concrete, we take αz
0 = o and αz

i = αz
i−1→ o

for all i ≥ 1, and then we take Zm−2 = a〈〉 if m− 2 = 0 and Zm−2 = λzm−3.a〈〉 for zm−3 of sort
αz
m−3 if m − 2 ≥ 1 (where a is a fixed letter). Next, for every sort α of order at most m − 1 we

define up(α) = αz
m−2→α, for every lambda-term Q of sort α we define up(Q) = λzm−2.Q, and

for every lambda-term R of sort up(α) we define down(R) = RZm−2.
• If m = 1, we instead define up(α) = α, and up(Q) = Q, and down(R) = R.
• If m = 0, there are no sorts of order at most m− 1, so the definitions become useless.

For a lambda-term Q of sort α with ord(α) ≤ m − 1 we observe that up(Q) is of sort up(α), and
ord(up(α)) = m − 1, and down(up(Q)) h−→∗β Q. One may say that up(·) raises the order of a lambda-
term Q to m− 1, and down(·) decreases it back to the original order.

Going further, for every variable x of sort α, where ord(α) ≤ m− 1, we fix a corresponding variable x
of sort up(α), assuming that this mapping is injective (i.e., that x 6= y when x 6= y).

Moreover, for every element χ ∈ D[α], where ord(α) ≤ m− 1, let up(χ) = λαz
m−2.χ if m ≥ 2, and

let up(χ) = χ if m = 1. Observe that up([[Q]]M) = [[up(Q)]]M for every closed lambda-term Q of sort α.
We now already have all ingredients needed to extend our morphism to lambda-terms that are not closed.

Thus, for a lambda-term P ∈ Λm, and for a list ν = [(x1, χ1), . . . , (xk, χk)] ∈ Free(P), we define
[[P]]νM = [[λx1. · · · .λxk.P [down(x1)/x1, . . . , down(xk)/xk]]]M up(χ1) . . . up(χk). Notice that if P is
closed, then the list ν is empty, and, in consequence, [[P]]νM is just [[P]]M.

Example B.1. Suppose that m = 2, and consider a lambda-term P = λy.y x, where y is of sort
o→ o, and x is of sort o. Consider also a list ν = (x, χ), where χ = [[b〈〉]]M. In this case [[P]]νM =
[[λx.λy.y (x a〈〉)]]M up([[b〈〉]]M) = [[(λx.λy.y (x a〈〉)) (λz0.b〈〉)]]M; the variables x and z0 are of sort
o→ o and o, respectively.

78 Paweł Parys

For a finite lambda-term R ∈ Λm of sort α (possibly containing nonterminals), and for ζ ∈ Argα and
ν ∈ Free(R), we define a lambda-term θ(R, ζ, ν) of sort α•, where sorts α• are defined by induction:

o• = o and (β→ γ)• = β•→ . . .→β•︸ ︷︷ ︸
|Argβ |

→ γ• .

The translation is defined by induction on the structure of R as follows:
• if R = a〈P1, . . . , Pr〉, let θ(R, ζ, ν) = (a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1

), . . . , θ(Pr, ζ, ν�Pr)〉;
• if R = xα (including the case when it is a nonterminal), let θ(R, ζ, ν) = xα

•

ζ ;

• if R = P β→αQβ , let θ(R, ζ, ν) = θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q),

where ξ1, . . . , ξn are all the elements of Argβ , ordered by �;
• if R = λxβ .P and ζ = χ :: ζ ′, let θ(R, ζ, ν) = λxβ

•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P), where

ξ1, . . . , ξn are all the elements of Argβ , ordered by �.
To the resulting scheme GM we take a nonterminal Nα•

ζ for every nonterminal Nα of G and every
ζ ∈ Argα. In particular, for the starting nonterminal No

0 of G this results in No
0,() (notice that the only

element of Argo is ()), which we take as the starting nonterminal of GM. The rules are defined by
RM(Nα•

ζ) = θ(R(Nα), ζ, []).

B.2 Correctness proof
Once the resulting scheme GM is defined, we need to prove that it indeed generates a ΞmM-reflection of
BT (Λ(G)). To this end, we need to relate lambda-terms obtained while reducing Λ(G) to lambda-terms
obtained while reducing Λ(GM). We now define an appropriate relation.

