On the complexity exponent of polynomial system solving - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2018

On the complexity exponent of polynomial system solving

Résumé

We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.
Fichier principal
Vignette du fichier
polexp.pdf (582.25 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01848572 , version 1 (24-07-2018)
hal-01848572 , version 2 (28-11-2020)

Identifiants

Citer

Joris van der Hoeven, Grégoire Lecerf. On the complexity exponent of polynomial system solving. 2018. ⟨hal-01848572v1⟩

Collections

UNIV-PARIS-SACLAY
402 Consultations
632 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More