
HAL Id: hal-01848572
https://hal.science/hal-01848572v1

Preprint submitted on 24 Jul 2018 (v1), last revised 28 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity exponent of polynomial system
solving

Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. On the complexity exponent of polynomial system solving.
2018. �hal-01848572v1�

https://hal.science/hal-01848572v1
https://hal.archives-ouvertes.fr

On the complexity exponent of
polynomial system solving

JORIS VAN DER HOEVENa, GRÉGOIRE LECERFb

CNRS (UMR 7161, LIX)
Laboratoire d'informatique de l'École polytechnique

Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr

Preliminary version of July 24, 2018

We present a probabilistic Las Vegas algorithm for solving sufficiently generic square
polynomial systems over finite fields. We achieve a nearly quadratic running time in
the number of solutions, for densely represented input polynomials. We also prove a
nearly linear bit complexity bound for polynomial systems with rational coefficients.
Our results are obtained using the combination of the Kronecker solver and a new
improved algorithm for fast multivariate modular composition.

1. INTRODUCTION

Let 𝕂 be an effective field. Consider a homogeneous system of polynomial equations

f1=⋯= fn=0,

where fi∈𝕂[x0,…,xn]. We are interested in the exact resolution of such a system through
the computation of a parametrization of its zero-set by a so-called primitive element; see
section 4.2 for a precise definition.

Throughout this paper, we assume that f1, …, fn are given in standard dense repre-
sentation. The total degree of each fi is written di, and we let Di≔d1⋯di. Our algorithm
requires the following regularity conditions:
R1. f1,…, fn is a regular sequence;
R2. The intermediate ideals Ii≔ (f1, …, fi) are absolutely radical, which means radical over

the algebraic closure �̄� of 𝕂, for i=1,…,n;
R3. di⩾2, for i=1,…,n.
Conditions R1 and R2 formalize the idea of a “generic system” in the sense that they are
likely to hold when the fi admit random coefficients. Under these conditions it is well
known that the system f1=⋯= fn=0 admits exactly Dn geometrically regular solutions
in the projective space ℙn over �̄�. Condition R3 is included for the sake of simplicity. It
is not restrictive because linear equations can be removed by means of linear Gaussian
elimination, and by performing a suitable linear change of the variables; see Remark 5.6.

1

We prove new probabilistic complexity bounds for computing all the solutions
in terms of a univariate parametrization by a primitive element. For finite fields 𝕂,
our bound is arbitrarily close to quadratic in the number of the solutions whenever
d1 = ⋯ = dn. Over the rational numbers 𝕂 = ℚ, we deduce a complexity bound that
is nearly linear in the expected bit size of the output of the algorithm. These results
improve upon the best previously known complexity bounds.

Notations
We set d̄≔max (d1, …, dn). In order to simplify the presentation of complexity bounds,
we use soft-Oh notation: f (n) ∈ Õ(g(n)) means that f (n) = g(n) log2

O(1)(g(n) + 3);
see [21, chapter 25, section 7] for technical details. The least integer larger or equal to x
is written ⌈x⌉; the largest one smaller or equal to x is written ⌊x⌋.

The 𝕂-vector space of polynomials of degree <d is written 𝕂[x]<d. The remainder
of the division of a by b is written a rem b. In order to express that an expression A is
explicitly computed modulo b, we write Amod b.

The Galois ring of characteristic p𝜅 and cardinality p𝜅k, writtenGR(p𝜅,k), is defined as

GR(p𝜅,k)≔(ℤ/p𝜅ℤ)[z]/(𝜃(z)),

with 𝜃 monic and irreducible modulo p.

1.1. Related work

The complexity of polynomial system solving is a central question in effective algebraic
geometry, which is still open. Except in some very special cases, no softly linear time
algorithms are known. In order to simplify the discussion, we assume that di ⩾ 2 for
i=1,…,n.

One known favorable special case concerns systems of bounded degrees di over𝕂=ℚ
that satisfy R1 and R2: in suitable bit complexity models (computation trees, or random
access memory machines), the variant of the Kronecker solver designed by Giusti, Lecerf
and Salvy [27] admits a softly linear running time for n→∞. This solver is probabilistic
of Las Vegas type, with a well understood probability of failure that can easily be made
arbitrarily small in practice; for details, see the recent work by Giménez and Matera [22].
The Kronecker algorithm has a long history, lying deep in Kronecker's work [44], but
it emerged after a series of seminal articles by Giusti, Heintz, Matera, Morais, Pardo,
and their collaborators in the nineties [24, 25, 26]; for the history of this algorithm along
with references, we refer to the introduction of [18].

Assume that the input polynomials are given as a straight-line program of size L
over𝕂without division (see the definition in [13] for instance) and that we use the com-
putation tree model for our complexity measures. If the cardinality of 𝕂 is sufficiently
large and the conditions R1 and R2 hold, then the Kronecker solver computes a parame-
trization of the solution set in terms of a primitive element using

LÕ(Dn
2) (1.1)

operations in 𝕂 and with a uniformly bounded probability of failure. The complexity
bound (1.1) essentially comes from [27, Theorem 1] by taking into account that Di+1 ⩾
2Di; this is detailed in section 5 below.

2 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Gröbner bases constitute another cornerstone for polynomial system solving. Algo-
rithms in this setting are usually deterministic, but their complexities are highly intricate
in general: they depend on both the system and the admissible ordering attached to
monomials. Complexities of unfavourable cases are doubly exponential in n; see a sum-
mary of known families in [21, chapter 21]. The first simply exponential bounds of the
form Dn

O(1) for zero dimensional systems are due to Giusti, Lazard and Lakshman in the
eighties [23, 45, 46, 47, 48]. The constant hidden behind the latter “O” may be related to
a feasible exponent𝜔 for linear algebra, in the sense that any two square matrices of size
n×n may be multiplied with O(n𝜔) operations in their coefficient ring. Basically one may
perform Gaussian elimination on Macaulay matrices: for instance, under R1 and for the
graduated reverse lexicographic ordering, the resolution requires O�n E �n+E

n �
𝜔� oper-

ations in 𝕂, where E=1+∑i=1
n (di −1) is the Macaulay bound; see [4], or [8, chapter 26]

for a proof from scratch, for instance.
At present time it is not known how to exploit the structure of Macaulay matrices to

perform Gaussian elimination in time quadratic in Dn or even in d̄n. One contribution
to this problem, due to Canny, Kaltofen, and Yagati [14], relies on sparse polynomial
interpolation and the Wiedemann solver. Further important results based on structured
linear algebra have been established by Mourrain, Pan, and Ruatta [56]: they proved
that the number of roots and of real roots can be computed with O(3n Dn

2 logDn) floating
point operations, and that all the 𝛿 (real) roots in a given box up to the error 2−b can
be computed with O((𝜇 + 𝜈) n 3n 𝛿 Dn

2 log Dn log b) floating point operations, where 𝜇
and 𝜈 depend linearly on log b as well as on the conditioning of the system. Yet another
important advance here is Faugère's F5 algorithm, which suppresses useless rows in
Macaulay matrices. However, its worst case complexity O(n (3 d̄)3n) remains essentially
cubic in Dn [3, 4]. Other methods derived or inspired by Macaulay's work have been
developed by Mourrain and Trébuchet [57, 58, 59].

For Gröbner bases of zero dimensional systems, monomial orderings may be changed
quite conveniently by means of linear algebra. This is known as the FGLM algorithm
(named after the initials of its authors, Faugère, Gianni, Lazard and Mora [20]) and
involves a cost O(n Dn

3). Recently, Faugère, Gaudry, Huot and Renault [19] decreased
it to Õ(Dn

𝜔). Nevertheless one must keep in mind that the best practical values for 𝜔
are only about 2.8, which is far from the best known theoretical bound <2.3728639, due
to Le Gall [49].

Another aspect of the present paper concerns multivariate modular composition, that
is the computation of f (g1, …, gn) rem h where f ∈𝕂[x1, …, xn], h∈𝕂[x] has degree d,
and g1, …, gn are in 𝕂[x]<d. When n = 1, the best known complexity bound O(d2 +

d� M(d)) for any field 𝕂 is due to Brent and Kung [11]. Their algorithm even yields
a sub-quadratic cost O(d𝜛 + d� M(d)) when using fast linear algebra; see [40, p. 185].
Here the constant 𝜛 > 1.5 is such that a n√ × n√ matrix over 𝕂 may be multiplied
with another n√ ×n rectangular matrix with O(n𝜛) operations in 𝕂. In [35, section 3]
we extended Brent and Kung's result to the multivariate setting. A major breakthrough
for the modular composition problem is due to Kedlaya and Umans [41, 42], in the case
when𝔸 is a finite field𝔽pk and more generally a finite ring of the form (ℤ/rℤ)[z]/(𝜃(z))
for any integer r and 𝜃 monic of degree k. For any fixed rational value 𝜀>0, they showed
that f (g1,…,gn) can be computed modulo h in time O(((d + 1)n k log p)1+𝜀) whenever
the partial degrees of f are ⩽d, and under the condition n= do(1); see [42, Theorem 7.1].
Extensions to compositions modulo triangular sets can be found in [63].

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

1.2. Our contributions

The first technical but important contribution of this paper concerns the refinement of
Kedlaya and Umans' complexity result on modular composition [41, 42]. In fact, in Corol-
lary 3.6 we achieve a sharper complexity bound in terms of the total degree d of f , that
is softly linear in the bit size O(k log p) of the coefficients, and that holds without the
assumption n = do(1). We also handle fast evaluations of f in a larger algebra of the
form 𝔽pk[e, y, t] / (e2, yM, Q(e, y, t)), where M ⩾ 1 and Q is monic in t of degree dn:
this is a particular case of composition modulo triangular sets studied in [63], for which
we also improve upon the dependency in the coefficient size. These new results are
based on our recent advances on multivariate multi-point evaluation algorithms [37].
At a more abstract level, our algorithm applies to any field𝕂 over which fast multi-point
multivariate polynomial evaluation exists. We recall that fast multivariate multi-point
evaluation remains an important open problem: no efficient algorithms are known over
a general abstract field𝕂 and we are not aware of any efficient implementations of Ked-
laya and Umans' method; for some recent progress on special cases, we refer to [34, 36].

Our main contributions concern the complexity of polynomial system solving. We
first prove a Las Vegas type probabilistic bit complexity bound Õ�Dn d̄(1+𝜀)(n−1) k log p�
over the finite field𝕂=𝔽pk, for the dense representation of input polynomials, and where
𝜀 > 0 is any fixed rational value: see Corollary 5.5. Whenever d1 = ⋯ = dn = d̄, this
bound is arbitrarily close to quadratic in the number of the roots Dn= d̄n of the system.
This improves upon previously known bounds. For example, the complexity bound (1.1)
simplifies to Dn

2+O(𝜀) whenever L⩽Dn
𝜀. With input polynomials given in dense repre-

sentation, the quantity L is of the order ∑i=1
n �di+n

n �. If all the di remain bounded and
if n tends to infinity, then we have

�di+n
n �∼ ndi

di!
.

Consequently, the expected complexity of the Kronecker solver becomes Õ(Dn
2), in

terms of the number of arithmetic operations in 𝕂. However, if the di are no longer
bounded, then �di+n

n � may grow with O(di
n) and the worst case complexity of the solver

becomes Õ�Dn
2 d̄n�.

Our next main result concerns the case 𝕂=ℚ. We assume that f1,…, fn have integer
coefficients of bit size ⩽h̄, and we achieve expected time Õ�Dn d̄(1+𝜀)n h̄�. Whenever
d1=⋯= dn = d̄, this time turns out to be nearly linear in the bit size of the output: see
the precise bound in Theorem 6.11. This complexity bound admits major consequences
for symbolic real solving, especially for algorithms based on the Kronecker solver; see
for instance [2] and references therein. Once a Kronecker parametrization is known, it is
also possible to appeal to univariate numerical solvers to deduce complex or real approx-
imations of the roots of the system; see for instance the book [55].

Let us briefly describe the structure of this paper. Section 2 is devoted to prerequisites
about the complexity model and fast multi-point polynomial evaluation. The next sec-
tion 3 deals with various particular cases of multivariate modular composition involved
in the Kronecker solver. Section 4 concerns the algebraic data structures needed by the
solver, along with general position and some of the randomness aspects. The solver is
itself recalled in section 5, that ends with our main result over the finite fields. Our main
complexity bound over the rational numbers is stated in the final section 6.

4 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

It may be helpful to notice that the probability analysis of our algorithms contains
two main stages. On the one hand, we need to put the system in general position and
prepare the main data structures. This part is handled in section 4. On the other hand,
for the sake of efficiency, some subalgorithms of the Kronecker solver involve additional
random parameters that must be taken outside certain proper closed subvarieties (see
Propositions 5.2 and 5.3), or integer parameters that must be coprime with a certain set
of bad primes (see Lemma 6.7). The probability of picking suitable random parameters
of this kind will be analyzed separately.

2. COMPLEXITY MODEL AND BASIC OPERATIONS

Throughout this paper, we will be working in the Turing machine model [61] with suffi-
ciently many tapes (seven tapes are usually sufficient in order to implement basic routines
on polynomials, series, and matrices in a natural way). The Kronecker algorithm is ran-
domized, so it also requires a special instruction to generate a random symbol in one
cell within constant time.

In some cases, algebraic structures have a natural bit size (e.g. modular integers,
finite fields); in other cases the size is variable (e.g. arrays, polynomials). In both cases
elements are represented on tapes as sequences of symbols, followed by a specific ter-
mination symbol ”#”. The reader must keep in mind that heads of the machine can just
move one cell left or right at each time step. Algorithms must take care of using data
in the most contiguous way as possible, and loop counters cannot be used for free.

The rest of the section gathers standard data types and elementary operations needed
in the next sections. We freely use well known complexity bounds on polynomials and
matrices from [21]; details about Turing machine implementations of these algorithms
can be found in [65].

2.1. Basic data types

Integers

We use binary representation for integers. A modular integer inℤ/rℤ is represented by
its natural preimage in {0,…, r − 1}. Integers can be added in linear time and multiplied
in softly linear time, i.e. Õ(n) for integers of bit size ⩽n. In fact at present time the best
known complexity bound for the product is O�n log n 4log

∗n�, where log∗ n=min �k∈
ℕ:log…k× logn⩽1�; see [29, 30, 31] and historical references therein. Integer divisions and
extended gcds in bit size ⩽n also take softly linear time [64]. We will also use truncated
p-adic integers, for which we refer the interested reader to [6] for practical algorithms.

Arrays

One dimensional arrays are sequences of elements terminated by “#”. For example the
vector (1, 0,1)∈𝔽23 is stored as 1#0#1##.

For bidimensional arrays we use column-major representation. This means that an
array (Ai, j)1⩽i⩽r,1⩽ j⩽c of size r × c (r rows and c columns), is stored as the vector of its
columns, i.e. ((A1,1,…,Ar,1), (A1,2,…,Ar,2),…, (A1,c, …,Ar,c)). Such arrays are allowed to
contain elements of different types and sizes. For example the matrix ((((((((((((1 1

0 0)))))))))))) over 𝔽2 is
stored as 1#0##1#0###. In the Turing machine model, we recall that the transposition of
a bidimensional array can be achieved in softly linear time:

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

LEMMA 2.1. [37, Lemma 2.3] Let A=(Ai, j) be an r×c matrix. Let bi, j denote the size of Ai, j for
all i, j, and define B≔∑i, j bi, j. Then A can be transposed in time O((B+ r c) logmin(r, c)).

Univariate polynomials

For univariate polynomials we use dense representation, which means that a polynomial
of degree d is stored as the vector of its d+1 coefficients from degrees 0 to d. Additions
and subtractions take linear time in d. Multiplying two polynomials over finite fields
may be achieved in softly linear time [15, 32].

In the present paper we consider finite rings of the form𝔸≔(ℤ/rℤ)[z]/(𝜃(z))with
r ⩾ 2 and 𝜃 ∈ (ℤ/ r ℤ)[z] monic of degree k. Elements of 𝔸 are stored as their natural
preimage inℤ[z]<k with coefficients in {0,…,r−1}. Additions and subtractions in𝔸 take
linear time, products take time Õ(k log r); see for instance [21, part II].

LEMMA 2.2. [37, adapted from Lemma 2.12] Let𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) be as above and let
A1,…,Am be polynomials in𝔸[x]<d. For any sequence of points 𝛼1,…,𝛼N in𝔸we may compute
A1(𝛼1),…,Am(𝛼1),…,A1(𝛼N),…,Am(𝛼N) in time mÕ((d+N)k log r).

LEMMA 2.3. [37, adapted from Lemma 2.14] Let𝔸≔GR(p𝜅,k) be a Galois ring, let 𝛼1,…,𝛼N
be elements in 𝔸 such that 𝛼i −𝛼j is invertible modulo p for all i≠ j, and let b1,…, bN be vectors
in𝔸m. We may compute the unique polynomials A1,…,Am in𝔸[z]<N such that Aj(𝛼i)=bi, j for
i=1,…,N and j=1,…,m in time mÕ(N 𝜅k log p).

Multivariate polynomials

For a polynomial f ∈𝔸[x1,…,xn]we use the recursive dense representation, by regarding f
as an element of 𝔸[x1][x2]…[xn]. In particular, f admits the same representation as its
expansion f = f0+ f1 xn+⋯+ fℓn−1 xn

ℓn−1∈𝔸[x1,…, xn−1][xn] as a univariate polynomial
in xn. In our algorithms, the number of variables n is not part of the representation of f ,
so it must be supplied as a separate parameter.

The support supp f of f ∈𝔸[x1,…,xn] is defined as the set of monomials with non-zero
coefficients and we write |supp f | for its cardinality. Assuming that, apart from the
mandatory trailing “#” symbol, the representations of coefficients in 𝔸 do not involve
other “#” symbols (this can always be achieved through suitable renamings # ↝ #𝔸),
we denote the number of “#” symbols involved in the representation of f by | f |#. We
notice that |supp f | ⩽ | f |#. For the remainder of this subsection, we assume that the
size of elements in 𝔸 is bounded by a constant s𝔸.

Example 2.4. The univariate polynomial f (x) = c0+ c1 x+⋯+ cd xd of degree d is repre-
sented by c0#c1#…cd##. The bivariate polynomial f (x1,x2)=c0,0+c0,1x1+(c1,0+c1,1x1) x2
is represented by c0,0#c0,1##c1,0#c1,1###.

LEMMA 2.5. [37, Lemma 2.5] Let f ∈𝔸[x1,…,xn] be of partial degree <ℓi in xi for i=1,…,n.
Then | f |#⩽∑i=1

n ℓ1⋯ℓi+1⩽n𝜋+1, where 𝜋≔ℓ1⋯ℓn⩾|supp f |.

LEMMA 2.6. [37, Lemma 2.6] Let f ∈𝔸[x1,…,xn] be a non-zero polynomial of total degree ⩽d.
Then | f |#⩽∑i=0

n �d+ i
i �⩽n𝜌+1, where 𝜌≔�d+n

n �⩾|supp f |.

LEMMA 2.7. [37, Lemma 2.7] The partial degree bounds ℓ1=1+degx1 f ,…,ℓn=1+degxn f of a
non-zero polynomial f ∈𝔸[x1,…,xn] can be computed in time O(| f |# (n+log𝜋)+|supp f | s𝔸),
where 𝜋≔ℓ1⋯ℓn.

6 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

LEMMA 2.8. [37, Lemma 2.8] The total degree d=deg f of a polynomial f ∈𝔸[x1,…, xn] can
be computed in time O(n | f |# log(d+3)+|supp f | s𝔸), with the convention that deg 0≔−1.

LEMMA 2.9. Let𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) be as above. Any partial derivative of f ∈𝔸[x1,…,xn]
of total degree ⩽d can be computed in time n𝜌 Õ(k log r), where 𝜌≔�d+n

n �.

Proof. In order to compute the partial derivative in xn, we run over all the coefficients of f
in time |supp f | Õ(k log r)+O(| f |#)=n𝜌 Õ(k log r) by Lemma 2.6.