First, for every lambda-term P ∈ Λm, and for every list ν = [(x1, χ1), . . . , (xk, χk)] ∈ Free(P),
we let Val(P, ν) to be the set of values [[Q]]M up(χ1) . . . up(χk) over all closed lambda-terms Q of
complexity at most m, such that Q →∗β λx1. · · · .λxk.P [down(x1)/x1, . . . , down(xk)/xk]. Notice that
elements of Val(P, ν) are similar to [[P]]νM, with the exception that in the definition we allow to replace
λx1. · · · .λxk.P [down(x1)/x1, . . . , down(xk)/xk] by an arbitrary closed lambda-term Q of complexity
at most m, such that Q →∗β λx1. · · · .λxk.P [down(x1)/x1, . . . , down(xk)/xk]. In particular, by taking
Q = λx1. · · · .λxk.P [down(x1)/x1, . . . , down(xk)/xk] we obtain the following lemma.

Lemma B.1. For every lambda-term P ∈ Λm and for every ν ∈ Free(P) it is the case that [[P]]νM ∈
Val(P, ν).

Next, for a lambda-term R ∈ Λm of sort α, for ζ ∈ Argα, and for ν ∈ Free(R), we define a set
Θ(R, ζ, ν) of lambda-terms of sort α•, by coinduction on the structure of R:

• if R = a〈P1, . . . , Pr〉, then Θ(R, ζ, ν) contains lambda-terms (a, χ)〈S1, . . . , Sr〉 such that χ ∈
Val(R, ν) and Si ∈ Θ(Pi, ζ, ν�Pi) for i ∈ {1, . . . , r};

• if R = xα, then Θ(R, ζ, ν) = {xα•ζ };
• if R = P β→αQβ , then Θ(R, ζ, ν) contains lambda-terms S U1 . . . Un such that S ∈ Θ(P, χ :: ζ,
ν�P) for some χ ∈ Val(Q, ν�Q), and Ui ∈ Θ(Q, ξi, ν�Q) for all i ∈ {1, . . . , n}, where ξ1, . . . , ξn
are all the elements of Argβ , ordered by �;

• if R = λxβ .P and ζ = χ :: ζ ′, then Θ(R, ζ, ν) contains lambda-terms λxβ
•

ξ1
. · · · .λxβ

•

ξn
.S such that

S ∈ Θ(P, ζ ′, ν ::(xβ , χ)�P), where ξ1, . . . , ξn are all the elements of Argβ , ordered by �.

A Type System Describing Unboundedness 79

Easy coinduction shows that elements of Θ(R, ζ, ν) have the same free variables as R, up to an
appropriate renaming.

Lemma B.2. If R′ ∈ Θ(R, ζ, ν) for some Rα ∈ Λm, ζ ∈ Argα, and ν ∈ Free(R), and if zβ is not free
in R, then zβ

•

ξ is not free in R′ for any ξ ∈ Argβ .

In the next lemma we observe that θ is a special case of Θ.

Lemma B.3. Let R be a finite lambda-term of sort α, let ζ ∈ Argα, and let ν ∈ Free(R). Then
ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).

Notice that R and ΛG(R) have the same free variables (except for nonterminals used in R), and thus we
have ν ∈ Free(ΛG(R)). We use the same observation in the proof below, while saying that ν�P equals
ν�ΛG(P), for any subterm P of R.

Proof of Lemma B.3: The proof is by coinduction on the structure of ΛG(R). Suppose first that R = Nα

is a nonterminal. Then we have ΛG(R) = ΛG(R(Nα)) and ν = []. Observe that ΛGM(θ(R, ζ, ν)) =
ΛGM(Nα•

ζ) = ΛGM(RM(Nα•

ζ)) = ΛGM(θ(R(Nα), ζ, [])). We can thus equally well consider R(Nα)
instead of R. Recalling that R(Nα) cannot be equal to a nonterminal, we have reduced this case to the
case when R is not a nonterminal. Thus, for the remaining part of the proof we suppose that R is not a
nonterminal.

We have four cases depending on the shape of R. Suppose first that R = a〈P1, . . . , Pr〉. Then
θ(R, ζ, ν) = (a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1

), . . . , θ(Pr, ζ, ν�Pr)〉, and thus

ΛGM(θ(R, ζ, ν)) = (a, [[ΛG(R)]]νM)〈ΛGM(θ(P1, ζ, ν�P1
)), . . . ,ΛGM(θ(Pr, ζ, ν�Pr))〉 .

