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Abstract

Decision support systems are of paramount importance to propose traffic control strategies and reliable information to road users.
They usually take benefits from data-driven methods which represent a reliable way to gather real time traffic information and make
predictions for recurring situations. Data Assimilation (DA) consists in considering both observed data and a traffic flow model to
monitor and forecast traffic state. Traditionnaly, Kalman filtering methods with macroscopic traffic models have been widely used.
More recently, mesoscopic approaches proved to be relevant for large scale network applications. However, errors on traffic state
is a key information for DA methods. The paper proposes a DA framework that accounts for two types of error: (i) errors from
the data collection system and (ii) errors that are propagated and amplified in time and space by the dynamic traffic flow model.
When applied on a basic network, the proposed framework demonstrates its ability to track errors and the traffic state information
is enriched with a level of uncertainty. It paves the way for new traffic indicators and new solutions for traffic forecast applications.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Decision support systems are the keystone of traffic management to propose appropriate control strategies and
provide reliable information to road users. They benefit from the knowledge of traffic conditions in real time and short
term predictions. To reach these goals, practices can be classified into two categories. On one hand the data-driven
methods rely on traffic data for traffic monitoring and predictions. Based on statistical methods1 2, they are especially
relevant for recurring situations such as morning or evening commute. On the other hand, model-driven methods rely
on simulations using models to describe the evolution of the traffic conditions in a controlled environment. They are
generally used off-line to evaluate existing or new infrastructures. The calibration process, based on historical data,
is important with such methods but not sufficient to avoid the shifts induced by stochasticity and heterogeneity of the
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Fig. 1: Conceptual scheme of the data assimilation framework with the 3 main blocks. Adapted from 13,14

traffic. Methods that use both model outputs and observed data are known as Data Assimilation (DA) methods. When
new traffic data become available, traffic states are estimated based on the model states and the observed states, and
the traffic model is updated accordingly.

In traffic, according to3, the DA problems have been addressed with Kalman filters extensions following the sem-
inal work of Kalman4. They have been adressed with analytic extensions of the Kalman filter such as the Extended
Kalman Filter (EKF)5, the Unscented Kalman Filter (UKF)6 or the Mixture Kalman Filter (MKF)7. Other works lay
on replications such as the Ensemble Kalman Filter (EnKF)8 or the Particle Filter (PF)9. KF-based DA methods as-
sume that the traffic model is linear, or at least differentiable. Several works aimed to use a KF method associated with
a Eulerian LWR model: the Cell Transmission Model10. More recently, DA was explored within a Lagrangian-Space
traffic model with both loop data11 and probe data12. These methods do not take into account model or observation
errors. The aim of this work is to develop a DA method based on a Lagrangian-Space model that takes into account
errors. The conceptual scheme of the development is based on13,14 and is illustrated in Figure 1.

The paper is organized as follows. Section 2 introduces the dynamical traffic model used in the DA scheme. Section
3 introduces the output fusion analytic formulations and model update. Finally, Section 4 presents the results of the
method on a straightforward application.

2. The LS-LWR model with error propagation

The Lighthill-Whitham-Richards (LWR) model was introduced in15 and16 to describe the dynamic of traffic stream.
It consists in a conservative relation and a fundamental diagram. Originally, the LWR model were used considering
Eulerian variables like the density k, the flow q and the speed v. The Lagrangian-Time representation was proposed in
the 90s, where the traffic variables provide time-position of individual vehicles, with a given time frequency.(see17).
More recently, Lagrangian-Space (LS) representation has been proposed, (see18,19), where traffic variables provide
passing time of vehicles at fixed locations on the network. The LS representation has proved to be well suited for
assimilating data from inductive loop detectors11.

For the LS representation, the traffic model is solved in the (n, x) coordinates, where n denotes the index of the
vehicles and x the space. The LS-LWR model follows the Hamilton-Jacobi theory, where the Hamilton-Jacobi partial
derivative equation is derived from the conservation law:

∂xT =
1

V(∂nT )
(1)
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Here, V is the flow speed, and the headway h is denoted by its partial derivative formulation : ∂nT . The pace
(inverse of speed) and the headway are related following an empirical convex relation: the fundamental diagram,
considered as triangular in the remainder of the paper. The solution of the model provides the passing time of vehicle
n at location x :

T (n, x) = max
(
T (d)(n, x),T (s)(n, x)

)
(2)

, where T (d)(n, x) and T (s)(n, x) are the demand and supply terms, respectively.
For further details on the calculations see18 and11. In the error-free formulation, all the passing times are computed

with purely deterministic variables. Model errors come from errors on the parameters and the initial and boundary
conditions. Model parameters are supposed to be distributed following Gaussian distributions. Besides, those con-
siderations were legitimated by empirical studies on traffic stochasticity20. The outputs errors are not Gaussian. A
previous work21 enabled to propagate the errors to the outputs errors with Gaussian mixtures. A Gaussian mixture is
defined as a convex combination of J Gaussian components. The notation of a passing time in the model with error
propagation is the following:

T (n, x) =
[{
π

( j)
T (n,x), µ

( j)
T (n,x), σ

( j)
T (n,x)

}]
1≤ j≤J

(3)

where π( j)
T (n,x), µ

( j)
T (n,x) and σ( j)

T (n,x) are respectively the weight, the mean and the standard deviation of the jth compo-
nent of the Gaussian Mixture.