If we are interested in the derivative in xi with i < n, then we reinterpret f as an
element of 𝔽pk[x1, …, xi][xi+1…, xn] and its derivative requires time |supp f | Õ(k log r)+
O(| f |#)=n𝜌 Õ(k log r). □

LEMMA 2.10. Let 𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) be as above, let f ∈𝔸[x1,…,xn] be of total degree d,
and let 𝛼 ∈𝔸. Then f (𝛼, x2, …, xn) may be computed in time |supp f | Õ(k log r) +O(| f |#) =
n𝜌 Õ(k log r), where 𝜌≔�d+n

n �.

Proof. We use Horner's method to evaluate univariate polynomials over 𝔸 at 𝛼 in softly
linear time. In total, the machine runs over the entire representation of f and the time
spent in arithmetic operations is at most 𝜌 Õ(k log r). □

LEMMA 2.11. [37, adapted from Lemma 2.13] Let 𝔸 ≔ (ℤ/ r ℤ)[z] / (𝜃(z)) be as above,
let f ∈ 𝔸[y]<M[x1, …, xn], and let 𝛼1, …, 𝛼N be elements in 𝔸. Then f (𝛼1, x1, …, xn), …,
f (𝛼K,x1,…,xn) can be computed in time

𝜌 (M+N)(Õ(log2 M)+min(log 𝜌, logN)) Õ(k log r)+O(N | f |#),

where 𝜌 is the cardinality of the support of f in the variables x1,…,xn.

At several places we will use the following bound on the cardinality of the support
of a polynomial in n variables and total degree d⩾2:

�d+n
n �

dn =�
i=1

n d+ i
i d =�

i=1

n

�1i +
1
d�⩽

3
2. (2.1)

For the sake of efficiency, a homogeneous polynomial f in the variables x0,…,xn has a ded-
icated representation made of f ♭(x1,…,xn)≔ f (1,x1,…,xn) and deg f . In this way, f can
be recovered as x0

deg f f ♭(x1/x0,…,xn/x0).

2.2. Multivariate multi-point evaluation
The problem called multivariate multi-point evaluation over an effective ring 𝔸 is the fol-
lowing: given f ∈𝔸[x1,…, xn] and points 𝛼1,…, 𝛼N in 𝔸n, compute f (𝛼1),…, f (𝛼N). The
first following statement concerns the cost of the naive evaluation algorithm in terms of
the total degree of f .

LEMMA 2.12. [37, adapted from Lemma 3.8] Let 𝔸≔ (ℤ/rℤ)[z]/(𝜃(z)) with 𝜃 monic of
degree k be as above, let f ∈𝔸[x1,…,xn] be of total degree ⩽d. Then we may evaluate f at a point
(a1,…,an)∈𝔸n in time n�d+n

n � Õ(k log r).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

In terms of the partial degrees of f , we will need the following better complexity
bounds that refine previous work by Kedlaya and Umans [41, 42]. The first theorem
takes partial degrees into account, while the second one is in terms of the total degree.

THEOREM 2.13. [37, Corollary 4.5] Let 𝜀> 0 be a fixed rational value. Let 𝔸≔(ℤ/rℤ)[z]/
(𝜃(z)) with 𝜃 monic of degree k, let f ∈𝔸[x1,…, xn] be of partial degree <ℓ in xi for i=1,…,n,
and let 𝛼1,…,𝛼N be a sequence of points in 𝔸n. Then we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀)n (N+(n ℓ log(n ℓ))n) Õ(n9 ℓ7 k log r).

THEOREM 2.14. [37, Corollary 4.6] Let 𝜀> 0 be a fixed rational value. Let 𝔸≔(ℤ/rℤ)[z]/
(𝜃(z)) with 𝜃 monic of degree k, let f ∈𝔸[x1,…,xn] be of total degree ⩽d, and let 𝛼1,…,𝛼N be a
sequence of points in 𝔸n. Then we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀)n(N+((3d+2n) log(3d+2n))n) Õ(n2d (d+n)6 k log r).

2.3. Linear changes of variables

The Kronecker solver needs to perform a linear change of variables of matrix N into
the input homogeneous polynomials. Let f be such a polynomial in GR(p𝜅,k)[x0,…,xn]
of total degree d, and let N = (Ni, j)0⩽i⩽n, 0⩽ j⩽n be a (n + 1) × (n + 1) matrix over
GR(p𝜅,k)[x0,…,xn]. We need to compute

(f ∘N)(x0,…,xn)≔ f (N0,0x0+⋯+N0,nxn,…,Nn,0x0+⋯+Nn,n xn).

A natural idea is to interpolate (f ∘ N)(1, x1, …, xn) from its values at Sn, where S is
a subset of 𝔽pk of cardinality d + 1. Such an interpolation is known to be computable
in time Õ((d + 1)n 𝜅 k log p); see Lemma A.8 of the appendix. On the other hand the
values of f at N({1} × Sn) may be obtained in time Õ((d+ 1)(1+𝜀)(n+1) 𝜅 k log p) by [37,
Proposition 5.7], for any fixed rational value 𝜀>0. However, this approach suffers from
two drawbacks: it does not take neither the homogeneity of f nor the structure of N({1}×
Sn) into account. At the end of Appendix A, we show the following sharper complexity
result:

PROPOSITION 2.15. Let f ∈GR(p𝜅,k)[x0,…,xn] be homogeneous of degree d⩾2, and let N be a
(n+1)×(n+1) matrix over GR(p𝜅, k). If pk>d and if a LU-decomposition of N is given, then
we may compute f ∘N in time Õ(dn𝜅 k log p).

3. FAST MULTIVARIATE MODULAR COMPOSITION

This section is devoted to multivariate modular composition, that is the evaluation of
a multivariate polynomial in 𝔸[x1, …, xn] at a point in 𝔼n, where 𝔼 ≔ 𝔸[t] / (Q(t))
with Q(t) monic. As recalled in the introduction, no fast algorithm is known for this
task over a general ring or field 𝔸. For the Kronecker solver presented in this paper,
the following particular instances of 𝔸 are needed: 𝔽pk[y] / (yM) and ℤ/ p𝜅 ℤ, along
with tangent numbers over theses rings. In this section, we design fast algorithms for
these cases, on the basis of Kedlaya and Umans' ideas, and new variants from [37].

8 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

If 𝜅 = 1, then GR(p𝜅, k) is the finite field 𝔽pk, whereas k = 1 corresponds to the ring
ℤ/p𝜅ℤ of the p-adic integers truncated to precision 𝜅. Until the end of the section we set

𝔸≔GR(p𝜅,k)[e,y]/(e2,yM), (3.1)

and

𝔼≔𝔸[t]/(Q(t)),

where Q∈𝔸[t] is a monic polynomial of degree D in t.

3.1. Reduction to evaluation

Let E(n, ℓ,d,N) represent a cost function for the multi-point evaluation of n-variate poly-
nomials over GR(p𝜅, k) with partial degrees <ℓ, total degree ⩽d, and for ⩽N evaluation
points. The following algorithm reduces modular composition to multi-point evalua-
tion.

Algorithm 3.1
Input. f ∈𝔸[x1,…,xn] of partial degrees <ℓ and of total degree ⩽d; A1,…,An in 𝔼.
Output. f (A1,…,An).
Assumptions. pk>d (max(D,M)−1).

1. Write
Āi(t) ≔Āi,0(y, t)+ Āi,1(y, t) e

for the canonical preimage of Ai in GR(p𝜅, k)[e, y, t], where Āi,0 and Āi,1 belong to
GR(p𝜅, k)[y, t] and have partial degrees <M in y and <D in t. In a similar manner
write

f̄ = f̄0(y,x1,…,xn)+ f̄1(y,x1,…,xn) e

for the preimage of f in GR(p𝜅,k)[e,y,x1,…,xn].
2. Build points 𝛼0, …, 𝛼d(max(D,M)−1)∈GR(p𝜅, k) whose reductions modulo p are pair-

wise distinct.
3. For i=0,…,d (M −1) and for j=0,…,d(D−1), compute

𝛽i, j≔�Ā1,0(𝛼i, 𝛼j),…, Ān,0(𝛼i, 𝛼j)� and �Ā1,1(𝛼i, 𝛼j),…, Ān,1(𝛼i, 𝛼j)�.

4. For i=0,…,d (M −1) compute 𝜑i(x1,…,xn)≔ f̄0(𝛼i,x1,…,xn) and 𝜓i(x1,…,xn)≔ f̄1(𝛼i,
x1,…,xn).

5. For i=0,…,d (M −1) and for j=0,…,d(D−1), compute

𝛾i, j≔𝜑i(𝛽i, j) and 𝛿i, j≔𝜓i(𝛽i, j)+�
k=1

n ∂𝜑i
∂xk

(𝛽i, j) Āk,1(𝛼i, 𝛼j).

6. Interpolate the polynomials h0 and h1 inGR(p𝜅,k)[y,t], of partial degrees⩽d (M−1)
in y and⩽d (D−1) in t, and such that h0(𝛼i,𝛼j)=𝛾i, j and h1(𝛼i,𝛼j)=𝛿i, j for all i=0,…,
d (M −1) and j=0,…,d(D−1).

7. Return h0(y, t)+h1(y, t) e reduced modulo (e2,yM,Q).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

PROPOSITION 3.1. Algorithm 3.1 is correct and takes time

(n+2)dME(n, ℓ,d,dD)+ Õ(nd2MD𝜅k log p)+ Õ(Mdn+1𝜅k log p),

whenever d⩾2.

Proof. First we verify that

f̄ �e,y, Ā1,…, Ān� = f̄0�y, Ā1,…, Ān�+ f̄1�y, Ā1,…, Ān� emod e2

= f̄0�y, Ā1,0,…, Ān,0�+(((((((((((((((((f̄1�y, Ā1,0,…, Ān,0�+�
k=1

n ∂ f̄0
∂xk

�y, Ā1,0,…, Ān,0� Āk,1))))))))))))))))) emod e2.

Therefore, for all i=0,…,d (M −1) and j=0,…,d(D−1) we obtain

f̄ �e,y, Ā1,…, Ān�(e, 𝛼i, 𝛼j)

= 𝜑i(𝛽i, j)+(((((((((((((((((𝜓i(𝛽i, j)+�
k=1

n ∂𝜑i
∂xk

(𝛽i, j) Āk,1(𝛼i, 𝛼j)))))))))))))))))) emod e2

= h0(𝛼i, 𝛼j)+h1(𝛼i, 𝛼j) emod e2.

Since f̄ �e,y, Ā1,…, Ān� mod e2 has partial degrees ⩽d (M −1) in y and ⩽d (D−1) in t, we
deduce

f̄ �e,y, Ā1,…, Ān�mod e2=h0(y, t)+h1(y, t) e,

whence the correctness of the algorithm.
The rewriting in step 1 takes linear time. The construction of the points in step 2 costs

Õ(dmax(D,M)𝜅k log p). In step 3 we appeal to Lemma 2.2 in order to obtain

Ā1(e, 𝛼0, t),…, Ān(e, 𝛼0, t),…, Ā1(e, 𝛼d(M−1), t),…, Ān(e, 𝛼d(M−1), t)

in time Õ(ndMD𝜅k log p), and then to obtain

Ā1(𝛼i, 𝛼0),…, Ān(𝛼i, 𝛼0),…, Ā1(𝛼i, 𝛼d(D−1)),…, Ān(𝛼i, 𝛼d(D−1))

for i = 0, …, d (M − 1) in time Õ(n d2 M D 𝜅 k log p). Notice that the required data
reorganizations can be done in softly linear time thanks to Lemma 2.1.

The cost of step 4 is provided by Lemma 2.11,

𝜌dMÕ(log2 M+log(dM)) Õ(𝜅k log p)+O(dM | f |#),

and simplifies to Õ(Mdn+1𝜅k log p) by (2.1) and Lemma 2.6.
The derivations in step 5 incur Õ(M dn 𝜅 k log p) by Lemma 2.9. Taking into account

data reorganizations via Lemma 2.1, the total cost of step 5 is

(n+2)dME(n, ℓ,d,dD)+ Õ(nd2MD𝜅k log p)+ Õ(Mdn𝜅 k log p).

In step 6, the interpolations amount to Õ(d2M D 𝜅 k log p) by Lemma 2.3. Finally step 7
takes additional time Õ(d2MD𝜅 k log p). □

3.2. Main complexity bound
Our main complexity bound for modular composition is presented in the next theorem,
under the condition that sufficiently many evaluation points are at our disposal. For
convenience we recall the following lemma.

10 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

LEMMA 3.2. [37, Lemma 4.7] For all positive integers n,d we have

log �d+n
n �⩽n log((((((((((1+ d

n))))))))))+d log(((((((1+ n
d))))))).

THEOREM 3.3. Let 𝜀>0 be a fixed rational value, assume that d⩾2 and that

pk>max�d, (1+𝜀)�8𝜀 +1�nd𝜀/8�(max(M,dn)−1). (3.2)

Let f ∈𝔸[x1,…,xn] be of total degree⩽d and let A1,…,An be in𝔼≔𝔸[t]/(Q(t)), with Q monic
in t of degree ⩽dn. Then f (A1,…,An) can be computed in time

Õ(Md(1+3𝜀)n𝜅k log p).

Proof. Let 𝛾>0 be such that
log(1+𝛾)+𝛾 log(1+1/𝛾)⩽log(1+𝜀).

First we examine the case d⩽𝛾n. Lemma 3.2 and the fact that the function

𝛾↦log(1+𝛾)+𝛾 log(1+1/𝛾)
is nondecreasing yield

log �d+n
n �⩽n((((((((((log((((((((((1+ d

n))))))))))+ d
n log�1+

n
d�))))))))))⩽(log(1+𝛾)+𝛾 log(1+1/𝛾))n,

so we have �d+n
n �⩽(1+𝜀)n. By adapting Lemma 2.12 to 𝔼, the cost of the naive modular

evaluation is (1+𝜀)n Õ(Mdn𝜅 k log p)= Õ(Md(1+2𝜀)n𝜅 k log p), since d⩾2.
From now we assume that 𝛾 n < d holds. We set m ≔ ⌈8/𝜀⌉. If d is bounded then

so is n and the above adaptation of Lemma 2.12 may again be used to achieve a naive
evaluation cost in Õ(M dn 𝜅 k log p). Consequently, we may further assume that d is
sufficiently large to satisfy

(3+2/𝛾) log((3+2/𝛾)d)⩽d𝜀, d+1⩽d1+𝜀, and m⩽log d. (3.3)

We perform the multivariate Kronecker segmentation of f into f
˘

which has n
˘
≔ m n

variables and partial degrees <ℓ
˘
i as follows. We let

ℓ≔d+1, ℓ
˘
i≔⌊ℓ1/m⌋ for i=1,…,m−1, and ℓ

˘
m≔�ℓ/�ℓ

˘
1⋯ℓ

˘
m−1��,

and introduce the Kronecker substitution map

Kℓ
˘
1,…,ℓ

˘
m
: GR(p𝜅,k)[x1,1,…,x1,m,…,xn,1,…,xn,m] → GR(p𝜅,k)[x1,…,xn]

xi, j ↦ xi
ℓ
˘
1⋯ℓ

˘
j−1 for i=1,…,n, j=1,…,m.

We set f
˘
≔Kℓ

˘
1,…,ℓ

˘
m

−1 (f) and d
˘
≔�ℓ

˘
1+⋯+ℓ

˘
m�n−n

˘
. Observe that we have ℓ

˘
1=⋯=ℓ

˘
m−1⩽ℓ

˘
m

and ℓ⩽ℓ
˘
1⋯ℓ

˘
m. From

ℓ1/m −1<ℓ
˘
i⩽ℓ1/m for i=1,…,m−1

and
ℓ/�ℓ

˘
1⋯ℓ

˘
m−1�⩽ℓ

˘
m<ℓ/�ℓ

˘
1⋯ℓ

˘
m−1�+1

we deduce that
ℓ
˘
1⋯ℓ

˘
m<ℓ+ℓ(m−1)/m=ℓ(1+ℓ−1/m).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

Still by allowing d to be sufficiently large we may further assume that

ℓ
˘
1⋯ℓ

˘
m⩽(1+𝜀)m ℓ and ℓ

˘
m⩽(1+𝜀)d1/m. (3.4)

On the one hand, by [37, Proposition 5.1] and (3.3), the computation of f
˘

takes time

(1+𝜀)mn Õ(ℓn𝜅k log p)=(1+𝜀)mn Õ(d(1+𝜀)n𝜅 k log p).

On the other hand, for i=1,…,n we compute

�A
˘

i,1,…,A
˘

i,m�≔�Ai,Ai
ℓ
˘
1,…,Ai

ℓ
˘
1⋯ℓ

˘
m−1�,

by binary powering, in time Õ(Mdn𝜅k log p). We may now compute f (A1,…,An) as

f (A1,…,An)= f
˘
�A
˘
1,1,…,A

˘
1,m,…,A

˘
n,1,…,A

˘
n,m�.

Since (3.4) ensures

d
˘
⩽�ℓ

˘
1+⋯+ℓ

˘
m�n⩽(1+𝜀)mnd1/m⩽(1+𝜀)�8𝜀 +1�nd𝜀/8,

the condition (3.2) allows us to combine Proposition 3.1 and Theorem 2.13. This yields
the complexity bound

(n
˘
+2)d

˘
ME(n

˘
, ℓ
˘
,d
˘
,d
˘
dn)+ Õ(n

˘
d
˘
2Mdn𝜅k log p)+ Õ(Md

˘
n+1𝜅k log p)

⩽ (n
˘
+2)d

˘
ME(n

˘
, ℓ
˘
,d
˘
,d
˘
dn)+ Õ(d

˘
2Mdn𝜅k log p)

⩽ (1+𝜀)mn d
˘
M �d

˘
dn+(mn ℓ

˘
m log(mn ℓ

˘
m))mn� Õ((mn)10 ℓ

˘
m
7 𝜅 k log p)

+ Õ(d
˘
2Mdn𝜅k log p)

= (1+𝜀)mn M (d1/m+(mn (1+𝜀) log((1+𝜀)mnd1/m))mn)
× Õ(dn+𝜀𝜅 k log p) (using (3.4))

⩽ (1+𝜀)mn M (d1/m+(cnc log d)mn) Õ(dn+𝜀𝜅k log p),

for a suitable constant c. If d𝜀n⩾(cnc log d)mn, then this bound further simplifies to

(1+𝜀)mn Õ(Md(1+𝜀)n+𝜀𝜅 k log p).

Otherwise we have d𝜀n < (c nc log d)mn which implies that d = nO(1). In this case, the
condition (3.2) allows us to combine Proposition 3.1 and Theorem 2.14, in order to obtain
f (A1,…,An) in time

(n+2)dME(n, ℓ,d,ddn)+ Õ(d2Mdn𝜅k log p)
⩽ (n+2)(1+𝜀)ndM (dn+1+((3d+2n) log(3d+2n))n) Õ(n2d(d+n)6𝜅k log p)

+ Õ(Mdn+2𝜅 k log p)
= (1+𝜀)n((3+2/𝛾) log((3+2/𝛾)d))n Õ(Mdn𝜅k log p),

which simplifies to (1+𝜀)n Õ(Md(1+𝜀)n𝜅k log p) thanks to (3.3).
Overall we have proved a complexity bound (1+𝜀)mn Õ(Md(1+2𝜀)n𝜅 k log p). Taking

into account that m⩽log d, from (3.3), it follows that (1+𝜀)mn⩽d𝜀n, which concludes the
proof. □

3.3. Extension of the residue field
In order to generalize Theorem 3.3 to small residue fields, namely whenever
inequality (3.2) does not hold, we extend the cardinality of the ground ring. We will
rely on the following construction.