On the other hand, ΛG(R) = a〈ΛG(R1), . . . ,ΛG(Rr)〉. By the assumption of coinduction we obtain that
ΛGM(θ(Pi, ζ, ν�Pi)) ∈ Θ(ΛG(Pi), ζ, ν�Pi) for all i ∈ {1, . . . , r}, and due to Lemma B.1 we have that
[[ΛG(R)]]νM ∈ Val(ΛG(R), ν). Thus, from the definition of Θ we can deduce that ΛGM(θ(R, ζ, ν)) ∈
Θ(ΛG(R), ζ, ν).

Next, suppose that R = xα. Recall that R is not a nonterminal, thus we have ΛG(R) = xα and
ΛGM(θ(xα, ζ, ν)) = ΛGM(xα

•

ζ) = xα
•

ζ . It follows from the definition of Θ that xα
•

ζ ∈ Θ(xα, ζ, ν).
Suppose now that R = P Q. Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, where β is the

sort of Q. Then θ(R, ζ, ν) = θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q), and thus

ΛGM(θ(R, ζ, ν)) = ΛGM(θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P)) ΛGM(θ(Q, ξ1, ν�Q)) . . . ΛGM(θ(Q, ξn, ν�Q)) .

On the other hand, ΛG(R) = ΛG(P) ΛG(Q). By the assumption of coinduction we obtain that

ΛGM(θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P)) ∈ Θ(ΛG(P), [[ΛG(Q)]]

ν�Q
M :: ζ, ν�P) and

ΛGM(θ(Q, ξi, ν�Q)) ∈ Θ(ΛG(Q), ξi, ν�Q) for all i ∈ {1, . . . , n},

and due to Lemma B.1 we have that [[ΛG(Q)]]
ν�Q
M ∈ Val(ΛG(Q), ν�Q). Thus, from the definition of Θ we

can deduce that ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).
Finally, suppose that R = λxβ .P . Again, let ξ1, . . . , ξn be all the elements of Argβ , ordered by �. Let

also ζ = χ :: ζ ′. Then θ(R, ζ, ν) = λxβ
•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P), and thus

ΛGM(θ(R, ζ, ν)) = λxβ
•

ξ1
. · · · .λxβ

•

ξn
.ΛGM(θ(P, ζ ′, ν ::(xβ , χ)�P)) .

80 Paweł Parys

On the other hand, ΛG(R) = λxβ .ΛG(P). By the assumption of coinduction we obtain that

ΛGM(θ(P, ζ ′, ν ::(xβ , χ)�P)) ∈ Θ(ΛG(P), ζ ′, ν ::(xβ , χ)�P) .

Thus, from the definition of Θ we can deduce that ΛGM(θ(R, ζ, ν)) ∈ Θ(ΛG(R), ζ, ν).

Next, we prove that the relation Θ is preserved during head beta-reductions (Lemma B.6). Before that,
we need auxiliary lemmata for substitution (Lemmata B.4 and B.5).

Lemma B.4. Let Rα, Sγ ∈ Λm, where S is closed, let zγ be a variable, let ν ∈ Free(R[S/z]), and let
χ ∈ Val(S, []). Then Val(R, (z, χ) :: ν�R) ⊆ Val(R[S/z], ν).

Proof: If z is not free in R, we have R[S/z] = R and (z, χ) :: ν�R = ν, which immediately gives the
thesis. In the sequel we assume that z is free in R; then, in particular, (z, χ) :: ν�R = (z, χ) :: ν. Denote
ν = [(x1, χ1), . . . , (xk, χk)]. Take some element of Val(R, (z, χ) :: ν); by definition it is of the form
[[P]]M up(χ) up(χ1) . . . up(χk) for some closed lambda-term P of complexity at most m, such that

P →∗β λz.λx1. · · · .λxk.R[down(z)/z, down(x1)/x1, . . . , down(xk)/xk] .

Moreover, because χ ∈ Val(S, []), there is a closed lambda-term Q of complexity at most m, such
that Q →∗β S and χ = [[Q]]M. From the definition of up(·) it follows that up(Q) →∗β up(S) and
up(χ) = [[up(Q)]]M. We have that

P up(Q)→∗β (λz.λx1. · · · .λxk.R[down(z)/z, down(x1)/x1, . . . , down(xk)/xk]) up(S)

→β λx1. · · · .λxk.R[down(up(S))/z, down(x1)/x1, . . . , down(xk)/xk]

→∗β λx1. · · · .λxk.R[S/z][down(x1)/x1, . . . , down(xk)/xk] .

