Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2019

Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients

Marc Josien

Résumé

This article is about the $Z^d-$periodic Green function $G_n(x, y)$ of the multiscale elliptic operator $Lu = −div (A(n·) \nabla u)$, where $A(x)$ is a $Z d-$periodic, coercive, and Hölder continuous matrix, and n is a large integer. We prove here pointwise estimates on $G_n(x, y)$, $\nabla_xG_n(x, y)$, $\nabla_y G_n(x, y)$ and $\nabla_{xy}G_n(x, y)$ in dimensions $d ≥ 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.
Fichier principal
Vignette du fichier
Josien_Green_function.pdf (468.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01848268 , version 1 (24-07-2018)

Identifiants

Citer

Marc Josien. Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients. Asymptotic Analysis, 2019, 112 (3-4), pp.227--246. ⟨10.3233/ASY-181504⟩. ⟨hal-01848268⟩
201 Consultations
121 Téléchargements

Altmetric

Partager

More