12 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

LEMMA 3.4. Let GR(p𝜅, k)=(ℤ/p𝜅ℤ)[z]/(𝜃(z)) be a Galois ring, and let l be an integer that
is coprime with k. Then we may compute a monic irreducible polynomial 𝜌 ∈ 𝔽p[y] of degree l
in time Õ(l2 log2 p) with any fixed arbitrarily low probability of failure, or in expected time
Õ(l2 log2 p) with a Las Vegas algorithm. Then we may build the Galois ring GR(p𝜅, k l) as
(ℤ/p𝜅ℤ)[z]/(𝜈(z)), such that the following isomorphism holds:

Φ: (ℤ/p𝜅ℤ)[y,z]/(𝜌(y),𝜃(z)) → (ℤ/p𝜅ℤ)[u]/(𝜈(u))
y ↦ 𝛾(u)
z ↦ 𝜂(u)≔u/𝛾(u),

for some polynomials 𝛾 and 𝜂 in (ℤ/p𝜅ℤ)[u]<kl. The polynomials 𝜈, 𝛾 and 𝜂 can be computed
in time Õ(l𝜔+2𝜅 k log p). Each application of Φ and Φ−1 takes time Õ(l2𝜅 k log p).

Proof. The polynomial 𝜌 can be obtained by using Ben-Or's randomized algorithm [21,
Theorem 14.42]. Since k and l are coprime, a natural candidate for 𝜈(z) is the composed
product of 𝜃 and 𝜌 (usually written 𝜃⊙𝜌),

𝜈(z)≔ �
𝜃(𝜁)=0

�
𝜌(𝜉)=0

(z−𝜁 𝜉)= �
𝜌(𝜉)=0

𝜉 k𝜃(𝜉 −1z). (3.5)

It is well known that 𝜈 is irreducible of degree k l. Let 𝜃(u, y) ≔ 𝜃(y−1 u) mod 𝜌(y), that
can be computed in time Õ(l𝜅 k log p). We construct 𝜈 as the monic part of the resultant
Resy(𝜌(y), 𝜃(u, y)) in y and we write A(u) y − B(u) for the corresponding subresultant
of degree 1 in y. For subresultants over Galois rings, we need to compute the necessary
minors of the Sylvester matrix by means of Berkowitz' algorithm [5]. In this manner 𝜈, A
and B can be obtained in time Õ(l𝜔+2𝜅 k log p).

It is well known that A is invertible modulo 𝜈, so we compute 𝛾(u) ≔
A(u)−1B(u)mod 𝜈(u) and 𝜂(u)≔u/𝛾(u) in time Õ(l𝜅k log p).

Let us consider an element 𝛼∈GR(p𝜅,k) represented by a(z)∈(ℤ/p𝜅ℤ)[z]<k, and

A(u)≔TrGR(p𝜅,l)/(ℤ/p𝜅ℤ)((((((((((((((((((((((((((((a(y−1u)((((((((((((((𝜈(u)
𝜃(u,y)))))))))))))))

−1
mod 𝜃(u,y))))))))))))))) 𝜈(u)

𝜃(u,y))))))))))))))),
where GR(p𝜅, l)=(ℤ/p𝜅ℤ)[y]/(𝜌(y)). Equivalently, we have

A(u)= �
𝜌(𝜉)=0

((((((((((a(𝜉 −1u)((((((((((𝜈(u)
𝜃(𝜉 −1u)))))))))))

−1
mod 𝜃(𝜉 −1u))))))))))) 𝜈(u)

𝜃(𝜉 −1u)
,

which corresponds to the usual Chinese remaindering formula associated to the factor-
ization (3.5) of 𝜈.

We observe that A(u) rem 𝜃(𝜉 −1 u) = a(𝜉 −1 u) for all roots 𝜉 of 𝜌. Consequently,
for all roots 𝜁 𝜉 of 𝜈 with 𝜃(𝜁) = 0, we have A(𝜁 𝜉) = a(𝜁). It follows that A actually
represents Φ(𝛼). It can be computed in time Õ(l2𝜅k log p).

In the other direction, given a preimage A(u) of a∈(ℤ/p𝜅ℤ)[u]/(𝜈(u)), we obtain
Φ−1(a) as A(yz)mod (𝜌(y),𝜃(z)), in time Õ(l2𝜅k log p). □

Remark 3.5. In the latter proof we could have appealed to faster algorithms to build irre-
ducible polynomials, such as the ones of [16, 60, 67]. In addition, faster algorithms are
known to obtain 𝜈 in specific cases; see [9, 28, 51]. For simplicity we have preferred to
restrict to general well known algorithms, because the complexity bound of Lemma 3.4
is to be used only when l is rather small.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13

The following corollary aims at completing Theorem 3.3 for small residue fields. It
will not be used in the sequel because the extension of the residue field will instead be
handled at the top level of the Kronecker solver.

COROLLARY 3.6. Let 𝜀>0 be a fixed rational value, let 𝔸 be as in (3.1), and assume that d⩾2.
Let f ∈𝔸[x1,…,xn] be of total degree⩽d and let A1,…,An be in𝔼≔𝔸[t]/(Q(t)), with Q monic
in t of degree⩽dn. Then f (A1,…,An) can be computed using a probabilistic Las Vegas algorithm
in expected time

Õ(Md(1+𝜀)n𝜅 k log p).

Proof. Notice that the total degree of f may be obtained in time Õ(M dn 𝜅 k log p) by
Lemmas 2.6, 2.8 and inequality (2.1). It remains to handle the case when (3.2) does not
hold in Theorem 3.3. In other words, assume that

k log p=O(n log d+logM).

We first compute the smallest integer l
¯

such that

pkl
¯>max�d, (1+𝜀)�8𝜀 +1�nd𝜀/8�(max(M,dn)−1),

that is

l
¯
≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈
⌈⌈⌈⌈
⌈
⌈ log�max�d, (1+𝜀)�8𝜀 +1�nd𝜀/8�(max(M,dn)−1)�

k log p ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉
⌉⌉⌉⌉
⌉
⌉
=O((((((((((n log d+logM

k log p)))))))))),
and we set

l≔min{i k+1 : i∈ℕ, i k+1⩾ l
¯
},

so l is coprime to k and
k l log p=O((n log d+logM)2).

We next apply Lemma 3.4, from which we borrow the notation: 𝜌 ∈𝔽p[z] of degree l is
obtained in expected time Õ(l2 log2 p)= Õ((n log d+ log M)2); the computation of 𝜈, 𝛾,
and 𝜂 requires time Õ(l𝜔+2𝜅 k log p)= Õ((n log d+logM)2(𝜔+2)𝜅).

With this construction in hand we set

�̄�≔GR(p𝜅,k l)[e,y]/(e2,yM),
and

�̄�≔�̄�[t]/(Q(t)),

and we proceed as follows for the modular composition problem:
• We cast Q into �̄�[t] in time Õ(Mdn l2𝜅k log p)= Õ(Mdn𝜅);
• We cast f into �̄�[x1,…,xn] in time Õ(Mdn l2𝜅k log p)= Õ(Mdn𝜅);
• We cast A1,…,An into �̄� in time Õ(nMdn l2𝜅k log p)= Õ(Mdn𝜅);
• By Theorem 3.3, we can evaluate f (A1,…,An) in �̄� in time

Õ(Md(1+3𝜀)n𝜅k log p).

• We cast f (A1,…,An) into 𝔼 in time Õ(Mdn𝜅).
Adding up, we obtain the claimed complexity bound—up to replacing 𝜀 by 𝜀/3 from the
outset. □

14 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

4. DATA STRUCTURES AND RANDOMNESS ISSUES

Consider a polynomial system f1=⋯= fn=0 over an effective field𝕂, which satisfies the
regularity assumptions R1, R2, and R3. In the next section, we will recall the Kronecker
algorithm that solves such a system. But before, we prepare the terrain by presenting
a few concepts and data structures that will be necessary, and by discussing how to put
the system into a sufficiently general position via a random linear change of coordinates.

Under our regularity assumptions, and letting Ii≔(f1,…, fi), the coordinate ring𝔹i≔
𝕂[x0, …, xn]/ Ii has dimension r= n − i and degree Di ≔ d1⋯ di by the Bézout theorem.
In particular the system f1=⋯= fn=0 admits Dn distinct solutions in ℙn, which are all
regular. After applying a generic affine change of coordinates, the Kronecker solver first
solves the system f1=0 then f1= f2=0, ..., and so on until f1=⋯= fn=0. We first study
how to perform this change of variables. Next we explain how positive dimensional
solution sets of the intermediate systems f1=⋯= fi=0 are represented.

4.1. Noether position
An homogeneous ideal I of 𝕂[x0, …, xn] is said to be in Noether position when I ∩
𝕂[x0,…,xr] = (0) and 𝔹 ≔𝕂[x0, …, xn] / I is an integral ring extension of 𝕂[x0, …, xr],
where r ≔ dim 𝔹. Let X be the column vector with entries x0, …, xn. If M is an invert-
ible (n+1)×(n+1) matrix over 𝕂, then we write

I ∘M≔(f (MX) : f ∈ I).

If I is generated by a proper regular sequence f1, …, fn, then we say that a matrix M
puts the intermediate ideals Ii ∘M in simultaneous Noether position if Ii ∘M is in Noether
position for all i = 1, …, n. Let us now examine the probability that this happens for
an upper triangular matrix M with ones on the diagonal and random entries above the
diagonal.

LEMMA 4.1. Let f1,…, fn satisfy R1, R2, and R3. Given a finite subset S of 𝕂 of cardinality |S|,
consider the matrix

M≔

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

(1 𝛼1,0 𝛼2,0 ⋯ 𝛼n−1,0 𝛼n,0
1 𝛼2,1 ⋮1 ⋱ ⋮

⋱ 𝛼n−1,n−2
1 𝛼n,n−1

1)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)

where the 𝛼i, j are taken at random in S. Then the probability that M puts I1 ∘M,…, In ∘M into
simultaneous Noether position is at least 1− 2Dn

|S| .

Proof. We use the incremental method described in the proof of [18, Theorem 1.9] as
follows (for historical references, we also refer to [18]). The values (𝛼n,0, …, 𝛼n,n−1) are
taken such that the coefficient of xn

D1 in f1(x0+𝛼n,0 xn,…, xn−1+𝛼n,n−1 xn, xn) is non-zero.
For such values the ideal I1∘M is in Noether position.

Then we consider the determinant c2 of the multiplication endomorphism by f2 in
𝕂(x0, …, xn−1)[xn] /(I1 ∘ M): it belongs to 𝕂[x0, …, xn−1] ∩ (I2 ∘ M) and has degree D2.
The values (𝛼n−1,0, …, 𝛼n−1,n−2) such that the coefficient of xn−1

D2 in c2(x0 + 𝛼n−1,0 xn−1, …,
xn−2+𝛼n−1,n−2xn−1,xn−1) is non-zero put I2∘M into Noether position.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 15

By induction we consider the determinant ci+1 of the multiplication endomorphism
by fi+1 in 𝕂(x0,…, xn−i)[xn−i+1,…, xn]/(Ii ∘M): it belongs to 𝕂[x0,…, xn−i−1]∩ (Ii+1 ∘M)
and has degree Di+1. The values (𝛼n−i,0, …, 𝛼n−i,n−i−1) such that the coefficient of xn−i

Di+1

in ci+1(x0+𝛼n−i,0 xn−i, …, xn−2+𝛼n−i,n−i−1 xn−i, xn−i) is non-zero put Ii+1 ∘M into Noether
position. By taking into account the fact that Di+1⩾2Di, the Schwartz–Zippel lemma [66,
69] leads to a probability of success at least

(((((((1− D1
|S|)))))))(((((((1− D2

|S|)))))))⋯(((((((1− Dn
|S|)))))))⩾1− 1

|S| (D1+⋯+Dn)⩾1− 2Dn
|S| . □

4.2. Primitive element
Let I be an absolutely radical ideal of 𝕂[x1, …, xn] such that the coordinate ring 𝔹 ≔
𝕂[x1,…,xn]/I is zero dimensional—here we consider the affine case when I is not neces-
sarily homogeneous. A polynomial u∈𝕂[x1,…,xn] is said to be a primitive element for 𝔹
if the projections of its powers generate𝔹 as a𝕂-vector space. Let D represent the degree
of 𝔹 (i.e. its dimension as a 𝕂-vector space).

LEMMA 4.2. Under the above assumptions, given a finite subset S of 𝕂, the probability that
a random vector (𝜆1, …, 𝜆n) ∈ Sn induces a primitive element u = 𝜆1 x1 + ⋯ + 𝜆n xn of 𝔹
is >1−2D2/|S|.

Proof. The minimal polynomial q(t) of u in 𝔹 actually belongs to 𝕂[𝜆1, …, 𝜆n][t] when
the 𝜆i are regarded as parameters, and the total degree in the 𝜆i is⩽D; see for instance [18,
Corollary 3.4]. The points (𝜆1, …, 𝜆n) to be avoided are the zeros of the discriminant
of q, seen as a polynomial of total degree ⩽D (2 D − 1) in 𝜆1, …, 𝜆n. We conclude by
the aforementioned Schwartz–Zippel lemma. □

For a primitive element u there exist unique polynomials q,v1,…,vn∈𝕂[t] such that
deg q=D, q is monic and separable, deg vi<D, and

I = (q(u),x1−v1(u),…,xn−vn(u)).

The polynomials q,v1,…,vn are called the parametrization of I by u. Equivalently, we may
define wi=q′vi rem q for i=1,…,n, whence

I = (q(u),q′(u)x1−w1(u),…,q′(u)xn−wn(u)).

These polynomials q, w1, …, wn are called the Kronecker parametrization of I by u; such a
parametrization is uniquely determined by u.

LEMMA 4.3. Let f1,…, fn satisfy R1, R2, and R3 and such that the Ii are simultaneously in Noether
position for i=1,…,n. Given a finite subset S of 𝕂, the probability that a vector (𝜆1,…,𝜆n)∈Sn

induces a primitive element u=𝜆1x1+⋯+𝜆n xn common to all 𝔼i≔𝕂(x0,…,xn−i)[xn−i+1,…,
xn]/Ii for i=1,…,n is >1−4Dn

2/|S|.

Proof. Each 𝔼i has dimension Di as a 𝕂(x0,…, xn−i)-vector space [18, section 2.4 and the
relationship to the geometric definition of the degree of an algebraic variety in Corol-
lary 3.10]. By the previous lemma and the fact that Di+i⩾ 2Di, the probability that u is
primitive for all 𝔹i is at least

((((((((((((((1− 2D1
2

|S|))))))))))))))((((((((((((((1− 2D2
2

|S|))))))))))))))⋯((((((((((((((1− 2Dn
2

|S|))))))))))))))⩾1− 2
|S| (D1

2+⋯+Dn
2)>1− 4Dn

2

|S| . □

16 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

4.3. Lifting fiber
Let f1,…, fn satisfy R1, R2, and R3, be in simultaneous Noether position, and let

𝔼i≔𝕂(x0,…,xn−i)[xn−i+1,…,xn]/Ii

for i= 1, …, n. Thanks to Noether positions, the system f1=⋯= fn = 0 has all its roots
in the affine space. More generally given a point (a1, …, an−i) ∈ 𝕂n−i all the roots of
Ii+(x1− a1x0,…,xn−i − an−i x0) are in the affine space. A point (a1,…, an−i)∈𝕂n−i is called
a lifting point if Ii+(x1− a1x0,…,xn−i − an−i x0) is absolutely radical.

LEMMA 4.4. Under the latter conditions, given a finite subset S of 𝕂, the probability that a vector
(a1,…,an)∈Sn is a simultaneous lifting point for I1,…, In is >1−4Dn

2/|S|.

Proof. Without loss of generality we may assume that 𝕂 is algebraically closed, so we
may consider a primitive element u that is common to all 𝔼i, thanks to Lemma 4.3. The
minimal polynomial q(t) of u in 𝔼i is homogeneous in 𝕂[x0,…,xn−i, t] of degree Di, and
is monic and separable in t. Any point (a1, …, an−i) such that the specialization of q at
x1= a1,…,xn−i= an−i is separable ensures that Ii+(x1− a1x0,…,xn−i − an−i x0) is absolutely
radical; see for instance [18, Proposition 3.6]. The probability of picking such a point at
random in Sn−i is at least 1 − 2 Di

2/ |S| by the Schwartz–Zippel lemma. The probability
that (a1,…,an)∈Sn satisfies the requested property is thus at least

((((((((((((((1− 2D1
2

|S|))))))))))))))((((((((((((((1− 2D2
2

|S|))))))))))))))⋯((((((((((((((1− 2Dn
2

|S|))))))))))))))⩾1− 2
|S| (D1

2+⋯+Dn
2)>1− 4Dn

2

|S| ,

again by using Di+1⩾2Di. □

4.4. Random parameter summary
Assume that we are given a polynomial system f1=⋯= fn=0 that satisfies R1, R2 and R3.
In order the make the Kronecker algorithm work, the following conditions are required
for i=1,…,n:
V1. Ii is in Noether position,
V2. the ideal İi≔ Ii+(x0−1,x1,…,xn−i) of 𝕂[xn−i+1,…,xn] is absolutely radical.

LEMMA 4.5. Let f1, …, fn satisfy R1, R2 and R3, and let S be a finite subset of 𝕂n. If we take
(𝛼i, j)0⩽i< j⩽n in Sn(n+1)/2 at random, as well as (a1,…,an) in Sn, and if we let

N≔

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

(1 𝛼1,0 𝛼2,0 ⋯ 𝛼n−1,0 𝛼n,0
1 𝛼2,1 ⋮1 ⋱ ⋮

⋱ 𝛼n−1,n−2
1 𝛼n,n−1

1)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

(1
a1 1

⋮ ⋱

an 1)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)
,

then V1 and V2 are satisfied with probability >1−5Dn
2/|S| after replacing f1,…, fn by f1 ∘N,…,

fn∘N.

Proof. We first pick up a matrix M at random as in Lemma 4.1 in order to get simulta-
neous Noether positions. Then comes the choice of the lifting point, for which we use the
strategy presented in the proof of Lemma 4.4. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17

4.5. A posteriori verification
At the end of the resolution, unless the execution has failed, we expect to obtain an invert-
ible (n+1)×(n+1) matrix N over 𝕂 and polynomials q,v1,…,vn such that q is separable
of degree Dn, the vj have degree <Dn, and

I ∘N+(x0−1)=(q(u),x0−1,x1−v1(u),…,xn −vn(u)).

On the other hand, I being absolutely radical, its roots are all regular, q is separable,
and the value of the Jacobian matrix of f1 ∘N, …, fn ∘N in x1, …, xn at 1, v1(t), …, vn(t) is
invertible modulo q(t); see for instance [18, section 4.2].

One natural question at the end of a probabilistic resolution process is to determine
whether the computed solution set is correct or not. In the case of sufficiently generic sys-
tems, namely satisfying R1 and R2, it is sufficient to verify that Dn regular solutions have
been found. This idea is formalized in the following proposition, which turns a proba-
bilistic resolution algorithm into a Las Vegas one.

PROPOSITION 4.6. Consider homogeneous polynomials f1, …, fn in 𝕂[x0, …, xn], an invertible
(n+1)×(n+1) matrix N, a linear form u∈𝕂[x1,…,xn], and polynomials q,v1,…,vn in 𝕂[t]
that satisfy the following conditions:
• q is separable of degree Dn, the vj have degree <Dn,
• u(v1(t),…,vn(t))= t,
• (fi ∘N)(1,v1(t),…,vn(t))=0 rem q(t) for all i=1,…,n,
• the Jacobian matrix in x1, …, xn of f1 ∘ N, …, fn ∘ N is invertible at (1, v1(t), …, vn(t))

modulo q(t).
Then, R1 and R2 are satisfied, the ideal I ∘N=(f1 ∘N,…, fn ∘N) is in Noether position, and q,
v1,…,vn form a parametrization of I ∘N+(x0−1) by u.

Let 𝜀>0 be a fixed rational value, and assume that R3 holds. If 𝕂=𝔽pk and if

pk>max�d̄, (1+𝜀)�8𝜀 +1�n d̄𝜀/8��d̄n−1�,

then the above conditions can be checked in time Õ�d̄(1+3𝜀)n k log p�.

Proof. The assumptions ensure that the system f1 ∘N=⋯= fn ∘N=0 admits Dn distinct
isolated regular solutions in the affine subspace defined by x0 = 1. By Bézout's the-
orem, this system has therefore no solution at infinity, namely in the hyperplane defined
by x0=0.