The last relation holds because, by definition of Λm, there are only finitely many free occurrences of z
in R. BecauseM is a morphism, we have that [[P]]M [[up(Q)]]M = [[P up(Q)]]M, and, in consequence,
[[P]]M up(χ) up(χ1) . . . up(χk) = [[P up(Q)]]M up(χ1) . . . up(χk) ∈ Val(R[S/z], ν), as needed. No-
tice that in this lemma it is rather important that the pair (z, χ) is the first element of the list (z, χ) :: ν.

Lemma B.5. Let Rα, Sγ ∈ Λm, where S is closed, let zγ be a variable, let ζ ∈ Argα, let ν ∈
Free(R[S/zγ]), and let χ′ ∈ Val(S, []). Let ξ′1, . . . , ξ

′
m be all the elements of Argγ , ordered by

�. Let also R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν�R), and let Sj ∈ Θ(S, ξ′j , []) for j ∈ {1, . . . ,m}. Then

R′[S1/z
γ•

ξ′1
] . . . [Sm/z

γ•

ξ′m
] ∈ Θ(R[S/zγ], ζ, ν) holds.

Proof: To shorten the notation, denote η(P) = P [S1/z
γ•

ξ′1
] . . . [Sm/z

γ•

ξ′m
] for any lambda-term P .

The proof is by coinduction on the structure ofR. Observe first that if zγ is not free inR, then η(R′) = R′

(the variables zγ
•

ξ′j
are not free in R′ by Lemma B.2), and R[S/zγ] = R, and (zγ , χ′) :: ν�R = ν,

which immediately gives the thesis. In the sequel we assume that zγ is free in R; then in particular
(zγ , χ′) :: ν�R = (zγ , χ′) :: ν. We have four cases depending on the shape of R.

Suppose first that R = a〈P1, . . . , Pr〉. Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition
of Θ that R′ is of the form (a, χ)〈Q1, . . . , Qr〉, where χ ∈ Val(R, (zγ , χ′) :: ν) and Qi ∈ Θ(Pi, ζ,

A Type System Describing Unboundedness 81

(zγ , χ′) :: ν�Pi) for i ∈ {1, . . . , r}. We have that χ ∈ Val(R[S/zγ], ν) by Lemma B.4, and η(Qi) ∈
Θ(Pi[S/z

γ], ζ, ν�Pi) for all i ∈ {1, . . . , r} by the assumption of coinduction. Thus, by the definition of Θ,

η(R′) = (a, χ)〈η(Q1), . . . , η(Qr)〉 ∈ Θ(a〈P1[S/zγ], . . . , Pr[S/z
γ]〉, ζ, ν) = Θ(R[S/zγ], ζ, ν) .

Next, suppose that R = zγ (recall that zγ is free in R, so R cannot be a variable other than zγ). Then
R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition of Θ that R′ = zγ

•

ζ . Moreover, ζ = ξ′j for some

j ∈ {1, . . . ,m}, and ν = []. Because S is closed, by Lemma B.2 we have that variables zγ
•

ξ′i
are not free

in Sj . Thus, η(R′) = Sj [Sj+1/z
γ•

ξ′j+1
] . . . [Sm/z

γ•

ξ′m
] = Sj ∈ Θ(S, ξ′j , []) = Θ(R[S/zγ], ζ, ν).

Suppose now that R = P Q. Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, where
β is the sort of Q. Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition of Θ that R′ is of the
form P ′Q1 . . . Qn, where P ′ ∈ Θ(P, χ :: ζ, (zγ , χ′) :: ν�P) for some χ ∈ Val(Q, (zγ , χ′) :: ν�Q), and
Qi ∈ Θ(Q, ξi, (z

γ , χ′) :: ν�Q) for all i ∈ {1, . . . , n}. We have that η(P ′) ∈ Θ(P [S/zγ], χ :: ζ, ν�P)
and η(Qi) ∈ Θ(Q[S/zγ], ξi, ν�Q) for all i ∈ {1, . . . , n} by the assumption of coinduction, and χ ∈
Val(Q[S/zγ], ν�Q) by Lemma B.4. Thus,

