Sequential data assimilation for a Lagrangian Space LWR model with error propagations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Sequential data assimilation for a Lagrangian Space LWR model with error propagations

Résumé

Decision support systems are of paramount importance to propose traffic control strategies and reliable information to road users. They usually take benefits from data-driven methods which represent a reliable way to gather real time traffic information and make predictions for recurring situations. Data Assimilation (DA) consists in considering both observed data and a traffic flow model to monitor and forecast traffic state. Traditionnaly, Kalman filtering methods with macroscopic traffic models have been widely used. More recently, mesoscopic approaches proved to be relevant for large scale network applications. However, errors on traffic state is a key information for DA methods. The paper proposes a DA framework that accounts for two types of error: (i) errors from the data collection system and (ii) errors that are propagated and amplified in time and space by the dynamic traffic flow model. When applied on a basic network, the proposed framework demonstrates its ability to track errors and the traffic state information is enriched with a level of uncertainty. It paves the way for new traffic indicators and new solutions for traffic forecast applications.
Fichier principal
Vignette du fichier
tex00000405.pdf (218.56 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01850468 , version 1 (27-07-2018)
hal-01850468 , version 2 (13-04-2021)

Identifiants

Citer

Aurélien Clairais, Aurélien Duret, Nour-Eddin El Faouzi. Sequential data assimilation for a Lagrangian Space LWR model with error propagations. The 7th International Workshop on Agent-based Mobility, Traffic and Transportation Models,Methodologies and Applications (ABMTrans 2018), May 2018, Porto, Portugal. pp810-815, ⟨10.1016/j.procs.2018.04.140⟩. ⟨hal-01850468v2⟩
75 Consultations
98 Téléchargements

Altmetric

Partager

More