For i = 1, …, n, let 𝒱(f1, …, fi) denote the variety of zeros of f1 = ⋯ = fi = 0. Let us
first show that R1 is satisfied. If it were not, then there would exist a smallest index
i < n for which dim 𝒱(f1, …, fi) = n − i and dim 𝒱(f1, …, fi+1) = n − i. In other words
𝒱(f1, …, fi+1) would have a (non-empty) equidimensional component W of dimension
n − i and a possibly empty component W ′ of dimension n − i − 1. Heintz' version of the
Bézout theorem [33, Theorem 1] would imply that

degW+degW ′⩽Di di+1=Di+1,

whence degW ′<Di+1. Therefore the number of isolated roots of f1=⋯= fn=0would be

deg(W ′∩𝒱(fi+2,…, fn))<Di+1di+2⋯dn⩽Dn,

which contradicts the fact that f1=⋯= fn= 0 admits Dn distinct isolated regular solu-
tions.

18 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Let i be in {1, …, n}. We consider a non-zero homogeneous polynomial g(x0, xi) in
I ∘ N. We write g into g(x0, xi) = c(x0) h(x0, xi) with h primitive as a polynomial of
𝕂[x0][xi] and c(x0) a monomial in x0. In particular h is monic in xi and h vanishes at all
the points of 𝒱(I ∘N), so it belongs to I ∘N� . This shows that the class of xi in 𝕂[x0,…,
xn]/(I ∘N) is integral over 𝕂[x0] when seen as an element of 𝕂[x0, …, xn]/(I ∘N). We
deduce that I ∘N is in Noether position; for instance by using [18, Theorem 1.12].

Now let us show that R2 is satisfied. Consider an irreducible component W of
𝒱(f1,…, fi) for some index i⩽ n and then a point P in W ∩ 𝒱(fi+1, …, fn), which is non-
empty in the projective setting. This point P is a solution of f1 = ⋯ = fn = 0, and as
such, the value of the Jacobian matrix of f1,…, fn at P has full rank by hypothesis. There-
fore, the Jacobian matrix of f1, …, fi has full rank over a Zariski dense subvariety of W.
It follows that the primary component associated to W is necessarily prime. On the other
hand, R1 implies that Ii is unmixed by [53, chapter 7, section 17]; in other words, Ii has
no embedded primary ideal. Consequently Ii is absolutely radical.

Assume now that 𝕂=𝔽pk, and let us examine complexities. Testing the separability
of q boils down to computing its gcd with q′, which takes time Õ(Dn k log p). We com-
pute f1 ∘ N, …, fn ∘ N in time Õ�d̄n k log p� by Proposition 2.15. Then we compute the
Jacobian matrix J in x1,…, xn of f1 ∘N,…, fn ∘N in time Õ�d̄n k log p� by Lemma 2.9. The
evaluations of all the fi ∘ N and of J at (1, v1(t), …, vn(t)) in 𝔽pk[t] / (q(t)) can be done
in time Õ�d̄(1+3𝜀)n k log p� by means of Theorem 3.3—recall that these homogeneous
polynomials to be evaluated are already represented by their specialization at x0 = 1.
Finally the determinant of the latter value of J is obtained without division thanks to
Berkowitz' algorithm [5] in time n𝜔+1 Õ(Dn k log p). Testing the invertibility of this
determinant simply requires additional time Õ(Dn k log p). □

5. THE KRONECKER SOLVER

Let 𝕂 be an effective field and let f1,…, fn be homogeneous polynomials in 𝕂[x0,…,xn].
Throughout this section, we assume that conditions R1, R2, R3, V1, and V2 are satisfied.
The Kronecker solver is incremental in the number of equations to be solved. More pre-
cisely, at stage i, we assume that a parametrization of the ideal

İi ≔ (f1,…, fi)+(x0−1,x1,…,xn−i) ⊆ 𝕂[xn−i+1,…,xn]

by a primitive element u=𝜆n−i+1xn−i+1+⋯+𝜆nxn is given, so that

İi = (q(u),xn−i+1−vn−i+1(u),…,xn −vn(u)).

We will build primitive elements for all intermediate ideals from a unique tuple
(𝜆1,…,𝜆n) ∈𝕂n. In order to obtain a similar parametrization for İi+1, we apply the two
following steps.
Lifting step. The parametrization of İi is lifted into a parametrization of

Ĩi ≔ (f1,…, fi)+(x0−1,x1,…,xn−i−1) ⊆ 𝕂(xn−i)[xn−i+1,…,xn]

of the form
Ĩi = (q̃(u), q̃′(u)xn−i+1− w̃n−i+1(u),…, q̃′(u)xn − w̃n(u))

where q̃ is a monic polynomial of degree Di in 𝕂(xn−i)[t], and the w̃i are in
𝕂(xn−i)[t]<Di. It turns out that q̃, w̃n−i+1, …, w̃n actually belong to 𝕂[xn−i][t] and
have total degrees ⩽Di; see for instance [18, Corollary 3.4]. We will compute them
by a variant of the Newton–Hensel lifting strategy over 𝕂[[xn−i]].

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19

Intersection step. Geometrically speaking Ĩi represents the affine curve 𝒱(Ii)∩𝒱(x0−1,
x1,…,xn−i−1). The intersection of this curve with the hypersurface 𝒱(fi+1) corresponds
to 𝒱�İi+1�. The minimal polynomial of U = 𝜆n−i xn−i + ⋯ + 𝜆n xn modulo İi+1 will
be computed as a resultant, and the rest of the parametrization of İi+1 is completed
by means of a suitable deformation technique. This parametrization is written

İi+1 ≔(Q(U),xn−i −Vn−i(U),…,xn−Vn(U)).

5.1. Lifting step
The lifting step essentially relies on a multivariate variant of the Hensel lemma (or, equiv-
alently, on a multivariate power series analogue of Newton's method). The Jacobian
matrix of f1,…, fi in xn−i+1,…,xn is written

Ji≔

(((((((((((((((((
(((((((((((((((((
(((((((((

(

(∂ f1
∂xn−i+1

⋯ ∂ f1
∂xn

⋮ ⋮
∂ fi

∂xn−i+1
⋯ ∂ fi

∂xn))))))))))))))
)))))))))))))))))
))))))))))))

)

)
.

The identity matrix of size i× i is written Idi.

Algorithm 5.1
Input. f1, …, fi ∈ 𝕂[x0, …, xn] and the parametrization q, vn−i+1, …, vn ∈ 𝕂[t] of İi by

u=𝜆n−i+1xn−i+1+⋯+𝜆n xn.
Output. The Kronecker parametrization q̃, w̃n−i+1,…, w̃n in 𝕂(xn−i)[t] of Ĩi by u.
Assumptions. f1,…, fn satisfy R1, R2, R3, V1, V2.

1. Initialize M≔1, q̃≔q, ṽn−i+1≔vn−i+1,…, ṽn≔vn.
2. Initialize B with the inverse of A≔ Ji(1, 0,…,0,vn−i+1(t),…,vn(t)) modulo q(t).
3. While M⩽Di+1 do the following:

a. update A≔ Ji(1,0,…,0,xn−i, ṽn−i+1(t),…, ṽn(t)) rem q̃(t)
and B≔B−B(AB− Idi) rem q̃(t) over 𝕂[[xn−i]]/(xn−i

M);
b. set M≔min(2M,Di+1);

c. compute (((((((((((((((((
(((((((
(
(v̂n−i+1(t)

⋮
v̂n(t))))))))))))))))))

)))))))
)
)≔ (((((((((((((((((

(((((((
(
(ṽn−i+1(t)

⋮
ṽn(t))))))))))))))))))

)))))))
)
)−B(((((((((((((((((

(((((((
(
(f1(1,0,…,0,xn−i, ṽn−i+1(t),…, ṽn(t))

⋮
fi(1,0,…,0,xn−i, ṽn−i+1(t),…, ṽn(t))))))))))))))))))

)))))))))
) rem q̃(t)

over 𝕂[[xn−i]]/(xn−i
M);

d. compute Δ(t)≔𝜆n−i+1 v̂n−i+1(t)+⋯+𝜆n v̂n(t)− t;
e. update q̃(t)≔ q̃(t)− (q̃′(t)Δ(t) rem q̃(t)) computed over 𝕂[[xn−i]]/(xn−i

M);
f. for j from n− i+1 to n,

update ṽj(t)≔ v̂j(t)− (ṽj′(t)Δ(t) rem q̃(t)) computed over 𝕂[[xn−i]]/(xn−i
M).

4. For j from n− i+1 to n, compute w̃j≔ q̃′ ṽj rem q̃ over 𝕂[[xn−i]]/�xn−i
Di+1�.

5. Return q̃, w̃n−i+1,…, w̃n truncated to order xn−i
Di+1 and then regarded in 𝕂[xn−i][t].

PROPOSITION 5.1. Algorithm 5.1 is correct. Let 𝜀>0 be a fixed rational value. If 𝕂=𝔽pk and if

pk>max�d̄, (1+𝜀)�8𝜀 +1�n d̄𝜀/8��d̄n−1�,

then it takes time Õ�Di d̄(1+3𝜀)i k log p�+ Õ�d̄nk log p�.

20 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Proof. This algorithm directly comes from [27, section 4]. We do not repeat the cor-
rectness proof but focus on the complexity analysis in the Turing model for the dense
representation of polynomials.

The partial evaluations of f1, …, fi at x0= 1, x1= 0, …, xn−i−1= 0 are achieved in time
Õ�d̄n k log p� by Lemma 2.10 and (2.1)—recall that the homogeneous polynomials are
actually represented by their specialization at x0=1 and their total degree. All the partial
derivatives needed for the Jacobian matrix can be obtained in time Õ�d̄n k log p� by
Lemma 2.9.

In step 2, we compute A in time

Õ�d̄(1+3𝜀)i k log p�,

by Theorem 3.3. Then the inversion of A is performed by Berkowitz' algorithm in time
i𝜔+1Õ(Di k log p)= Õ�d̄i k log p�.

In step 3 we regard fj(1, 0, …, 0, xn−i, …, xn) and the entries of Ji(1,0,…,0,xn−i,…,xn)
as polynomials in 𝔽pk[[xn−i]]/�xn−i

Di+1�: their evaluations at (ṽn−i+1(t),…, ṽn(t)) take time
Õ�Di d̄(1+3𝜀)i k log p� by Theorem 3.3. The remaining computations in steps 3 until 5 take
time Õ(Di

2 k log p). □

5.2. Intersection step
For the intersection step we follow the method designed in [27, section 6]. We first com-
pute a deformation of the parametrization of Ĩi by the primitive element

u𝔢≔u+ en−i+1xn−i+1+⋯+ enxn

where the ei are new variables satisfying ei ej=0 for all i, j. Let 𝔢≔ (en−i+1,…, en) and let
𝕂𝔢≔𝕂[𝔢]/(𝔢2) be a shorthand for𝕂[en−i+1,…,en]/(en−i+1,…, en)2. The extension Ĩ𝔢,i of Ĩi
to 𝕂𝔢(xn−i)[xn−i+1,…,xn] is parametrized by u𝔢 as follows

Ĩ𝔢,i=(q�̃�(u𝔢), q̃𝔢′(u𝔢)xn−i+1− w̃𝔢,n−i+1(u𝔢),…, q̃𝔢′(u𝔢)xn − w̃𝔢,n(u𝔢)),

where q𝔢∈𝕂𝔢[xn−i][t] is monic in t of degree Di, and the w𝔢, j∈𝕂𝔢[xn−i][t] have degree<Di
in t, for j = n − i + 1, …, n. Of course, q̃𝔢, w̃𝔢,n−i+1, …, w̃𝔢,n respectively coincide with
q̃, w̃n−i+1, …, w̃n modulo 𝔢. In addition we know that the total degrees of q̃𝔢, w̃𝔢,n−i+1, …,
w̃𝔢,n in xn−i and t is ⩽Di; see [18, section 3].

Algorithm 5.2
Input. The Kronecker parametrization u, q̃, w̃n−i+1,…, w̃n of Ĩi and b∈𝕂.
Output. The Kronecker parametrization u𝔢, q̃𝔢, w̃𝔢,n−i+1,…, w̃𝔢,n of Ĩ𝔢,i.
Assumptions. f1,…, fn satisfy R1, R2, R3, V1, V2.

1. Compute q̃𝔢(t)≔ q̃(t)−∑j=n−i+1
n ej w̃j(t).

2. Compute Δ(t)≔�∑j=n−i+1
n ej w̃j(t)�/ q̃′(t) mod q̃(t)mod (xn−i −b)Di+1.

3. For j from n− i+1 to n do the following:
a. compute ṽj(t)≔ w̃j(t)/ q̃′(t) mod q̃(t)mod (xn−i −b)Di+1;
b. compute ṽ𝔢, j(t)≔ ṽj(t)+(ṽj′(t)Δ(t)mod q̃(t)mod (xn−i −b)Di+1);
c. compute w̃𝔢, j(t)≔ q̃𝔢′(t) ṽ𝔢, j(t)mod q̃𝔢(t)mod (xn−i −b)Di+1.

4. Return u𝔢, q̃𝔢, w̃𝔢,n−i+1,…, w̃𝔢,n truncated to (xn−i −b)Di+1 and regarded in 𝕂𝔢[xn−i][t].

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 21

PROPOSITION 5.2. Except for <2Di
2 values of b in𝕂, Algorithm 5.2 is correct. If 𝕂=𝔽pk, then

it takes time Õ(Di
2 k log p).

Proof. This algorithm corresponds to [27, Algorithm 8]. Its correctness is explained in [27,
section 6.4]. We adapt the complexity analysis to our context. In steps 2 and 3.a the
inverse of q̃′ modulo q̃ is only required modulo 𝔢. If we were performing this mod-
ular inversion over 𝔽pk(xn−i) then we would have to handle rational functions of degrees
growing with Di

2. In order to avoid this coefficient swell we use truncated power series
instead of rational functions. In fact, we compute the inverse of q̃′modulo q̃ for xn−i spe-
cialized to b, then we use classical Hensel lifting to recover q̃′−1mod q̃mod (xn−i −b)Di+1.
This method works fine whenever the resultant of q̃′ and q̃ does not vanish at b. This
resultant has degree <2Di

2 in xn−i.
Algorithm 5.2 needs to shift xn−i by −b in the input and by b in the output, which can

be done in time Õ(Di
2 k log p) using a divide and conquer algorithm; see for instance [7,

Lemma 7]. Then q̃′−1mod q̃mod (xn−i −b)Di+1 is obtained in time Õ(Di
2 k log p). The rest

of the algorithm performs polynomial products of cost Õ(Di
2 k log p). □

If P(t) is a polynomial in 𝕂𝔢[xn−i][t] of total degree ⩽Di in xn−i and t, and assuming
𝜆n−i≠0, then we write

P(t)|xn−i↦(y−t)/(𝜆n−i+en−i)

for the polynomial in 𝕂𝔢[y][t] obtained after replacing xn−i by (y − t)/(𝜆n−i+ en−i). This
substitution can be performed efficiently as follows:
1. Compute P̄(t)≔P(t)|xn−i↦y/(𝜆n−i+en−i) with a softly linear number of operations in 𝕂;
2. Compute P̄(t)|y↦y−t. This substitution is applied to each homogeneous component

of P̄ seen in 𝕂𝔢[y, t]. In fact if P̄i is the homogeneous component of degree i then we
are led to compute P̄i(y − t, t), which basically reduces to computing P̄i(y − 1, 1), and
that corresponds to a univariate polynomial shift. Such a shift is known to take softly
linear time, as mentioned above.

If 𝕂 = 𝔽pk then this substitution in P takes time Õ(Di
2 k log p). We are now ready to

complete the intersection step.

Algorithm 5.3
Input. The Kronecker parametrization u𝔢, q̃𝔢, w̃𝔢,n−i+1,…, w̃𝔢,n of Ĩ𝔢,i and b∈𝕂.
Output. The Kronecker parametrization U,Q,Wn−i,…,Wn of İi+1.
Assumptions. f1,…, fn satisfy R1, R2, R3, V1, V2.

1. Compute q
˘
𝔢≔ q̃𝔢(t)|xn−i↦(y−t)/(𝜆n−i+en−i).

2. Compute o
˘
𝔢≔ q̃𝔢′(t)|xn−i↦(y−t)/(𝜆n−i+en−i) and p

˘
𝔢≔ o

˘
𝔢
−1mod q

˘
𝔢mod (y−b)Di+1+1.

3. For j from n− i+1 to n compute:
a. w
˘
𝔢, j≔ w̃𝔢, j|xn−i↦(y−t)/(𝜆n−i+en−i);

b. v
˘
𝔢, j≔p

˘
𝔢w
˘
𝔢, jmod q

˘
𝔢mod (y−b)Di+1+1.

4. Let h
˘
𝔢(t)≔o

˘
𝔢
di+1 fi+1�1,0,…,0,

y − t
𝜆n−i+ en−i

,v
˘
𝔢,n−i+1(t),…,v

˘
𝔢,n(t)�mod q

˘
𝔢mod (y−b)Di+1+1.

5. Compute Q𝔢≔Rest�h
˘
𝔢(t), q

˘
𝔢(t)�/Rest(o

˘
𝔢(t),q

˘
𝔢(t))di+1=Q− en−i Wn−i −⋯− en Wn with

Q,Wn−i,…,Wn in 𝕂[[y−b]]/((y−b)Di+1+1).
6. Return U≔𝜆n−i xn−i+⋯+𝜆n xn,Q,Wn−i, …,Wn truncated modulo (y − b)Di+1+1 and

seen as polynomials in 𝕂[y].

22 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

PROPOSITION 5.3. Let S be a finite subset of 𝕂. If we take (𝜆n−i,…,𝜆n) in Si+1 and then b in S
at random, then Algorithm 5.3 works correctly as specified with probability >1−6Di+1

3 /|S|. Let
𝜀>0 be a fixed rational value, and assume that d̄⩾2. If 𝕂=𝔽pk, and if

pk>max�d̄, (1+𝜀)�8𝜀 +1�n d̄𝜀/8��d̄n−1�,

then Algorithm 5.3 takes time Õ�Di+1 d̄(1+3𝜀)i k log p�+ Õ�d̄nk log p�.

Proof. The algorithm is borrowed from [27, Algorithm 7]. Again we only focus on the
complexity and probability analyses in our context.

First we need to compute Rest(o
˘
𝔢(t),q

˘
𝔢(t)) along with the corresponding Bézout rela-

tion that yields p
˘
𝔢≔ o

˘
𝔢
−1mod q

˘
𝔢. We wish to apply a fast subresultant algorithm, namely

either the one of [21, chapter 11] or the one of [51]. For this purpose, we need to ensure
the following properties:
• the leading coefficient (in degree Di) of q

˘
𝔢 is non-zero modulo 𝔢,

• the leading coefficient, in degree Di′⩽Di −1, of o
˘
𝔢 is non-zero modulo 𝔢,

• the non-zero subresultant coefficients from degree 0 to Di −2 are non-zero modulo 𝔢.
In fact, these coefficients are the only quantities that need to be inverted during the exe-
cution of the aforementioned fast subresultant algorithms.

We claim that these properties are met for sufficiently generic values of the 𝜆i. In
order to prove and quantify this claim, we introduce

uΛ≔Λn−i+1xn−i+1+⋯+Λn xn

where the Λi are new independent variables, and set 𝕂Λ≔𝕂(Λn−i+1,…,Λn). The exten-
sion ĨΛ,i of Ĩi to 𝕂Λ(xn−i)[xn−i+1,…,xn] is parametrized by uΛ as follows

ĨΛ,i=(q̃Λ(uΛ), q̃Λ′ (uΛ)xn−i+1− w̃Λ,n−i+1(uΛ),…, q̃Λ′ (uΛ)xn− w̃Λ,n(uΛ)),
where
• q̃Λ, w̃Λ,n−i+1,…, w̃Λ,n actually belong to 𝕂[Λn−i+1,…,Λn][xn−i, t],
• q̃Λ is monic, separable, and of degree Di in t,
• w̃Λ,n−i+1,…, w̃Λ,n have degree <Di in t,
• q̃Λ, w̃Λ,n−i+1,…, w̃Λ,n have total degree ⩽Di in xn−i and t,
• q̃Λ, w̃Λ,n−i+1,…, w̃Λ,n have total degree ⩽Di in Λn−i+1,…,Λn.