η(R′) = η(P ′) η(Q1) . . . η(Qn) ∈ Θ(P [S/zγ]Q[S/zγ], ζ, ν) = Θ(R[S/zγ], ζ, ν)

by the definition of Θ.
Finally, suppose that R = λxβ .P . Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �, and let ζ =

χ :: ζ ′. Since zγ is free in R, we have xβ 6= zγ . Then R′ ∈ Θ(R, ζ, (zγ , χ′) :: ν) implies by the definition
of Θ that R′ = λxβ

•

ξ1
. · · · .λxβ

•

ξn
.Q, where Q ∈ Θ(P, ζ ′, (zγ , χ′) :: ν ::(xβ , χ)�P). By the assumption of

coinduction we obtain that η(Q) ∈ Θ(P [S/zγ], ζ ′, ν ::(xβ , χ)�P), so η(R′) = λxβ
•

ξ1
. · · · .λxβ

•

ξn
.η(Q) ∈

Θ(λxβ .P [S/zγ], ζ, ν) = Θ(R[S/zγ], ζ, ν) by the definition of Θ.

Lemma B.6. Let P,Q ∈ Λm be closed lambda-terms of sort o such that P h−→β Q. If U ∈ Θ(P, (), []),
then there exists V ∈ Θ(Q, (), []) such that U h−→+

β V .

Proof: The condition P h−→β Q implies that P is of the form (λxα0 .R)S0 S1 . . . Ss, and then Q =
R[S0/x

α0]S1 . . . Ss. For i ∈ {0, . . . , s}, let αi be the sort of Si, and let ξi,1, . . . , ξi,ni be all the elements
of Argαi , ordered by �. From the definition of Θ we deduce that U is of the form

(λx
α•0
ξ0,1

. · · · .λxα
•
0

ξ0,n0
.R′)S0,1 . . . S0,n0

S1,1 . . . S1,n1
. . . Ss,1 . . . Ss,ns ,

where R′ ∈ Θ(R, (χ1, . . . , χs), [(x
α0 , χ0)]�R), and χi ∈ Val(Si, []) for i ∈ {0, . . . , s}, and Si,j ∈

Θ(Q, ξi,j , []) for i ∈ {0, . . . , s} and j ∈ {1, . . . , ni}. As V we take

R′[S0,1/x
α•0
ξ0,1

] . . . [S0,n0
/x

α•0
ξ0,n0

]S1,1 . . . S1,n1
. . . Ss,1 . . . Ss,ns .

Clearly U h−→n0

β V , and n0 ≥ 1. From Lemma B.5 we obtain that R′[S0,1/x
α•0
ξ0,1

] . . . [S0,n0
/x

α•0
ξ0,n0

] ∈
Θ(R[S0/x

α0], (χ1, . . . , χs), []). Using again the definition of Θ we conclude that V ∈ Θ(Q, (), []).

Lemma B.7. Let P ∈ Λm be a closed lambda-term of sort o. If U ∈ Θ(P, (), []) then BT (U) is a
ΞmM-reflection of BT (P).

82 Paweł Parys

Proof: Coinduction on the structure of BT (P). Suppose first that P h−→∗β a〈Q1, . . . , Qr〉. We have that
BT (P) = a〈BT (Q1), . . . ,BT (Qr)〉. Because U ∈ Θ(P, (), []), using Lemma B.6 consecutively for
every head beta-reduction in a sequence witnessing that P h−→∗β a〈Q1, . . . , Qr〉, we obtain a lambda-term
V ∈ Θ(a〈Q1, . . . , Qr〉, (), []) such that U h−→∗β V . From the definition of Θ it follows that V is of the
form (a, χ)〈R1, . . . , Rr〉, where Ri ∈ Θ(Qi, (), []) for i ∈ {1, . . . , r}, and χ ∈ Val(a〈Q1, . . . , Qr〉, []).
By the assumption of coinduction we have that BT (Ri) is a ΞmM-reflection of BT (Ki). Moreover, by the
definition of Val , there is a closed lambda-term Q of complexity at most m, such that χ = [[Q]]M and
Q→∗β a〈Q1, . . . , Qr〉. Then BT (Q) = BT (a〈Q1, . . . , Qr〉) = BT (P) (because the Böhm tree does not
change during beta-reductions), so (BT (P), (a, χ)) ∈ ΞmM. It follows that BT (U) is a ΞmM-reflection of
BT (P).