3. Output Fusion and Model Update

The observation model consists in observed passing times of vehicles detected by the inductive loop detectors.
Observation errors are supposedly Gaussian, which gives:

T o(n, x) =
{
µT o(n,x), σT O(n,x)

}
(4)

where µT O(n,x) denotes the mean and σT O(n,x) the standard deviation of the observed passing time distribution.
According to22, the assimilated states T a(n, x) follow a Gaussian Mixture distribution with the same number of com-
ponents J. The aim of the method is to estimate the weight π( j)

T a(n,x), the mean µ( j)
T a(n,x) and the standard deviation σ( j)

T a(n,x)
of the jth component of the assimilated state. The multi-component Kalman gain is introduced in order to reduce the
mathematical formulation.

K j =
(
σ

( j)
T f (n,x)

)2
((
σ

( j)
T f (n,x)

)2
+

(
σT o(n,x)

)2
)−1

(5)

The following equations correspond respectively to the weight, the mean and the standard deviation of the jth
component of the distribution of the assimilated state.

π
( j)
T a(n,x) =

π
( j)
T f (n,x) × N(µT o(n,x), µ

( j)
T f (n,x), (σ

( j)
T f (n,x))

2 + (σT o(n,x))2)∑M
m=1 π

(m)
T f (n,x) × N(µT o(n,x), µ

(m)
T f (n,x), (σ

(m)
T f (n,x))

2 + (σT o(n,x))2)
(6)

µ
( j)
T a(n,x) = µ

( j)
T f (n,x) + K( j)

(
µT o(n,x) − µ

( j)
T f (n,x)

)
(7)(

σ
( j)
T a(n,x)

)2
= (1 − K( j))

(
σ

( j)
T f (n,x)

)2
(8)

Note that N denotes the Gaussian density function such as:

N(X,M, (Σ)2)) =
1
√

2πΣ
exp

(
−

1
2

(X − M)2

(Σ)2

)
(9)

The model state is then updated according to the assimilated state. Indeed, the sequential data assimilation is
activated as new observed data are available. The model update ensures that the vehicles count and the traffic regime
both remain consistent with the assimilated traffic states. During the update process, vehicles can either be added,
deleted, delayed or advanced11.
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Fig. 2: Experimental Scenario
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(a) Without DA
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(b) With DA

Fig. 3: Comparison in terms of Cumulative Vehicle Index through simulation

4. Illustration

The proposed data assimilation framework is tested on an experimental network composed of 4 consecutive cells
where boundaries are numbered from N0 to N4 (see Figure 2). The ground truth consists in the results of a mesoscopic
LWR model23, designed so that a congestion starts and propagates from N4 to N0 during the scenario. A loop detector
is supposedly deployed at N3, which collects noised passing times (standard deviation of 0.5s), which constitute the
observations.

Then boundary conditions of the experiment scenario differs from the ground truth (GT) scenario: the outflow
capacity of the network has been voluntarily increased. Two simulations will be examined, without DA and with
DA, based on two indicators: Cumulative Count Curves (CCC), also known as N-curves for flow analysis and the
shockwave analysis; Travel Times to complete with the analysis the propagation of errors/uncertainties through the
network.

(i) Cumulative Count Curves. A cumulative count curve represents the cumulative vehicle index with respect to the
time at a given position on the network. CCC are plotted for successive positions (without source or sink in between).
CCC is the raw output of the LS-LWR model. The performance of the proposed DA framework is illustrated, without
DA on Figure 3a, and with DA on Figure 3b. In Figure 3a, three shockwaves can be observed: starting from N4, they
respectively reach N3 at around 500s, 1950s and 3300s. However, no shockwave is observed at boundaries N2 − 0,
unlike the ground truth scenario. In Figure 3b, a shockwave can be observed, which propagates backward from N3
(450s) to N0 (3500)through nodes N3. This scenario matches the observations at boundary N3, and traffic states are
properly propagated upstream. We conclude that the proposed DA framework enables to properly update the passing
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Fig. 4: Comparison in terms of Travel Times through simulation

times at loop sensor locations, and shockwaves are properly propagated through the area of the network where no
sensor is located.

(ii) Travel Times. In Figure 4a, travel times between N0 and N3 are illustrated with respect to the time.
Without DA, two congestion patterns are observed, between 400s and 800s; and then between 1300s and 2300s,

but delays are significantly lower than delays from the ground truth. As expected, the congestion pattern is modified
with DA. The travel times are consistent with travel times from the ground truth scenario. It should be noted that DA
allow for the tracking errors on traffic state, which is illustrated in Figure 4b. Standard deviations of the travel time are
plotted with respect to time. Errors remain low when the traffic is free-flowing, and they are greatly amplified during
congestion (by a factor of nine times in this scenario) which is consistent with previous observation21.

5. Conclusion

The paper proposes a new DA framework based on a Lagrangian-Space LWR model with errors propagation. It
consists in several steps. First, the model propagates traffic states and errors in time and space and provides passing
times of vehicles at fixed location. The errors are considered distributed following Mixture of Gaussian distributions.
In parallel, an observation model provides noised passing times of vehicles at a fixed locations of the network. Then
an output fusion method has been proposed, to mix traffic states from the model with observed traffic states. Finally,
the model is updated to ensure that the number of vehicles assimilated agree with the observations.

The proposed framework enables to propagate traffic states to locations with no observations. When boundary
conditions are unknown or flawed, DA enables to update and propagate reliable traffic state through the network.
Uncertainties are lower with DA than without, which paves the way for more reliable operational indicators.
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