For the proofs of these facts we refer the reader to [18, section 3]. It follows that q̃𝔢,
w̃𝔢,n−i+1, …, w̃𝔢,n are the respective specializations of q̃Λ, w̃Λ,n−i+1, …, w̃Λ,n at Λn−i+1 =
𝜆n−i+1+ en−i+1,…,Λn=𝜆n+ en. We further introduce

q
˘
Λ≔ q̃Λ(t)|xn−i↦(y−t)/Λn−i and o

˘
Λ≔ q̃Λ′ (t)|xn−i↦(y−t)/Λn−i.

By the specialization property, the subresultants of o
˘
𝔢(t) and q

˘
𝔢(t), seen as polynomials of

respective degrees deg o
˘
Λ⩽Di −1 and deg q

˘
Λ=Di in t, are the specializations of those of

o
˘
Λ(t) and q

˘
Λ(t) atΛn−i=𝜆n−i+en−i,…,Λn=𝜆n+en. Such a subresultant coefficient of o

˘
Λ(t)

and q
˘
Λ(t) is a specific minor of the Sylvester matrix of o

˘
Λ(t) and q

˘
Λ(t), of size at most

(2Di −1)×(2Di −1). Therefore such a subresultant coefficient is a (non-reduced) rational
function with denominator Λn−i

Di(2Di−1) and numerator in𝕂[y][Λn−i,…,Λn] of total degree
⩽2Di (2Di−1) inΛn−i,…,Λn. Consequently the product of all these non-zero numerators
yields a non-zero polynomial 𝔏(Λn−i,…,Λn) of total degree

⩽ 2Di (2Di −1)(Di −1) < 4Di
3,

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23

such that 𝜆n−i𝔏(𝜆n−i,…,𝜆n)≠0 implies that the Di − 1 non-zero subresultant coefficients
of o

˘
𝔢(t) and q

˘
𝔢(t) are invertible; in particular the resultant is invertible and so are the

leading coefficients of o
˘
𝔢(t) and q

˘
𝔢(t).

The fast computation of Rest�h
˘
𝔢(t),q

˘
𝔢(t)� raises the same issue, and requires the same

kind of probability analysis. We thus introduce

h
˘
Λ≔(((((((((((q̃Λ′ (t))di+1 fi+1((((((((((1, 0,…,0,xn−i,

w̃Λ,n−i+1(t)
q̃Λ′ (t)

,…, w̃Λ,n(t)
q̃Λ′ (t)))))))))))))))))))))�xn−i↦(y−t)/Λn−i

which belongs to𝕂(Λn−i)[Λn−i+1,…,Λn][y,t], has degree⩽Di+1 in t,⩽Di+1 in y, and total
degree ⩽Di+1 in Λn−i+1,…,Λn. In this way

o
˘
𝔢
di+1 fi+1�1,0,…,0,

y− t
𝜆n−i+ en−i

,v
˘
𝔢,n−i+1(t),…,v

˘
𝔢,n(t)�

is the specialization of h
˘
Λ at Λn−i=𝜆n−i+ en−i,…,Λn=𝜆n+ en.

A subresultant coefficient of h
˘
Λ(t) and q

˘
Λ(t), seen as polynomials of respective degrees

deg t h
˘
Λ(t)⩽Di+1 and Di, is a (non-reduced) rational function with denominator Λn−i

2DiDi+1

and numerator in 𝕂[y][Λn−i, …, Λn] of total degree ⩽4 Di Di+1 in Λn−i, …, Λn. Con-
sequently there exists a non-zero polynomial ℌ(Λn−i,…,Λn) of total degree

⩽ 4Di+1Di
2+degΛ�Λn−i

Di+1h
˘
Λ(t)�+degΛ�Λn−i

Di q
˘
Λ(t)�

⩽ 4Di+1Di
2+2Di+1+2Di

⩽ 6Di+1Di
2,

such that 𝜆n−iℌ(𝜆n−i+1, …, 𝜆n)≠ 0 implies that all the non-zero subresultant coefficients
of h
˘
𝔢(t) and q

˘
𝔢(t) and the leading coefficients of h

˘
𝔢(t) and q

˘
𝔢(t) are invertible.

As in the proof of Lemma 4.2, there exists a non-zero polynomial 𝔇(Λn−i, …, Λn) of
total degree <2 Di+1

2 such that 𝔇(𝜆n−i, …, 𝜆n) ≠ 0 implies that U is a primitive element
for İi+1. This ensures the correctness of the output.

Now assume that 𝜆n−i𝔏(𝜆n−i,…, 𝜆n)ℌ(𝜆n−i+1,…, 𝜆n)𝔇(𝜆n−i,…,𝜆n)≠0. This happens
with probability

⩾1− 4Di
3+6Di+1Di

2+2Di+1
2

|S| ⩾1− 3Di+1
3

|S| ,

whenever (𝜆n−i,…,𝜆n) is taken at random in Si+1.
The subresultant coefficients of o

˘
Λ(t) and q

˘
Λ(t) have degree ⩽Di (2 Di − 1) in y, so

except for ⩽Di
2 (2Di −1)<Di+1

3 /4 values of b, we can compute Rest(o
˘
𝔢(t), q

˘
𝔢(t)) modulo

(y − b)Di+1+1 in time Õ(Di+1 Di k log p), by means of the fast subresultant algorithm.
A subresultant coefficient of h

˘
Λ(t) and q

˘
Λ(t) has degree ⩽2 Di+1 Di in y, so except for

⩽2Di+1Di
2+Di+Di+1<2Di+1

3 values of b, Rest(h
˘
𝔢(t), q

˘
𝔢(t)) can be computed by means

of the fast subresultant algorithm modulo (y−b)Di+1+1 in time Õ(Di+1Di k log p). Conse-
quently a suitable value for b is found at random in S with probability of success

⩾1− 3Di+1
3

|S| .

All the substitutions xn−i↦(y − t)/(𝜆n−i+ en−i) take Õ(Di
2 k log p) time according to

the above discussion. All the shifts by −b and b in y totalize time Õ((Di+1+Di
2)k log p).

24 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

The steps 3.b take time Õ(Di Di+1 k log p) in total. In step 4 we first specialize the vari-
ables x0,…,xn−i−1 to 1,0,…,0 in time Õ�d̄n k log p�, after which the rest of the evaluation of

fi+1�1,0,…,0,
y− t

𝜆n−i+ en−i
,v
˘
𝔢,n−i+1(t),…,v

˘
𝔢,n(t)�mod q

˘
𝔢mod (y−b)Di+1+1

is decomposed into i+1 evaluations in𝔼j≔𝔽pk[ej,y, t]/(ej
2, (y−b)Di+1,q

˘
𝔢) for j=n− i,…,n.

More precisely, for the evaluation in 𝔼j we ignore the variables ek for k≠ j and we may
thus appeal to Theorem 3.3 in order to achieve time

Õ�Di+1 d̄(1+3𝜀)i k log p�. □

5.3. Total complexity
Putting together the propositions of this and the previous sections, we obtain the fol-
lowing complexity bound.

THEOREM 5.4. Let 𝜀 > 0 be a fixed rational value, let 𝕂=𝔽pk and let f1, …, fn be homogeneous
polynomials in 𝕂[x0,…,xn] of total degrees d1,…,dn such that:
• R1, R2, and R3 are satisfied;

• pk⩾max�max�d̄, (1+𝜀)�8𝜀 +1�nd̄𝜀/8��d̄n −1�, 100Dn
3�.

Then an invertible matrix N, a primitive element u and a Kronecker parametrization of In∘N+
(x0− 1) can be computed in time Õ�Dn d̄(1+3𝜀)(n−1) k log p�, with a probability of failure that is
uniformly bounded by <1/2.

Proof. This result is a consequence of the Kronecker solver that was recalled at the begin-
ning of this section. First we pick up an invertible matrix N of size (n+1)×(n+1) with
entries at random in𝔽pk as described in Lemma 4.5, in order to ensure that after replacing
f1,…, fn by f1∘N,…, fn∘N conditions V1 and V2 hold with a probability at least

1−5Dn
2/pk ⩾ 1−1/40.

Computing f1 ∘ N, …, fn ∘ N takes time Õ�d̄n k log p� = Õ�Dn d̄n−1 k log p� by Proposi-
tion 2.15.

On the other hand the probability that 𝜆1, …, 𝜆n are suitable for all the intersection
steps is at least

1−�
i=1

n−1 6Di+1
3

pk ⩾1−12Dn
3/pk⩾1−1/8,

by Proposition 5.3. The probability that a random value of b is suitable for all stages of
the solver is at least

1−�
i=1

n−1 6Di+1
3 +2Di

2

pk ⩾1−14Dn
3/pk⩾1−1/7,

by Propositions 5.2 and 5.3.
Overall the probability of failure is uniformly bounded by 1/2—the constant 100 is

not intended to be optimal. The total complexity follows by combining Propositions 5.1,
5.2 and 5.3. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 25

COROLLARY 5.5. Let 𝜀>0 be a fixed rational value, let 𝕂=𝔽pk and let f1,…, fn be homogeneous
polynomials in 𝕂[x0,…,xn] of total degrees d1,…,dn such that R1, R2, and R3 are satisfied.

Then the Kronecker algorithm computes an integer l = O(n log d̄), the finite field 𝔽pkl, the
images of f1, …, fn into 𝔽pkl[x0, …, xn], an invertible matrix N with entries in 𝔽pkl, a primitive
element u∈𝔽pkl and a Kronecker parametrization of (f1, …, fn) ∘N+(x0− 1) over 𝔽pkl in time
Õ�Dn d̄(1+𝜀)(n−1) k log p� with any arbitrarily small fixed probability of failure, or in expected
time Õ�Dn d̄(1+𝜀)(n−1)k log p� with a Las Vegas algorithm.

Proof. The case

pk ⩾ B ≔ max�max�d̄, (1+𝜀)�8𝜀 +1�n d̄𝜀/8��d̄n −1�, 100Dn
3�.

is already handled in Theorem 5.4, and corresponds to l=1. So we focus on the opposite
case pk<B, for which k log p=O(n log d̄). We compute the first integer l

¯
such that

pk l
¯>B,

that is

l
¯
≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈ log B

k log p⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉=O((((((((((((((
n log d̄
k log p)))))))))))))).

Then we set

l≔min(i k+1: i∈ℕ, i k+1⩾ l
¯
),

so l is coprime to k and we have l k log p=O((n log d̄)2). Now we appeal to Lemma 3.4:
we construct 𝔽pkl in time Õ(l2 log2 p+ l𝜔+2 k log p) with probability of failure <1/4; then
the casts between 𝔽pk and 𝔽pkl can be achieved in time Õ(l2 k log p).

With this construction at hand we proceed as follows:

• We cast f1,…, fn into 𝔽pkl[x0,…,xn] in time Õ�d̄n l2 k log p�= Õ�d̄n k log p�;

• We call the Kronecker solver over 𝔽pkl. In view of Theorem 5.4, the resolution over
𝔽pkl takes time Õ�Dn d̄(1+3𝜀)(n−1)k log p� with a probability of failure <1/2.

Using Proposition 4.6, the correctness of the result can be verified in time
Õ�d̄(1+3𝜀)n k log p� as well. We are thus able to reach any arbitrarily small fixed prob-
ability of failure by repeating the resolution sufficiently many times. Altogether, this
leads to a Las Vegas algorithm that satisfies the claimed expected complexity bound—of
course, 𝜀 needs to be replaced by 𝜀/3 from the outset to conclude the proof. □

Remark 5.6. If some of the di are 1, then it is far more efficient to compute:
• a permutation 𝜏 of {1,…,n},
• t∈ℕ, linear forms l0,…, ln∈𝕂y0+⋯+𝕂yn−t,
• homogeneous polynomials g1,…,gn−t∈𝕂[y0,…,yn−t] of total degrees ⩾2,

such that f𝜏(i)(l0, …, ln) = 0 for i= 1,…, t and gi(y0, …, yn−t) = f𝜏(t+i)(l0, …, ln) for i= 1,…,
n − t. In this way we are reduced to solve a “smaller” system with all degrees ⩾2. This
simplification in the input system can be achieved in time Õ��n𝜔+ d̄n� k log p� by means
of Proposition 2.15. We leave out the details for the sake of conciseness.

26 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

6. SYSTEMS OVER THE RATIONAL NUMBERS

From now we turn to solving polynomial systems f1=⋯= fn=0 with coefficients in ℤ,
still under assumptions R1, R2, and R3. We still write I ≔ (f1, …, fn), and we appeal
to the algorithm designed in [27, section 4.6]: we first perform the resolution modulo
a suitable prime number p, and then lift the parametrization of the solution set over the
p-adic numbers by means of Newton–Hensel lifting. Roughly speaking, once the bit size
exceeds twice the maximum bit size of the integers of the Kronecker parametrization
over ℚ, then this parametrization can be reconstructed from its p-adic expansion.

In order to formalize this approach, we first need to estimate the bit size of the
Kronecker parametrizations in terms of the input size. Then we design a probabilistic
algorithm that generates suitable values for p with high probability.

For a scalar, a vector, a matrix, or a polynomial A over ℂ we write ‖A‖∞ for the max-
imal norm of its entries or coefficients. Then the height of A, written htA, is defined as

htA≔max(0, log ‖A‖∞).
Until the end of the text we set

Hn≔�
i=1

n ht(fi)
di

.

6.1. p-adic Hensel lifting
In section 5.1 we have described an algorithm for lifting power series in a Kronecker
parametrization. In the following paragraph we adapt the method to lift p-adic integers
instead. The algorithm originates from [27, section 4.6]. The Jacobian matrix of f1,…, fn
in x1,…,xn is still written

Jn≔

(((((((((((((((((
(((((((((((((((((
(((((((((

(

(∂ f1
∂x1

⋯ ∂ f1
∂xn

⋮ ⋮
∂ fn
∂x1

⋯ ∂ fn
∂xn))))))))))))))
)))))))))))))))))
))))))))))))

)

)
.

Algorithm 6.1
Input. f1, …, fn ∈ ℤ[x0, …, xn] and the parametrization q, v1, …, vn ∈ (ℤ / p ℤ)[t] of

(f1,…, fn)+(x0−1)mod p by u=𝜆1x1+⋯+𝜆n xn; an integer 𝜅>0.
Output. The Kronecker parametrization q̃, w̃1, …, w̃n in (ℤ / p𝜅 ℤ)[t] of (f1, …, fn) +

(x0−1)mod p𝜅 by u.
Assumptions. f1,…, fn satisfy R1, R2, R3, V1, V2.

1. Initialize 𝜘≔1, q̃≔q, ṽ1≔v1,…, ṽn≔vn.
2. Initialize B with the inverse of A≔ Jn(1,v1(t),…,vn(t)) modulo q(t).
3. While 𝜘<𝜅 do the following:

a. update A≔ Jn(1, ṽ1(t),…, ṽn(t)) rem q̃(t) and B≔B − B (A B − Idn) rem q̃(t), over
ℤ/p𝜘ℤ;

b. set 𝜘≔min(2𝜘,𝜅);

c. compute (((((((((((((((((
(((((((
(
(v̂1(t)

⋮
v̂n(t)))))))))))))))))

)))))))))
)≔(((((((((((((((((

(((((((
(
(ṽ1(t)

⋮
ṽn(t)))))))))))))))))

)))))))))
)−B(((((((((((((((((

(((((((
(
(f1(1, ṽ1(t),…, ṽn(t))

⋮
fn(1, ṽ1(t),…, ṽn(t))))))))))))))))))

)))))))))
) rem q̃(t) over ℤ/p𝜅ℤ;

d. compute Δ(t)≔𝜆1 v̂1(t)+⋯+𝜆n v̂n(t)− t over ℤ/p𝜘ℤ;
e. replace q̃(t)≔ q̃(t)− (q̃′(t)Δ(t) rem q̃(t)) computed over ℤ/p𝜘ℤ;
f. for j from 1 to n,

replace ṽj(t)≔ v̂j(t)− (ṽj′(t)Δ(t) rem q̃(t)) computed over ℤ/p𝜘ℤ.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 27

4. For j from 1 to n, compute w̃j≔ q̃′ ṽj rem q̃ over ℤ/p𝜅ℤ.
5. Return q̃, w̃1,…, w̃n.

PROPOSITION 6.1. Algorithm 6.1 is correct. Let 𝜀>0 be a fixed rational value. If

p>max�d̄, (1+𝜀)�8𝜀 +1�n d̄𝜀/8��d̄n −1�,

then Algorithm 6.1 takes time Õ�d̄(1+3𝜀)n𝜅 log p+ d̄n (h̄+1)�, where h̄≔max(ht f1,…,ht fn).

Proof. This algorithm directly comes from [27, section 4.6]. We do not repeat the proof
of the correctness but focus directly on its bit complexity for the dense representation of
input polynomials.

Before all we may compute the partial derivatives of the fi in time Õ�d̄n (h̄+𝜅 log p)�
by Lemma 2.9 to any precision 𝜅. In step 2, we compute A in time

Õ�d̄(1+3𝜀)n log p�,

by Theorem 3.3. Then the inversion of A modulo q is performed by Berkowitz' algorithm
in time n𝜔+1Õ(Dn log p)= Õ�d̄n log p�.

In step 3 the evaluations of f1,…, fn and Jn at (1, ṽ1(t),…, ṽn(t)) at a given precision 𝜘
take time Õ(d̄(1+3𝜀)n 𝜘 log p+ d̄n 𝜅 log p), again in view of Theorem 3.3. Since we keep
doubling 𝜘 until we reach the precision 𝜅, the total cost is bounded by Õ(d̄(1+3𝜀)n 𝜅 log p).
The rest of the computations in steps 3 and 4 take time Õ(n𝜔 Dn 𝜅 log p)=Õ(Dn 𝜅 log p). □

6.2. Chow form and height
Let V be a zero dimensional subvariety of ℙn. “The” Chow form of V is the polynomial
ℱ ∈ℂ[Λ0,…,Λn] that satisfies

ℱ(𝜆0,…,𝜆n)=0 ⇔ V∩𝒱ℙn(𝜆0x0+𝜆1x1+⋯+𝜆n xn)≠∅,

where the 𝜆i are taken in ℂ. The Chow form is defined up to a scalar factor in ℂ, and is
homogeneous of total degree degV.

From now we assume that V is the variety of I ∘N ≔ (f1 ∘N, …, fn ∘N), where N is
an invertible (n + 1) × (n + 1) integer matrix such that I ∘ N is in Noether position. In
this setting, V is included in the affine subspace 𝔸n defined by x0 = 1, and we have
deg ℱ = Dn. We then define the normalized Chow form 𝒞 of V as the ℂ-multiple of ℱ
having the coefficient of Λ0

Dn equal to 1. The normalized Chow form belongs toℚ[Λ0,…,
Λn].

In order to bound bit sizes of Kronecker parametrizations of I ∘ N, we first need to
bound the bit size of the coefficients of 𝒞 . For this purpose we follow a construction due
to Philippon [62], and introduce

ℋ≔m(𝒞;Sn+1)+Dn�
i=1

n 1
2 i ,

where m(𝒞;Sn+1) denotes the Sn+1-Mahler measure of 𝒞 defined as

m(𝒞;Sn+1)≔�
Sn+1

log |𝒞(𝜆0,…,𝜆n)|𝜇n+1(𝜆0,…,𝜆n)

where 𝜇n+1 is the usual Haar measure of mass 1 over the sphere

Sn+1≔{(z0,…,zn)∈ℂn+1 : |z0|2+⋯+|zn|2=1}.