It remains to consider the situation when there is no sequence of head beta-reductions from P to a
lambda-term starting with a node constructor. Then we have one of two cases:

• there is an infinite sequence of head beta-reductions starting in P , or
• P h−→∗β Q for a lambda-term Q from which no head beta-reduction can be performed, and which

does not start with a node constructor.
Moreover, BT (P) = nd〈〉 and (nd〈〉, nd) ∈ ΞmM, so it is enough to prove that BT (U) = nd〈〉. In the
former case we can apply Lemma B.6 to every reduction in the infinite sequence of head beta-reductions
starting from P , and we obtain an infinite sequence of head beta-reductions starting from U . This
implies that from U we cannot reach a lambda-term starting with a node constructor, and thus indeed
BT (U) = nd〈〉. In the latter case, we observe that the only possible form of a closed lambda-termQ of sort
o from which no head beta-reduction can be performed and which does not start with a node constructor is
an infinite sequence of applications Q = . . . Q3Q2Q1. By applying Lemma B.6 consecutively for every
head beta-reduction in a sequence witnessing P h−→∗β Q, we obtain a lambda-term V ∈ Θ(Q, (), []) such
that U h−→∗β V . From the definition of Θ it follows that V is also an infinite sequence of applications, which
implies that BT (U) = nd〈〉, as needed.

Having all this, we can easily finish the correctness proof. Indeed, Λ(GM) = ΛGM(N0,()) =
ΛGM(θ(N0, (), [])) ∈ Θ(ΛG(N0), (), []) = Θ(Λ(G), (), []) by Lemma B.3, and thus BT (Λ(GM)) is
a ΞmM-reflection of BT (Λ(G)) by Lemma B.7.

B.3 Size and running time
It remains to bound the size of GM, and the time needed to construct it. Recall that G is of order at most m.
Denote

d =

 max
α∈SG

ord(α)≤m−1

|D[α]|

|G| .
Our goal is to prove that |GM| ≤ |G| · d|G|. This is done in subsequent lemmata. First, we bound the size
of the sets Argα and of the new sorts α•.

Lemma B.8. For every α ∈ SG it is the case that |Argα| ≤ d.

Proof: Denoting α = α1→ . . .→αs→ o we recall that Argα = D[α1]×· · ·×D[αs]. Lemma 9.5 implies
that |α| ≤ 2 · |G| for α ∈ SG , hence s ≤ |G|. Moreover, because α ∈ SG we have ord(α) ≤ m, and thus
αi ∈ SG and ord(αi) ≤ m− 1 for all i ∈ {1, . . . , s}. We easily conclude recalling the definition of d.

A Type System Describing Unboundedness 83

Lemma B.9. For every α ∈ SG it is the case that |α•| ≤ |α| · d|α|.

Proof: The proof is by induction on the structure of α. For α = o also α• = o, and the thesis is immediate.
Consider the case when α = β→ γ; then

α• = β•→ . . .→β•︸ ︷︷ ︸
|Argβ |

→ γ• .

Recall that |α| = |β|+ 1 + |γ|. Using the induction assumption and Lemma B.8 we obtain that

|α•| = (|β•|+ 1) · |Argβ |+ |γ•| ≤ |β| · d|β| · d+ d+ |γ| · d|γ| ≤ (|β|+ 1 + |γ|) · d|α| = |α| · d|α| .

Next, we bound the size of lambda-terms.

Lemma B.10. When Rα is a subterm ofR(N) for some nonterminal N , and ζ ∈ Argα, and ν ∈ Free(R),
it is the case that |θ(R, ζ, ν)| ≤ |R| · d|R|.

Proof: The proof is by induction on the structure of R. We have four cases, depending on the shape of R.
Suppose first that R = a〈P1, . . . , Pr〉. Then |R| = 1 + |P1| + · · · + |Pr|, and, by the induction

assumption, |θ(Pi, ζ, ν�Pi)| ≤ |Pi| · d
|Pi| ≤ |Pi| · d|R| for all i ∈ {1, . . . , r}. We thus have

|θ(R, ζ, ν)| = |(a, [[ΛG(R)]]νM)〈θ(P1, ζ, ν�P1
), . . . , θ(Pr, ζ, ν�Pr)〉|

= 1 + |θ(P1, ζ, ν�P1
)|+ · · ·+ |θ(Pr, ζ, ν�Pr)|

≤ d|R| + |P1| · d|R| + · · ·+ |Pr| · d|R| = |R| · d|R| .