28 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

So m(𝒞;Sn+1) is to be understood as a real (2n+1)-dimensional integral.
On the other hand, the usual Mahler measure of 𝒞 is defined as an n-dimensional

complex contour integral

m(𝒞)≔�
0

1
⋯�

0

1
log |𝒞(e2πit0,…,e2πitn)|dt0⋯dtn.

The relationship between these two measures is given in [52, Theorem 4]:

0⩽m(𝒞)−m(𝒞;Sn+1)⩽Dn�
i=1

n 1
2 i ,

which implies
m(𝒞)⩽ℋ. (6.1)

Then we appeal to [43, Corollary 2.10, p. 553] which ensures the existence of a rational
number c such that c𝒞 has all its coefficients in ℤ and

log |c|+ℋ⩽(((((((((((((((((�i=1
n ht(fi ∘N)

di
+2n log(n+1))))))))))))))))))Dn. (6.2)

To relate the Mahler measure to the actual bit size of c𝒞 we use [43, Lemma 1.1, p. 529]:

|m(𝒞)− log ‖𝒞‖∞|⩽log(n+2)Dn. (6.3)

Combining the three latter inequalities leads to

ht(c𝒞) = log ‖c𝒞‖∞ ⩽ log |c|+ log ‖𝒞‖∞
⩽ log |c|+m(𝒞)+log(n+2)Dn (by (6.3))
⩽ log |c|+ℋ+log(n+2)Dn (by (6.1))

⩽ (((((((((((((((((�i=1
n ht(fi ∘N)

di
+2n log(n+1))))))))))))))))))Dn+log(n+2)Dn (by (6.2))

⩽ (((((((((((((((((�i=1
n ht(fi ∘N)

di
+(2n+1) log(n+2))))))))))))))))))Dn. (6.4)

6.3. Bit size of Kronecker parametrizations
Let q,w1,…,wn be a Kronecker parametrization of I ∘N+(x0−1) by the primitive element
u=𝜆1 x1+⋯+𝜆n xn taken inℤ[x1,…,xn]. It relates to the Chow form 𝒞 of I ∘N as follows:

q(t) = 𝒞(t,−𝜆1,…,−𝜆n),

wi(t) =
∂𝒞
∂Λi

(t,−𝜆1,…,−𝜆n) for i=1,…,n.

Since c 𝒞 belongs to ℤ[Λ0, …, Λn], all the coefficients of c q and of c wi for i=1,…, n also
belong toℤ, and their bit size can be bounded as follows. By Dn⩾2 and inequality (2.1),
the Chow form 𝒞 admits at most �Dn+n

n �⩽ 3
2 Dn

n terms, whence

‖cq‖∞ ⩽ 3
2Dn

n ‖c𝒞‖∞ ‖𝜆‖∞Dn, (6.5)

‖cq′‖∞ ⩽ 3
2Dn

n+1 ‖c𝒞‖∞ ‖𝜆‖∞Dn, (6.6)

‖cwi‖∞ ⩽ 3
2Dn

n+1 ‖c𝒞‖∞ ‖𝜆‖∞Dn for i=1,…,n, (6.7)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 29

where ‖𝜆‖∞⩾1 is a shorthand for ‖(𝜆1, …, 𝜆n)‖∞. Now we estimate how the coefficients
of f increase because of the change of variables N.

LEMMA 6.2. Let f ∈ℤ[x0,…,xn] be homogeneous of total degree d⩾2, and let N be a (n+1)×
(n+1) matrix over ℤ. Then we have

‖ f ∘N‖∞⩽
3
2 d!dn ‖ f ‖∞ ‖N‖∞d .

Proof. The proof is immediate by using ‖(x0+⋯+xn)d‖∞⩽d! and inequality (2.1). □

LEMMA 6.3. For all d⩾1 we have log(d!)⩽2d log d.

Proof. This is a well known unconditional variant of Stirling's formula:

log(d!) ⩽ �
2

d+1
log tdt = (d+1) log(d+1)− (d+1)−2 log 2+2 ⩽ 2d log d. □

LEMMA 6.4. Assume that R1, R2, and R3 hold, and let N be an (n+1)×(n+1) matrix over ℤ
such that f1∘N,…, fn∘N is in Noether position. Then we have

ht(fi∘N)⩽ht(fi)+di log ‖N‖∞+4ndi log di, for i=1,…,n.

In addition, for a Kronecker parametrization u,q,w1,…,wn of (f1∘N,…, fn∘N)+(x0−1), and
with c as above, then we have

K ≔ max(ht(cq),ht(cq′),ht(cw1),…,ht(cwn))
⩽ (Hn+n log ‖N‖∞+log ‖𝜆‖∞+16n logDn)Dn.

Proof. From Lemmas 6.2 and 6.3 we obtain

ht(fi∘N) ⩽ ht(fi)+di log ‖N‖∞+log�
3
2 di!di

n�

⩽ ht(fi)+di log ‖N‖∞+4ndi log di.

Consequently,

�
i=1

n ht(fi ∘N)
di

⩽ �
i=1

n ht(fi)+di log ‖N‖∞+4ndi log di
di

⩽ Hn+n log ‖N‖∞+4n logDn.

Combining this bound with (6.4)–(6.7) and using logDn⩽Dn, we deduce

K ⩽ log 32 +(n+1)logDn+log ‖c𝒞‖∞+Dn log ‖𝜆‖∞

⩽ log 32 +(n+1)logDn+(((((((((((((((((�i=1
n ht(fi ∘N)

di
+(2n+1)log(n+2))))))))))))))))))Dn+Dn log ‖𝜆‖∞

⩽ (Hn+n log ‖N‖∞+log ‖𝜆‖∞+4n logDn+(3n+3) log(n+2))Dn.

Finally we use n + 2 ⩽ 2n+1 ⩽ Dn
2 to bound (3 n + 3) log(n + 2) by 12 n log Dn, which

concludes the proof. □

30 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

6.4. Lucky primes
Given an input polynomial system f1=⋯= fn=0 satisfying R1, R2, and R3, and having
all its coefficients in ℤ, we are led to characterize prime numbers p for which the system
admits Dn isolated simple roots when considered modulo p. We will rely on the a pos-
teriori verification criterion from Proposition 4.6, in order to ensure that a resolution
modulo p can be lifted over the rational numbers.

LEMMA 6.5. For all i⩾1 we have ht((1+z+⋯+zk−1)i)⩽(i−1) log k.

Proof. The inequality is an equality for i=1. For i>1 we have

‖(1+z+⋯+zk−1)i‖∞⩽k ‖(1+ z+⋯+ zk−1)i−1‖∞,

whence ‖(1+z+⋯+zk−1)i‖∞⩽ki−1 by induction on i. □

LEMMA 6.6. (HADAMARD'S INEQUALITY) Let M be a n×n matrix over the real numbers, then
we have |detM|⩽‖M1‖2⋯‖Mn‖2⩽nn/2 ‖M‖∞n , where Mi represents the i-th column vector of M.

LEMMA 6.7. Let f1, …, fn be homogeneous polynomials in ℤ[x0, …, xn] which satisfy R1, R2,
and R3. There exists a positive integer 𝔄 such that

ht 𝔄⩽nd̄ (5Hn+77n logDn)Dn
2,

and for any p that does not divide 𝔄 the sequence f1,…, fn satisfies R1, R2 and R3 over ℤ/pℤ.

Proof. By Lemma 4.5 there exists an invertible (n + 1) × (n + 1) matrix N with integer
entries such that ‖N‖∞⩽ 5Dn

2 and f1 ∘N, …, fn ∘N is in Noether position. On the other
hand by Lemma 4.2 there exists a primitive element u=𝜆1 x1+⋯+𝜆n xn for (f1 ∘N, …,
fn ∘N) with integer coefficients and such that ‖𝜆‖∞⩽2Dn

2. Let q,w1, …,wn represent the
corresponding Kronecker parametrization, and let c and 𝒞 be as above. Let 𝜑i be a non-
zero coefficient in fi of a term of degree di for i= 1, …, n, let J ∈ (ℤ[x0, …, xn])n×n be the
Jacobian matrix of f1∘N,…, fn∘N with respect to x1,…,xn, and

𝔄q ≔ |Disc(cq)| = |Res(cq, cq′)|,
𝔄J ≔ |Res(det J(cq′, cw1,…, cwn), cq)|,
𝔄 ≔ 𝜑1⋯𝜑n𝔄q𝔄J.

By construction, 𝔄q,𝔄J and thus𝔄 are positive integers. Now if p does not divide𝔄, then
deg(fimod p)=di for i=1,…,n, and the system f1=⋯= fn=0 admits Dn isolated regular
roots modulo p. Consequently f1,…, fn satisfy R1, R2, and R3 modulo p by Proposition 4.6.

To conclude the proof it remains to bound 𝔄. First, we may further rewrite a bound
for the quantity K introduced in Lemma 6.4, by making use of Di⩾2i:

K ⩽ (Hn+n log ‖N‖∞+log ‖𝜆‖∞+16n logDn)Dn

⩽ �Hn+n log�5Dn
2�+log(2Dn

2)+16n logDn�Dn

⩽ (Hn+n log(Dn
5)+ log(Dn

3)+16n logDn)Dn

⩽ (Hn+24n logDn)Dn.

By applying Lemma 6.6 on the Sylvester matrix of cq and cq′, we obtain

𝔄q ⩽ ‖cq‖2Dn−1 ‖cq′‖2Dn ⩽ (Dn+1)Dn ‖cq‖∞Dn−1 ‖cq′‖∞Dn,

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 31

whence

ht 𝔄q ⩽ Dn log(Dn+1)+2KDn

⩽ 2Dn logDn+2(Hn+24n logDn)Dn
2

⩽ 2(Hn+25n logDn)Dn
2. (6.8)

As to 𝔄J, we deduce from Lemma 6.4 that

ht(fi ∘N) ⩽ ht(fi)+di log ‖N‖∞+4ndi log di

⩽ ht(fi)+di log�5Dn
2�+4ndi log di

⩽ ht(fi)+2di logDn+7ndi log di

⩽ ht(fi)+9ndi logDn.

On the one hand, we have

deg((((((((((((∂(fi∘N)
∂xj

(cq′, cw1,…, cwn)))))))))))))⩽(di −1)(Dn−1),

hence

deg(det J(cq′, cw1,…,cwn))⩽n (d̄−1)(Dn −1).

On the other hand, Lemma 6.5 gives us

ht((cq′)e0(cw1)e1⋯(cwn)en) ⩽ (e0+⋯+ en) (K+logDn).

From Lemma 6.4 and di�
di −1+n

n �=di
di

di+n �
di+n

n �⩽ 3
2 di

n+1, it follows that

ht((((((((((((∂(fi∘N)
∂xj

(cq′,cw1,…,cwn)))))))))))))
⩽ ht�di�

di −1+n
n ��+ht(fi ∘N)+(di −1)(K+logDn)

⩽ ht�32 di
n+1�+ht(fi)+9ndi logDn+(di −1)((Hn+24n logDn)Dn+logDn)

⩽ 12ndi logDn+di (2Hn+25n logDn)Dn

⩽ di (2Hn+37 n logDn)Dn.

Let 𝔖n denote the group of permutations of {1,…,n}. Then we have

ht(det J(cq′, cw1,…, cwn)) ⩽ ht(((((((((((((((((((�𝜎∈𝔖n

�
i=1

n ∂(fi ∘N)
∂x𝜎(i)

(cq′,cw1,…,cwn))))))))))))))))))))

⩽ ht(n!)+�
i=1

n

di (2Hn+37n logDn)Dn

⩽ n d̄(2Hn+38n logDn)Dn.

Again by Hadamard bound we deduce that

𝔄J ⩽ ‖cq‖2
n(d̄−1)(Dn−1) ‖det J(cq′,cw1,…,cwn)‖2Dn

⩽ (Dn+1)n(d̄−1)(Dn−1)/2 ‖cq‖∞n(d̄−1)(Dn−1)

× (n (d̄−1)(Dn −1)+1)Dn/2 ‖det J(cq′,cw1,…,cwn)‖∞Dn,

32 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

whence

ht 𝔄J ⩽ n (d̄−1)(Dn −1)�12 log(Dn+1)+(Hn+24n logDn)Dn�

+ Dn�
1
2 log(n(d̄−1)(Dn −1)+1)+n d̄(2Hn+38n logDn)Dn�

⩽ n d̄(Hn+25n logDn)Dn
2+n d̄(2Hn+39n logDn)Dn

2

= n d̄(3Hn+64n logDn)Dn
2. (6.9)

The conclusion follows from adding right-hand sides of (6.8), (6.9), and ht(f1) + ⋯ +
ht(fn)⩽ d̄Hn. □

Remark 6.8. Theorem 2.1 of [17] provides a more general statement than Lemma 6.7 for
the affine case. Extensions to the quasi-projective case can be found in [22].

LEMMA 6.9. Assume that di⩾2 for i=1,…,n. Let N be an invertible (n+1)×(n+1) matrix
over ℤ and let u be a linear form in ℤ[x1,…, xn]. Let p be a prime number, and let q,w1,…,wn
be polynomials in ℤ[t] such that:
• q is monic of degree Dn and degwi<Dn for i=1,…,n;
• q is separable modulo p;
• u(w1(t),…,wn(t))= t q′(t)mod (p,q(t));
• (q′(t) :w1(t) :… :wn(t)) is a root of f1∘N=⋯= fn∘N=0 modulo (p,q(t));
• The value of the Jacobian matrix of f1∘N,…, fn∘N in x1,…,xn at (q′(t) :w1(t) :… :wn(t)) is

invertible modulo (p,q(t)).
Then f1 ∘ N, …, fn ∘ N satisfy R1, R2, and are in Noether position (over ℚ), u is a primitive
element for (f1∘N,…, fn∘N)+(x0−1), and q,w1,…,wn coincide modulo p with the Kronecker
parametrization of (f1∘N,…, fn∘N)+(x0−1) over ℚ by u.

Proof. By Proposition 4.6, the residues modulo p of u, q, w1, …, wn form a Kronecker
parametrization of (f1∘N,…, fn∘N)+(x0−1). We may use Algorithm 6.1 from a theoret-
ical point of view in order to prove the existence of univariate polynomials Q,W1,…,Wn
over the p-adic numbers ℚp, satisfying the following properties:
• Q is monic of degree Dn and degWi<Dn for i=1,…,n;
• Q,W1,…,Wn have nonnegative valuations in p and coincide with q,w1,…,wn modulo p;
• u(W1(t),…,Wn(t))= tQ′(t)modQ(t);
• (Q′(t) :W1(t) :… :Wn(t)) is a root of f1∘N=⋯= fn∘N=0 modulo Q(t);
• The value of the Jacobian matrix of f1 ∘N, …, fn ∘N in x1, …, xn at (Q′(t) :W1(t) :… :

Wn(t)) is invertible modulo Q(t).
Consequently, Proposition 4.6 ensures that Q,W1,…,Wn is a Kronecker parametrization
of (f1 ∘ N, …, fn ∘ N) + (x0 − 1) over ℚp by the primitive element u. By uniqueness, it
coincides with the image overℚp of the Kronecker parametrization of (f1∘N,…, fn∘N)+
(x0 − 1) over ℚ by u. Using again Proposition 4.6 with the parametrization over the
rationals concludes the proof. □

Now we address the question of obtaining a suitable prime number.

LEMMA 6.10. There exists a probabilistic algorithm which, given positive integers 𝔄 and B such
that 6 ht 𝔄⩽B, computes a prime p in the range {B+1,…, 2B}, which does not divide 𝔄, with
probability of success ⩾1/2, and in time logO(1)B.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 33

Proof. This is a consequence of [21, Theorem 18.10, part (i)]: we just appeal to the deter-
ministic primality test designed in [1] in order to ensure that p is always prime in return.
This test works in polynomial time. □

6.5. Top level algorithm over the rational numbers
The idea behind the Kronecker solver overℚ is as follows. For a suitable prime p, we use
the Kronecker algorithm to solve the input system over ℤ/pℤ. If the algorithm finishes
with success, then we appeal to the a posteriori verification criterion of Lemma 6.9. If the
criterion passes, then we may lift the Kronecker parametrization over the p-adic integers
to arbitrary precision 𝜅 by using Algorithm 6.1, and we know that the p-adic parame-
trization is the image of the rational one. Consequently, as soon as 𝜅 is sufficiently large,
we can reconstruct the parametrization over ℚ.

Let us recall that a rational number a/b, with gcd(a,b)=1 and b>0, is uniquely deter-
mined by its p-adic expansion to precision 𝜅 whenever |a| < p𝜅/2� and |b| < p𝜅/2� ; see
for instance [68, section 4]. Using the fast Euclidean algorithm from [21, Theorem 5.26]
this reconstruction takes O(I(𝜅 log p) log(𝜅 log p))= Õ(𝜅 log p). The choices of p and the
precision 𝜅 needed by the solver are made precise in the following algorithm. We recall
that 𝜀 is a fixed positive rational number, thought to be small.

Algorithm 6.2

Input. f1,…, fn homogeneous in ℤ[x0,…,xn].
Output. An invertible (n+1)×(n+1)matrix N overℤ such that (f1∘N,…, fn∘N) is in

Noether position, a linear form u∈ℤ[x1,…,xn], and a Kronecker parametrization q,
w1,…,wn by u of (f1∘N,…, fn∘N)+(x0−1).

Assumption. f1,…, fn satisfy R1, R2, and R3.
1. For each i from 1 to n, compute the maximum bit size hi of the coefficients of fi.

Compute Dn and a positive integer H̃n such that H̃n−2⩽�∑i=1
n hi

di
�/log 2⩽H̃n.

Compute B∈ℤ such that

B−2 ⩽ max � max�d̄, (1+𝜀)�8𝜀 +1�nd̄𝜀/8��d̄n −1�,

100Dn
3,

6n d̄�5 H̃n+77 n logDn�Dn
2 � ⩽ B.

2. Compute a prime number p at random in {B,…,2B} via Lemma 6.10.
3. Call the Kronecker algorithm underlying Theorem 5.4 with the images f̄1, …, f̄n of

f1,…, fn in (ℤ/pℤ)[x0,…,xn]. If the resolution fails then go to step 2.
4. Let N̄, ū, q̄, w̄1, …, w̄n be the data returned by the Kronecker algorithm in step 3. If
deg q̄<Dn, or if q̄ is not separable, or if ū(w̄1(t),…, w̄n(t))≠ t q̄′(t)mod q̄(t), or if one
of the f̄i ∘ N̄ does not vanish at (q̄′(t) : w̄1(t) :… : w̄n(t)) modulo q̄(t), or if the value
of the Jacobian matrix of f̄1∘ N̄,…, f̄n∘ N̄ in x1,…,xn at (q̄′(t) : w̄1(t) :… : w̄n(t)) is not
invertible modulo q̄(t), then go to step 2.

5. Let N (resp. u) be the canonical preimage of N̄ (resp. of ū) with entries in {0, …,
p−1}. Let 𝜅 be the first integer such that

log 2p𝜅� ⩾�H̃n+(n+1) log p+16n logDn�Dn.

34 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Compute f1 ∘N, …, fn ∘N over ℤ/p𝜅 ℤ, and use Algorithm 6.1 to obtain the Kro-
necker parametrization q̃, w̃1,…, w̃n by u of (f1∘N,…, fn∘N)+(x0−1) over ℤ/p𝜅ℤ.

6. By rational reconstruction, compute the unique polynomials q,w1,…,wn inℚ[t] that
coincide with q̃, w̃1,…, w̃n modulo p𝜅.

Notice that Hn is 0 whenever all the fi have their coefficients in {−1, 0, 1}. Therefore
in the following complexity estimates we shall write Hn+1 in order to make complexity
bounds valid in this particular case.

THEOREM 6.11. Algorithm 6.2 is correct, as a Las Vegas algorithm, and takes expected time

Õ�Dn d̄(1+𝜀)n (Hn+1)�.

Proof. By Lemma 6.10 the prime p determined in step 2 does not divide the integer 𝔄
defined in Lemma 6.7 with probability ⩾1/ 2. In other words, the sequence f̄1, …, f̄n
satisfy properties R1, R2, and R3 with probability ⩾1/2. Thanks to p ⩾ B, Theorem 5.4
ensures that the Kronecker solver modulo p succeeds with probability ⩾1/2. It follows
that the expected number of times that the algorithm repeats steps 2 to 4 is bounded.

Once the algorithm passes step 4, Lemma 6.9 ensures that the parametrization
modulo p may be lifted to any arbitrary precision, and that the parametrization over ℚ
may be recovered whenever the precision is sufficiently large. According to the pre-
ceding discussion on rational reconstruction, we need that

log 2p𝜅� ⩾K,

with K defined in Lemma 6.4; it satisfies

K⩽(Hn+n log ‖N‖∞+log ‖𝜆‖∞+16n logDn)Dn,

with ‖N‖∞ and ‖𝜆‖∞ being <p⩽2B. This concludes the proof of correctness.
The computation of hi needs time Õ(di

n hi)=Õ�Dn d̄n (Hn+1)� by Lemmas 2.6 and 2.8.
Then Dn, H̃n and B can be computed in time Õ(log B), which is negligible since

log B=O(n log d̄+log(Hn+1))=O(n logDn+log(Hn+1)).

The cost of step 2 is logO(1) B by Lemma 6.10, which is again negligible.
By Theorem 5.4 step 3 takes time

Õ�Dn d̄(1+3𝜀)(n−1) log p�= Õ�Dn d̄(1+3𝜀)(n−1) log(Hn+1)�

since log p=O(log B). Proposition 4.6 then provides us with the cost

Õ�d̄(1+3𝜀)n log p�= Õ�Dn d̄(1+3𝜀)n log(Hn+1)�

for step 4. Computing f1 ∘ N, …, fn ∘ N over ℤ/p𝜅 ℤ in step 5 takes Õ�d̄n 𝜅 log p� by
Proposition 2.15. The cost of the p-adic Hensel lifting is given in Proposition 6.1:

Õ�d̄(1+3𝜀)n𝜅 log p�+ Õ�d̄n h̄�= Õ�d̄(1+3𝜀)n𝜅 log p�+ Õ�Dn d̄n (Hn+1)�,

where h̄=max(h1,…,hn)=O(d̄ (Hn+1)). We verify that

𝜅 log p=O(log B+(Hn+(n+1) log p+16n logDn)Dn)= Õ(Dn(Hn+1)).

Step 6 requires additional time Dn Õ(𝜅 log p)= Õ(Dn
2(Hn+1)). □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 35

The version of the Kronecker solver summarized in Algorithm 6.2 can be optimized
by using ideas previously developed for the case of input polynomials given by straight-
line programs [27]; see implementation details in the C++ library GEOMSOLVEX of MATH-
EMAGIX [38].

A first optimization consists in minimizing the height of the parametrization over
the rationals. For this purpose it is worth finding a matrix N and a primitive element of
small height. This search may be achieved efficiently modulo p, and we refer the reader
to [50] for the description of the underlying algorithms.

A second optimization concerns the early termination of the lifting stage over the
p-adic integers. In fact one may try to perform rational reconstruction before the bound
on the precision is actually reached. If all the reconstructions succeed, then it suffices to
verify that the Kronecker parametrization actually describes the solution set. A prob-
abilistic method to do this consists in evaluating the equations at the parametrization
modulo an independent random prime number p′ with a bit size similar to the one
of p. This verification may also be done deterministically over the rationals, but at
a higher cost.

For an input system in n variables of degrees di=2, the quantity log2(100Dn
3) is of the

order 6.6+3n. Therefore with n=15, Algorithm 6.2 involves primes p of bit size close to
52 bits. In fact, the bounds used in the design of Algorithm 6.2 have been simplified and
overestimated for the sake of the presentation. Sharper bounds should be considered in
practice, in order to ensure that p fits into 32 bits for small and moderate systems, and 64
bits for larger ones.

Let us finally mention that the present bound for the bit size of the Kronecker parame-
trization over the rationals turns out to be essentially sharp for generic systems, according
to [54, Theorem 3.1]. Consequently the complexity reached within Theorem 6.11 is nearly
linear in the “expected” size of the output, from the asymptotic point of view. This fact
is illustrated by the following example.

Example 6.12. Consider the system, adapted from [12],

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{
{ f1 = xn

d −x1d

f2 = x1xn
d−1−x2d

⋮
fn−1 = xn−2xn

d−1−xn−1
d

fn = xn−1xn
d−1−ax0d,

where d⩾2 and a∈ℕ>0. Let 𝜁n be a root of

xn
dn

− adn−1=0,

and set

𝜁n−1≔
a

𝜁n
d−1 , 𝜁n−2≔

𝜁n−1
d

𝜁n
d−1 , …, 𝜁1≔

𝜁2d

𝜁n
d−1 ,

so that (1 :𝜁1 :… :𝜁n) is clearly a zero of f2=⋯= fn=0. For i=n−1,n−2,…,1, we observe
that

𝜁i
𝜁n
= adn−i−1

𝜁n
dn−i .

36 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

It follows that (1 :𝜁1 :… :𝜁n) is also a zero of f1. The value of the Jacobian matrix of f1,…, fn
in x1,…,xn at (1 :𝜁1 :… :𝜁n) is

A≔

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(

(

(−d𝜁1d−1 d𝜁n
d−1

𝜁n
d−1 −d𝜁2d−1 (d−1)𝜁1𝜁n

d−2

⋱ ⋱ ⋮

𝜁n
d−1 −d𝜁n−1

d−1 (d−1)𝜁n−2𝜁n
d−2

𝜁n
d−1 (d−1)𝜁n−1𝜁n

d−2)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)

)

)
.

By expanding detA with respect to the last column, we obtain

detA = (−1)n−1d𝜁n
n(d−1)+�

i=1

n−1

(−1)n−1−i (d−1)𝜁i 𝜁n
d−2�−d𝜁1d−1�⋯(−d𝜁i

d−1) (𝜁n
d−1)n−1−i

= (−1)n−1d𝜁n
n(d−1)+(−1)n−1−i𝜁n

n(d−1)(d−1)�
i=1

n−1

di 𝜁i
𝜁n ((((((((((

𝜁1
𝜁n))))))))))

d−1
⋯((((((((((𝜁i

𝜁n))))))))))
d−1

= (−1)n−1𝜁n
n(d−1)(((((((((((((((((((d+(d−1)�

i=1

n−1

di adn−i−1

𝜁n
dn−i (((((((((((((((((

adn−2

𝜁n
dn−1)))))))))))))))))

d−1

⋯(((((((((((((((((
adn−i−1

𝜁n
dn−i)))))))))))))))))

d−1

)))))))))))))))))))

= (−1)n−1𝜁n
n(d−1)((((((((((((((((((

(d+(d−1)�
i=1

n−1

di adn−i−1

𝜁n
dn−i (((((((((((((((((

adn−1−dn−i−1

𝜁n
dn−dn−i)))))))))))))))))))))))))))))))))))

)

= (−1)n−1𝜁n
n(d−1)(((((((((((((((((((d+(d−1)�

i=1

n−1

di adn−1

𝜁n
dn)))))))))))))))))))

= (−1)n−1𝜁n
n(d−1)((((((((((((((((((

(d+(d−1)�
i=1

n−1

di))))))))))))))))))
)

= (−1)n−1𝜁n
n(d−1)dn.

Consequently detA is invertible. From

𝜁i
𝜁n
= adn−i−1

𝜁n
dn−i =

𝜁n
dn

adn−1
adn−i−1

𝜁n
dn−i =

𝜁n
dn−dn−i

adn−1−dn−i−1 ,

Proposition 4.6 thus ensures that (f1,…, fn) satisfies R1 and R2, that it is in Noether posi-
tion, and that it is parametrized by the primitive element u=xn, as follows:

(f1,…, fn)+(x0−1)=(((((((((((((((((((xn
dn

− adn−1,x1− xn
dn−dn−1+1

adn−1−dn−1−1 ,…,xn−1− xn
dn−d+1

adn−1−1))))))))))))))))))).

7. CONCLUSION

The Kronecker solver was already known to be competitive both in theory and practice
for polynomial systems represented by straight-line programs; see for instance timings
in [2, 27]. Under suitable genericity assumptions and for suitable ground fields, we have
shown in this paper that this solver also leads to improved probabilistic asymptotic com-
plexity bounds for the dense representation of input polynomials.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 37

Our main results concern finite fields and rational numbers, but our methods can in
principle be extended to any ground field over which fast multivariate multi-modular
composition is available. Unfortunately, it is still a major open problem to design an
algorithm for modular composition over arbitrary ground fields.

Another major problem concerns the practical efficiency of algorithms for mod-
ular composition. This holds in particular for the recent fast algorithms for finite fields
designed by Kedlaya and Umans [42], and revisited in [37]; we refer the reader to the
concluding section of [37] for a quantitative discussion. Consequently we do not expect
our Theorem 3.3 to be of practical use, and we cannot claim our new main complexity
bounds for polynomial system solving to be relevant in practice.

Nevertheless, it is important to point out that Theorem 3.3 uses modular composition
as a blackbox. Whenever faster algorithms for this task do become available, they can
directly be used in our algorithms. As one possible research direction, it is worthwhile
to investigate the replacement of generic modular compositions by specific ones, such as
those studied in [34, 36] and which feature more promising performances.

The Kronecker solver admits different extensions for when genericity assumptions R1
and R2 are no longer satisfied: see for instance [39, 50], and more references in [18]. In
this case, the system might have an infinite number of solutions, and one may express
them in terms of a union of equidimensional or irreducible algebraic varieties. We expect
that these extensions could be revisited for the dense representation of input polyno-
mials, and plan to investigate the details in future work.

Yet another important question for systems over the rational numbers concerns the
complexity of finding numerical approximations of the roots. In generic cases we have
proved in Theorem 6.11 how to compute Kronecker representations of solution sets in
quasi-optimal time. This implies that numerical roots may also be computed in quasi-
linear time but whenever the requested precision is “sufficiently large”, by means of fast
univariate polynomial solvers. It would be interesting to quantify the latter “sufficiently
large”, and to compare to the state of the art of numerical polynomial solvers.

APPENDIX A. LINEAR CHANGES OF VARIABLES

This appendix is devoted to subjecting a multivariate polynomial f to a linear change of
variables. More precisely, given f ∈𝔸[x1,…,xn] and an n×n matrix N=(Ni, j)1⩽i⩽n, 1⩽ j⩽n
over a commutative ring 𝔸, then we wish to compute

(f ∘N)(x1,…,xn)≔ f (N1,1x1+⋯+N1,nxn,…,Nn,1x1+⋯+Nn,n xn).

The fast algorithms that we propose below do not seem to be available in the literature.
They are suitable for any coefficient ring with sufficiently many elements, and they are
also well suited for homogeneous polynomials.

A.1. Algebraic complexity model
In this subsection we focus on the algebraic model (computation trees for instance), we
let 𝔸 be an effective commutative ring, and M is a cost function such that two poly-
nomials in 𝔸[x]<ℓ may be multiplied with cost M(ℓ). The evaluation of a multivariate
polynomial at points in a block of points Sn, where S is a finite subset of 𝔸, is usually
achieved by the successive use of fast univariate evaluations, as recalled in the following
lemma.

LEMMA A.1. Let ℓ ⩾ 1, let f ∈𝔸[x1, …, xn] be of partial degree <ℓ in xi for i = 1, …, n, and
let S be a subset of 𝔸 of cardinality ℓ. Then, all the values of f at Sn can be computed with
O(n ℓn−1M(ℓ) log ℓ) arithmetic operations in 𝔸.

38 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Proof. We interpret f ∈𝔸[x1,…,xn] as a univariate polynomial in xn,

f (x1,…,xn)= f0(x1,…,xn−1)+⋯+ fℓ−1(x1,…,xn−1)xn
ℓ−1.

We evaluate f0,…, fℓ−1 at Sn−1 recursively. Then, for each (𝛼1,…,𝛼n−1)∈Sn−1, we evaluate
f (𝛼1, …, 𝛼n−1, xn) at all the points of S, with a total cost O(ℓn−1M(ℓ) log ℓ). Denoting by
T(n, ℓ) the cost of the algorithm in terms of operations in 𝔸, we thus obtain

T(n, ℓ) = ℓT(n−1, ℓ)+O(ℓn−1M(ℓ) log ℓ).

By induction over n, it follows that

T(n, ℓ) = O(n ℓn−1M(ℓ) log ℓ),

which implies the claimed bound. □

The next lemma, also well known, concerns the corresponding interpolation problem.

LEMMA A.2. Let ℓ⩾1, let 𝛼1,…,𝛼ℓ be pairwise distinct points in𝔸 such that 𝛼i −𝛼j is invertible
whenever i≠ j, let 𝛽i1,…,in be a family of values in 𝔸 for (i1,…, in) running over {1,…, ℓ}n. The
unique polynomial f ∈𝔸[x1,…,xn] of partial degrees<ℓ and such that f (𝛼i1,…,𝛼in)=𝛽i1,…,in for
all (i1,…, in)∈{1,…,ℓ}n can be computed with O(n ℓn−1M(ℓ) log ℓ) arithmetic operations in 𝔸,
including inversions.

Proof. Again we interpret f ∈𝔸[x1,…,xn] as a univariate polynomial in xn,

f (x1,…,xn)= f0(x1,…,xn−1)+⋯+ fℓ−1(x1,…,xn−1)xn
ℓ−1. (A.1)

For all (i1, …, in−1) ∈ {0, …, ℓ − 1}n−1 we interpolate the values f0(𝛼i1, …, 𝛼in−1), …,
fℓ−1(𝛼i1,…,𝛼in−1) with ℓn−1 O(M(ℓ) log ℓ) operations in 𝔸. We then recursively interpo-
late f0, …, fℓ−1 and form f as in (A.1). The total cost is obtained as in the proof of the
previous lemma. □

The aim of the following proposition is the fast evaluation of f at a set of points of the
form N(Sn)+B, for any matrix N and any vector B.

PROPOSITION A.3. Let ℓ⩾1, let f ∈𝔸[x1,…,xn] be of partial degree <ℓ in xi for i=1,…,n, let
S={𝛼1,…,𝛼ℓ} be a subset of 𝔸 of cardinality ℓ such that 𝛼i −𝛼j is invertible whenever i≠ j, let N
be a n× n matrix over 𝔸, and let B∈𝔸n. Let X be the column vector with entries x1, …, xn. If
an LU-decomposition of N is given, then f (N(Sn) + B) and f (N X + B) can be computed with
O(n ℓn−1M(ℓ) log ℓ+n𝜔) arithmetic operations in 𝔸, including inversions.

Proof. We write B ≔(𝛽1, …, 𝛽n). We first assume that N = (Ni, j)1⩽i⩽n, 1⩽ j⩽n is upper
triangular, and we partition N(Sn)+B into

N(Sn)+B = �
i=1

ℓ

N(Sn−1×{𝛼i})+B

= �
i=1

ℓ

�Ñ(Sn−1)+ B̃i�×{Nn,n𝛼i+𝛽n},

where Ñ≔(Ni, j)1⩽i⩽n−1, 1⩽ j⩽n−1 and B̃i≔𝛼i (((((((((((((((((
(((((((
(
(N1,n

⋮
Nn−1,n))))))))))))))))

)))))))))
)+ (((((((((((((((((

(((((((
(
(𝛽1

⋮
𝛽n−1))))))))))))))))

)))))))))
). We compute

gi(x1,…,xn−1)≔ f (x1,…,xn−1,Nn,n𝛼i+𝛽n)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 39

for i= 1, …, ℓ using O(ℓn−1M(ℓ) log ℓ) operations in 𝔸. For i= 1, …, ℓ, we then evaluate
gi(x1,…,xn−1) at Ñ(Sn−1)+ B̃i by induction. The base case n=0 takes constant time O(1).
Consequently, for any n, the total number of operations in 𝔸 is O(n ℓn−1M(ℓ) log ℓ), by
the same argument as in the proof of Lemma A.1. We recover f (N(x1, …, xn) + B) with
O(n ℓn−1M(ℓ) log ℓ) operations in 𝔸 by Lemma A.2.

If N is lower triangular then we may revert of the variables in f and the columns of N
in order to reduce to the upper triangular case. Alternatively, we may adapt the latter
decomposition of the set of points, as follows:

N(Sn)+B = �
i=1

ℓ

N({𝛼i}×Sn−1)+B

= �
i=1

ℓ

{N1,1𝛼i+𝛽1}×�Ñ(Sn−1)+ B̃i�,

where Ñ≔(Ni, j)2⩽i⩽n, 2⩽ j⩽n and B̃i≔𝛼i ((((((((((((((((((
((((((
(
(N2,1

⋮
Nn,1))))))))))))))))

)))))))))
)+ ((((((((((((((((((

((((((
(
(𝛽2
⋮
𝛽n))))))))))))))))
)))))))))
). So we compute

gi(x2,…,xn)≔ f (N1,1𝛼i+𝛽1,x2,…,xn)

and evaluate gi(x2,…,xn) at Ñ(Sn−1)+ B̃i by induction, for i=1,…, ℓ.
Finally if N is general, then it suffices to use the given LU-decomposition, where L

is lower triangular with 1 on the diagonal, and U is upper triangular. In fact we have
f (L U(Sn) + B) = (f ∘ L)(U(Sn) + L−1 B), so we compute f ∘ L and then (f ∘ L)(U(Sn) +
L−1B) and (f ∘L)(UX+L−1B). □

In the next lemma the same technique is adapted to homogeneous polynomials.

LEMMA A.4. Let f ∈𝔸[x0,…, xn] be homogeneous of degree d⩾1, let N be a (n+1)×(n+1)
matrix over 𝔸, and let S= {𝛼0, …, 𝛼d} be a subset of 𝔸 of cardinality d+ 1 such that 𝛼i − 𝛼j is
invertible whenever i≠ j. If an LU-decomposition of N is given, then f ∘N can be computed with
O(n (d+1)n−1M(d) log d) arithmetic operations in 𝔸.

Proof. Assume first that N = (Ni, j)0⩽i⩽n, 0⩽ j⩽n is lower triangular and let Ñ ≔
(Ni, j)1⩽i⩽n, 1⩽ j⩽n. We are led to compose f (N0,0,x1,…,xn) with

Ñ(((((((((((((((((
(((((((
(
(x1
⋮

xn))))))))))))))))
)))))))))
)
+(((((((((((((((((
(((((((
(
(N1,0

⋮
Nn,0))))))))))))))))

)))))))))
)

by means of Proposition A.3. If N is upper triangular then it suffices to revert the vari-
ables x0,…,xn in f , and the columns of N, in order to reduce to the lower triangular case.
Alternatively, we may set Ñ≔(Ni, j)0⩽i⩽n−1, 0⩽ j⩽n−1 and compose f (x0,…,xn−1,Nn,n)with

Ñ(((((((((((((((((
(((((((
(
(x1
⋮

xn))))))))))))))))
)))))))))
)
+(((((((((((((((((
(((((((
(
(N0,n

⋮
Nn−1,n))))))))))))))))

)))))))))
)
,

in order to obtain (f ∘N)(x0, …, xn−1, 1). Finally, for any N, it suffices to use the given
LU-decomposition. □
PROPOSITION A.5. Let f ∈𝔸[x0, …, xn] be homogeneous of degree d⩾ 2, let N be a (n+1) ×
(n+1)matrix over𝔸, and let S={𝛼0,…,𝛼d} be a subset of 𝔸 of cardinality d+1 such that 𝛼i−𝛼j
is invertible whenever i≠ j. If an LU-decomposition of N is given, then f ∘N can be computed
with O(n2dn−1M(d) log d) arithmetic operations in 𝔸.