In the case of R = xα we simply have that |θ(R, ζ, ν)| = |xα•ζ | = 1 ≤ |R| · d|R|.
Suppose now that R = P β→αQβ . Let ξ1, . . . , ξn be all the elements of Argβ , ordered by �. Clearly

β ∈ SG , so n = |Argβ | ≤ d by Lemma B.8. Using the induction assumption we conclude that

|θ(R, ζ, ν)| = |θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P) θ(Q, ξ1, ν�Q) . . . θ(Q, ξn, ν�Q)|

= |θ(P, [[ΛG(Q)]]
ν�Q
M :: ζ, ν�P)|+ 1 + |θ(Q, ξ1, ν�Q)|+ · · ·+ 1 + |θ(Q, ξn, ν�Q)|

≤ |P | · d|P | + d · (1 + |Q| · d|Q|) ≤ (|P |+ 1 + |Q|) · d|R| = |R| · d|R| .

Finally, suppose that R = λxβ .P γ . Let ζ = χ :: ζ ′, and let ξ1, . . . , ξn be all the elements of Argβ ,
ordered by �. Again n ≤ d by Lemma B.8. Using the induction assumption and Lemma B.9 we conclude
that

|θ(R, ζ, ν)| = |λxβ
•

ξ1
. · · · .λxβ

•

ξn
.θ(P, ζ ′, ν ::(xβ , χ)�P)|

= n · (|β•|+ 1) + |θ(P, ζ ′, ν ::(xβ , χ)�P)|
≤ d · (|β| · d|β| + 1) + |P | · d|P | ≤ (|β|+ 1 + |P |) · d|R| = |R| · d|R| .

Finally, recall that

|G| =
∑

Nα∈N
(|α|+ |R(Nα)|) and |GM| =

∑
Nα∈N

∑
ζ∈Argα

(|α•|+ |RM(Nα•

ζ)|) .

84 Paweł Parys

For every nonterminal Nα ∈ N and for every ζ ∈ Argα, recalling that RM(Nα•

ζ) = θ(R(Nα), ζ, []),
from Lemma B.10 we obtain that |RM(Nα•

ζ)| ≤ |R(Nα)| · d|R(Nα)|. Using also Lemmata B.8 and B.9,
for every Nα ∈ N we have that∑

ζ∈Argα

(|α•|+ |RM(Nα•

ζ)|) ≤ d · (|α| · d|α| + |R(Nα)| · d|R(Nα)|) ≤ (|α|+ |R(Nα)|) · d|G| .

In consequence, |GM| ≤
∑
Nα∈N (|α|+ |R(Nα)|) · d|G| = |G| · d|G|, as we wanted.

We notice that the transformation is defined in a straightforward way, and thus the running time is
essentially proportional to the size of the resulting scheme GM. However, in the case of a node constructor
and in the case of an application, we need to compute [[ΛG(R)]]νM for some subterms R appearing in G.
To this end, it is enough to use Operations (A), (B), (C) listed in the statement of Lemma 10.3 Moreover,
in the case of an application, in the case of a lambda-binder, and while listing all nonterminals we need
to enumerate all elements of Argβ for appropriate sorts β ∈ SG . When β = α1→ . . .→αs→ o, by
definition Argβ = D[α1]× · · · ×D[αs], thus we actually need to enumerate all elements of D[αi] for all
i ∈ {1, . . . , s}, where ord(αi) ≤ ord(β)− 1 ≤ m− 1 (Operation (D) in the statement of the lemma).

	Introduction
	Preliminaries
	Type system for simultaneous unboundedness
	Finite approximations of infinite lambda-terms
	Properties of type judgments
	Completeness
	Proof of Lemma 6.2
	Proof of Lemma 6.3
	Proof of Lemma 6.4

	Soundness
	Proof of Lemma 7.1
	Proof of Lemma 7.2
	Proof of Lemma 7.3

	Between tree-recognizing and word-recognizing schemes
	Complexity of SUP
	Number of equivalence classes
	Pumpable derivations
	Algorithms
	Lower bounds

	Reflection for SUP
	Downward closure
	Conclusions
	Our definition of schemes
	Letters are unranked
	Node constructors
	Looser definition of schemes

	Proof of Lemma 10.3
	Transformation of the scheme
	Correctness proof
	Size and running time