40 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Proof. The total number of coefficients in f is O(dn) by inequality (2.1). We decompose

f =x0g0+x1g1+⋯+xn gn, (A.2)

where xn gn(x0,x1,…,xn) is made of the terms of f which are multiple of xn, then xn−1 gn−1
is made of the terms of f −xn gn which are multiple of xn−1,..., and finally x0g0 is made of
the terms of f −x1g1+⋯+xn gn which are multiple of x0 (that is a𝔸-multiple of a power
of x0). In this way, we are led to compute gi ∘N for i= 0,…, n, with gi of degree ⩽d − 1;
this requires O(n2 dn−1M(d) log d) operations in 𝔸, by Lemma A.4. Then f ∘N can be
recovered with further Õ(n2dn) operations. □

Remark A.6. If one can use specific sequences of points 𝛼i, for instance in geometric pro-
gressions, then multipoint evaluations and interpolations in one variable and in degree d
over𝔸 cost O(M(d)) by means of [10], that saves a factor of log d in the above complexity
estimates.

A.2. Coefficients in a Galois ring
For the purpose of the present paper, we need to adapt the results of the previous sub-
section to the case when 𝔸 is the Galois Ring GR(p𝜅, k), and in the context of Turing
machines. In the next lemmas we use the lexicographic order on ℕn, written <lex,
defined by

𝛼<lex𝛽 ⇔ (∃j∈{1,…,n}, 𝛼n=𝛽n∧⋯∧𝛼j+1=𝛽j+1∧𝛼j<𝛽j).

In terms of Turing machines, we need the following variants of Lemmas A.1 and A.2.

LEMMA A.7. Let ℓ⩾ 1, let f ∈GR(p𝜅, k)[x1, …, xn] be of partial degree <ℓ in xi for i=1,…,n,
and let 𝛼1,…,𝛼ℓ be values inGR(p𝜅,k). Then, the values f (𝛼i1,…,𝛼in) for (i1,…, in) running over
{1,…,ℓ}n in the lexicographic order <lex can be computed in time

n ℓn Õ(log2 ℓ𝜅k log p).

Proof. The proof follows the one of Lemma A.1 while taking data reorganizations into
account. More precisely, using one ℓn−1×ℓmatrix transposition, we reorganize the values
of the fi after the recursive calls into the sequence of

f0(𝛼i1,…,𝛼in−1),…, fℓ−1(𝛼i1,…,𝛼in−1)

for (i1, …, in−1) running over {1, …, ℓ}n−1 in the lexicographic order <lex. Then, after the
multi-point evaluations of f (𝛼i1,…,𝛼in−1,xn), we need to transpose the ℓ×ℓn−1 array made
of the values of f , in order to ensure the lexicographic ordering in the output. The cost
of these transpositions is O(ℓn log ℓ𝜅k log p) by Lemma 2.1, which is negligible. □

LEMMA A.8. Assume ℓ ⩾ 1 and pk ⩾ ℓ. Let 𝛼1, …, 𝛼ℓ be pairwise distinct values in GR(p𝜅, k)
such that 𝛼i − 𝛼j is invertible modulo p for all i ≠ j, and let 𝛽i1,…,in be a family of values in
GR(p𝜅, k) for (i1, …, in) running over {1, …, ℓ}n in the lexicographic order <lex. The unique
polynomial f ∈ GR(p𝜅, k)[x1, …, xn] of partial degree <ℓ in xi for i = 1, …, n, and such that
f (𝛼i1,…,𝛼in)=𝛽i1,…,in for all (i1,…, in) in {1,…, ℓ}n, can be computed in time

n ℓn Õ(log2 ℓ𝜅k log p).

Proof. The proof follows the one of Lemma A.2, by doing the data reorganizations in the
opposite direction from the one in the proof of Lemma A.7. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 41

From now, for convenience, we discard the case ℓ=1. In this way, whenever ℓ⩾2, we
may use nO(1)=logO(1)(ℓn).

PROPOSITION A.9. Assume ℓ⩾2 and pk⩾ℓ. Let f ∈GR(p𝜅,k)[x1,…,xn] be of partial degree <ℓ
in xi for i=1,…,n, and let N be a n×n matrix over GR(p𝜅, k). If an LU-decomposition of N is
given, then f ∘N can be computed in time Õ(ℓn𝜅 k log p).

Proof. We first generate a subset S ≔ {𝛼1, …, 𝛼ℓ} of GR(p, k) of cardinality ℓ in time
Õ(ℓ k log p); this ensures the invertibility of 𝛼i − 𝛼j for i≠ j. The proof then follows the
one of Proposition A.3 while taking data reorganizations into account. When N is upper
triangular, the computation of g1,…,gℓ requires the multi-point evaluation of f regarded
in GR(p𝜅, k)[x1, …, xn−1][xn]: we may simply appeal to the fast univariate algorithm
because it only involves additions, subtractions and products by elements of GR(p𝜅, k)
over the ground ring GR(p𝜅, k)[x1, …, xn−1]. Consequently g1, …, gℓ may be obtained
in time ℓn−1 Õ(ℓ 𝜅 k log p), by Lemma 2.5. In addition, the ℓn−1 × ℓ array of values of
the gi must be transposed at the end, in order to guarantee the lexicographic ordering
necessary to interpolate f ∘N.

When N is lower triangular, the data reorganization costs essentially the same, except
that the computation of g1,…,gℓ takes time ℓn−1Õ(ℓ𝜅k log p) by Lemmas 2.11 and 2.5. □

Before achieving the proof of Proposition 2.15, we further need the following lemma
in order to change the representation of a homogeneous polynomial.

LEMMA A.10. Let f be a homogeneous polynomial of degree d ⩾ 2 in GR(p𝜅, k)[x0, …, xn],
represented as before by f ♭(x1,…,xn)≔ f (1,x1,…,xn) and d, and let i∈{0,…,n}. Then, for any
𝛼∈GR(p𝜅, k) we can compute f ⋄(x0,…, xi−1, xi+1,…, xn−1)≔ f (x0,…, xi−1, 𝛼, xi+1,…, xn−1) in
time Õ(dn𝜅 k log p).

Proof. For simplicity the proof is done for i=n, but it extends in a coefficientwise manner
to any i. A sparse representation of f is made of a sequence of pairs of coefficients and
vector exponents. More precisely, if f =∑e∈ℕn+1 fe x0

e0⋯ xn
en then a sparse representation

of it is the sequence of the pairs (fe, e), for all the non-zero coefficients fe. The bit size of a
vector exponent is O(n+log d), and therefore the bit size of a sparse representation of f
is O(dn(n+log d)𝜅k log p) by (2.1).

In order to prove the lemma, we first convert f , given in dense representation, into
a sparse representation. When n=1 the sparse representation of f ♭ may be obtained in
time O(d log d𝜅 k log p). Otherwise n⩾2 and we regard f ♭ in GR(p𝜅,k)[x1,…,xn−1][xn],

f ♭(x1,…,xn)= f0♭(x1,…,xn−1)+⋯+ fd♭(x1,…,xn−1)xn
d,

and recursively compute the sparse representation of fi♭ for i = 0, …, d. These repre-
sentations may naturally be glued together into a sparse representation of f ♭, in time
O(dn (n + log d) 𝜅 k log p), by adding the exponent of xn into each exponent vector.
A straightforward induction leads to a total time O(dn (n + log d) 𝜅 k log p) for the
change of representation of f ♭. Then the sparse representation of f may be deduced with
additional time O(dn (n+ log d) 𝜅 k log p) by appending the exponent of x0 needed for
homogenization.

Second, from the latter sparse representation of f we may simply discard the expo-
nents of xn and multiply the coefficients with the corresponding powers of 𝛼, in order to
obtain a sparse representation of f ⋄ in time Õ(dn𝜅k log p).

42 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

Finally it remains to construct the dense representation of f ⋄ from its sparse repre-
sentation. To this aim we sort the sparse representation in increasing lexicographic order
on the exponent vectors in time O(dn log(dn) (n+log d) 𝜅 k log p). We next compute the
dense representation by induction over n. Writing

f ⋄(x0,…,xn−1)= f0⋄(x0,…,xn−2)+⋯+ fℓ−1⋄ (x0,…,xn−2)xn−1
ℓ−1 ,

the sparse representations of f0⋄,…, fℓ−1⋄ are computed by induction, after removal of the
powers of xn−1. The induction ends when n= 0, in which case the conversion to dense
representation requires time O(d log d 𝜅 k log p). In total, the dense representation of f ⋄
can be computed in time O(dn log(dn)(n+log d)𝜅k log p). □

Proof of Proposition 2.15. We follow the proofs of Lemma A.4 and Proposition A.5, still
while taking into account the cost of data reorganizations.

In the proof of Lemma A.4, the cost of obtaining f (N0,0, x1, …, xn) and f (x0, …, xn−1,
Nn,n) is given by Lemma A.10, that is Õ(dn𝜅 k log p).

In the proof of Proposition A.5 we first need to compute the decomposition (A.2) of f .
The polynomial

gn(x0,…,xn)= f1(x0,…,xn−1)+ f2(x0,…,xn−1)xn+⋯+ fd(x0,…,xn−1)xn
d−1

is represented by

gn
♭(x1,…,xn)≔ f1♭(x1,…,xn−1)+ f2♭(x1,…,xn−1)xn+⋯+ fd♭(x1,…,xn−1)xn

d−1

and d−1. Consequently gn
♭ may be easily obtained in time O(dn 𝜅 k log p). Then the rest of

the decomposition gn−1
♭ ,…,g0♭ is obtained from f0♭(x1,…,xn−1), recursively. The total cost

for obtaining all the gi
♭ is therefore bounded by Õ(dn𝜅k log p).

For any c ∈ GR(p𝜅, k), any i ∈ {0, …, n}, and any j ∈ {1, …, n}, the computations of
c (gi ∘N)(1, x1, …, xn) and of c xj (gi ∘N)(1, x1, …, xn) take time dn Õ(𝜅 k log p) since their
supports have cardinality O(dn) by (2.1).

Finally, from

f ∘N=�
i=0

n

(((((((((((((((((
((
(
(�

j=0

n

Ni, j xj)))))))))))))))))
))
)
) (gi ∘N)

we obtain the representation of f ∘N as

(f ∘N)(1,x1,…,xn)=�
i=0

n

(((((((((((((((((
((
(
(Ni,0+�

j=1

n

Ni, j xj)))))))))))))))))
))
)
)(gi ∘N)(1,x1,…,xn),

using additional time Õ(dn𝜅 k log p). The cost of the data reorganizations in the proof of
Proposition A.5 is negligible. □

BIBLIOGRAPHY

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. Math., pages 781–793, 2004.
[2] B. Bank, M. Giusti, J. Heintz, G. Lecerf, G. Matera, and P. Solernó. Degeneracy loci and polynomial

equation solving. Found. Comput. Math., 15(1):159–184, 2015.
[3] M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptogra-

phie. PhD thesis, Université Pierre et Marie Curie - Paris VI, 2004. https://tel.archives-ouvertes.fr/tel-00449609.
[4] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of the F5 Gröbner basis algorithm. J. Symbolic

Comput., 70:49–70, 2015.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 43

https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609

[5] S. J. Berkowitz. On computing the determinant in small parallel time using a small number of proces-
sors. Inform. Process. Lett., 18:147–150, 1984.

[6] J. Berthomieu, J. van der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic numbers. J. Théor.
Nombres Bordeaux, 23(3), 2011.

[7] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over local rings and application to
error correcting codes. Appl. Alg. Eng. Comm. Comp., 24(6):413–443, 2013.

[8] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É Schost. Algorithmes Efficaces
en Calcul Formel. Frédéric Chyzak (self-published), Palaiseau, 2017. Electronic version available from
https://hal.archives-ouvertes.fr/AECF.

[9] A. Bostan, Ph. Flajolet, B. Salvy, and É. Schost. Fast computation of special resultants. J. Symbolic
Comput., 41(1):1–29, 2006.

[10] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Com-
plexity, 21(4):420–446, 2005.

[11] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM,
25(4):581–595, 1978.

[12] W. D. Brownawell. Bounds for the degrees in the Nullstellensatz. Annal. of Math., 126(3):577–591,
1987.

[13] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren
der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[14] J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of nonlinear polynomial equations faster. In
Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation,
ISSAC '89, pages 121–128, New York, NY, USA, 1989. ACM.

[15] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Infor.,
28:693–701, 1991.

[16] J.-M. Couveignes and R. Lercier. Fast construction of irreducible polynomials over finite fields. Israel
J. Math., 194(1):77–105, 2013.

[17] C. D'Andrea, A. Ostafe, I. E. Shparlinski, and M. Sombra. Reduction modulo primes of systems of
polynomial equations and algebraic dynamical systems. Trans. Amer. Math. Soc., 2018. https://doi.org/
10.1090/tran/7437.

[18] C. Durvye and G. Lecerf. A concise proof of the Kronecker polynomial system solver from scratch.
Expo. Math., 26(2):101–139, 2008.

[19] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change of ordering for Gröbner basis:
A probabilistic approach. In Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, ISSAC '14, pages 170–177, New York, NY, USA, 2014. ACM.

[20] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner
bases by change of ordering. J. Symbolic Comput., 16(4):329–344, 1993.

[21] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York,
3rd edition, 2013.

[22] N. Giménez and G. Matera. On the bit complexity of polynomial system solving. Technical report,
ArXiv, 2016. https://arxiv.org/abs/1612.07786.

[23] M. Giusti. Some effectivity problems in polynomial ideal theory. In J. Fitch, editor, EUROSAM 84: Inter-
national Symposium on Symbolic and Algebraic Computation Cambridge, England, July 9–11, 1984, pages
159–171, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[24] M. Giusti, K. Hägele, J. Heintz, J. L. Montaña, J. E. Morais, and L. M. Pardo. Lower bounds for Dio-
phantine approximations. J. Pure Appl. Algebra, 117/118:277–317, 1997.

[25] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo. Straight-line programs in geometric
elimination theory. J. Pure Appl. Algebra, 124(1-3):101–146, 1998.

[26] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. When polynomial equation systems can be “solved”
fast? In Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), volume 948 of Lecture
Notes in Comput. Sci., pages 205–231. Springer-Verlag, 1995.

[27] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system solving. J. com-
plexity, 17(1):154–211, 2001.

[28] B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over finite fields using Graeffe
transforms. Appl. Alg. Eng. Comm. Comp., 27(3):237–257, 2016.

[29] D. Harvey and J. van der Hoeven. Faster integer multiplication using plain vanilla FFT primes. Math.
Comp., 2018. https://doi.org/10.1090/mcom/3328.

[30] D. Harvey and J. van der Hoeven. Faster integer multiplication using short lattice vectors. Technical
report, ArXiv, 2018. http://arxiv.org/abs/1802.07932.

[31] D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. J. Complexity, 36:1–30,
2016.

44 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://hal.archives-ouvertes.fr/AECF
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://doi.org/10.1090/tran/7437
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://arxiv.org/abs/1612.07786
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
https://doi.org/10.1090/mcom/3328
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932
http://arxiv.org/abs/1802.07932

[32] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J. ACM,
63(6), 2017. Article 52.

[33] J. Heintz. Definability and fast quantifier elimination in algebraically closed fields. Theor. Comput. Sci.,
24(3):239–277, 1983.

[34] J. van der Hoeven and G. Lecerf. Modular composition via complex roots. Technical report, CNRS &
École polytechnique, 2017. http://hal.archives-ouvertes.fr/hal-01455731.

[35] J. van der Hoeven and G. Lecerf. Accelerated tower arithmetic. Technical report, CNRS & École poly-
echnique, 2018. https://hal.archives-ouvertes.fr/hal-01788403.

[36] J. van der Hoeven and G. Lecerf. Modular composition via factorization. J. Complexity, 2018. https://
doi.org/10.1016/j.jco.2018.05.002.

[37] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited. 2018.
[38] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, from 2002. http://www.mathemagix.org.
[39] G. Jeronimo and J. Sabia. Effective equidimensional decomposition of affine varieties. J. Pure Appl.

Algebra, 169(2–3):229–248, 2002.
[40] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of finite fields.

In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC '97,
pages 184–188, New York, NY, USA, 1997. ACM.

[41] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In FOCS'08: IEEE Con-
ference on Foundations of Computer Science, pages 146–155, Washington, DC, USA, 2008. IEEE Computer
Society.

[42] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J. Comput.,
40(6):1767–1802, 2011.

[43] T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for the arithmetic Nullstellensatz. Duke Math.
J., 109(3):521–598, 2001.

[44] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. J.reine angew. Math.,
92:1–122, 1882.

[45] Y. N. Lakshman. On the complexity of computing a Gröbner basis for the radical of a zero dimensional
ideal. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC '90,
pages 555–563, New York, NY, USA, 1990. ACM.

[46] Y. N. Lakshman. A single exponential bound on the complexity of computing Gröbner bases of zero
dimensional ideals. In T. Mora and C. Traverso, editors, Effective Methods in Algebraic Geometry, pages
227–234, Boston, MA, 1991. Birkhäuser Boston.

[47] Y. N. Lakshman and D. Lazard. On the complexity of zero-dimensional algebraic systems. In T. Mora
and C. Traverso, editors, Effective Methods in Algebraic Geometry, pages 217–225, Boston, MA, 1991.
Birkhäuser Boston.

[48] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In
J. A. Hulzen, editor, Computer Algebra: EUROCAL'83, European Computer Algebra Conference London,
England, March 28–30, 1983 Proceedings, pages 146–156. Springer Berlin Heidelberg, 1983.

[49] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, editor, ISSAC'14: Inter-
national Symposium on Symbolic and Algebraic Computation, pages 296–303, New York, NY, USA, 2014.
ACM.

[50] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of lifting
fibers. J. Complexity, 19(4):564–596, 2003.

[51] G. Lecerf. On the complexity of the Lickteig–Roy subresultant algorithm. J. Symbolic Comput., 2018.
https://doi.org/10.1016/j.jsc.2018.04.017.

[52] P. Lelong. Mesure de Mahler et calcul de constantes universelles pour les polynomes de N variables.
Math. Ann., 299(1):673–695, 1994.

[53] H. Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cam-
bridge university press, 1989.

[54] D. McKinnon. An arithmetic analogue of Bezout's theorem. Compos. Math., 126(2):147–155, 2001.
[55] J. M. McNamee and V. Y. Pan. Numerical Methods for Roots of Polynomials, Part II, volume 16 of Studies

in Computational Mathematics. Elsevier, 2013.
[56] B. Mourrain, V. Y. Pan, and O. Ruatta. Accelerated solution of multivariate polynomial systems of

equations. SIAM J. Comput., 32(2):435–454, 2003.
[57] B. Mourrain and Ph. Trébuchet. Solving projective complete intersection faster. In Proceedings of the

2000 International Symposium on Symbolic and Algebraic Computation, ISSAC '00, pages 234–241, New
York, NY, USA, 2000. ACM.

[58] B. Mourrain and Ph. Trébuchet. Generalized normal forms and polynomial system solving. In Pro-
ceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC '05, pages
253–260, New York, NY, USA, 2005. ACM.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 45

http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://hal.archives-ouvertes.fr/hal-01788403
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017

[59] B. Mourrain and Ph. Trébuchet. Border basis representation of a general quotient algebra. In Proceed-
ings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pages 265–272,
New York, NY, USA, 2012. ACM.

[60] A. K. Narayanan. Fast computation of isomorphisms between finite fields using elliptic curves. Tech-
nical report, arXiv:1604.03072, 2016. https://arxiv.org/abs/1604.03072.

[61] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[62] P. Philippon. Sur des hauteurs alternatives. I. Math. Ann., 289(1):255–283, 1991.
[63] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional triangular sets.

J. Symbolic Comput., 50:110–138, 2013.
[64] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1(2):139–144,

1971.
[65] A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast algorithms: A multitape Turing machine implemen-

tation. B. I. Wissenschaftsverlag, Mannheim, 1994.
[66] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,

27(4):701–717, 1980.
[67] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp.,

54(189):435–447, 1990.
[68] P. S. Wang. A p-adic algorithm for univariate partial fractions. In Proceedings of the Fourth ACM Sym-

posium on Symbolic and Algebraic Computation, SYMSAC '81, pages 212–217, New York, NY, USA, 1981.
ACM.

[69] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings EUROSAM' 79, number 72
in Lect. Notes Comput. Sci., pages 216–226. Springer-Verlag, 1979.

46 ON THE COMPLEXITY EXPONENT OF POLYNOMIAL SYSTEM SOLVING

https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072

	1. Introduction
	Notations

