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Decomposition and pointwise estimates of
periodic Green functions of some elliptic

equations with periodic oscillatory coefficients

Marc Josien ∗

July 24, 2018

Abstract

This article is about the Zd-periodic Green function Gn(x, y) of the
multiscale elliptic operator Lu = −div (A(n·) · ∇u), where A(x) is a Zd-
periodic, coercive, and Hölder continuous matrix, and n is a large integer.
We prove here pointwise estimates on Gn(x, y), ∇xGn(x, y), ∇yGn(x, y)
and ∇x∇yGn(x, y) in dimensions d ≥ 2. Moreover, we derive an explicit
decomposition of this Green function, which is of independent interest.
These results also apply for systems.

Keywords: Green function, periodic homogenization, multiscale problems.

1 Introduction
In this article, we consider the periodic Green function Gn(x, y) associated with
the multiscale problem

− div (A(nx) · ∇un(x)) = f(x)−
ˆ

Q

f for x ∈ Q,

ˆ

Q

un = 0 and un is Q-periodic,
(1)

where n ∈ N is expected to be very large and Q = [−1/2, 1/2]d is the unit cube
in dimensions d ≥ 2. Hereafter, we write “periodic” for “Q-periodic”. Here A
satisfies the classical assumptions of ellipticity, periodicity and Hölder continuity
(see [2]). We first derive pointwise estimates for Gn and its derivatives ∇xGn,
∇yGn and ∇x∇yGn. Although these estimates are seemingly classical, we have
not found them elsewhere in the literature in the special case of periodic bound-
ary conditions. In particular, we refer the reader to [5], which collects similar
estimates, but concerning the Green function of elliptic problems with peri-
odic coefficients in Rd (and not the periodic Green function). We also express
the periodic Green function Gn in terms of the Green function of the opera-
tor −div (A(n·) · ∇) in Rd. This latter result, which yields an alternative proof
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of estimates on the periodic Green function, is of independent interest. Our
proofs crucially make use of homogenization tools of Avellaneda and Lin [2, 3].

Our study is motivated by the fact that, in numerical applications, numerous
homogenization problems are set on cubes with periodic boundary conditions
(rather than on an infinite domain). For example, we refer the reader to [1],
where the homogenized matrix of a random medium is approximated, by appeal-
ing to a periodic problem (such a strategy has been recently used in [14, 15]).

Estimating the behavior of the Green function of elliptic problems has at-
tracted much attention, as the Green functions are a useful tool for getting
estimates. Indeed, the solution un to (1) can be written as an integral of the
forcing term (e.g., f in (1), which can be in the form f = div(H)), multiplied
by the Green function. Thus, if the Green function (or its derivatives) is con-
trolled, then one can estimate the solution un (or its derivatives) directly from
the forcing term, using the Young inequality (see, e.g., [4, Chap. I p. 7-12], and
see [13] for such manipulations). However, let us remark that, by duality, such
estimates can also be used to get back to the properties of the Green function.
We refer the reader to [13], which goes back and forth from properties of the
Green function to estimates on the solution to the oscillating problem.

The behavior of the Green function G of the following Dirichlet problem:{
− div (A(x) · ∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,

with elliptic and bounded matrix A has been explored in the seminal article [10]
(here Ω is a sufficiently regular bounded domain). Without any regularity as-
sumption on A (and without any hypothesis about the structure of A), the
authors derive optimal pointwise estimates on G. But they need to assume that
the matrix A is continuous and sufficiently regular in order to obtain pointwise
estimates on the gradients ∇xG, ∇yG, and on the second derivatives ∇x∇yG.
Loosely speaking, they show under suitable assumptions that these quantities
behave as if G was the fundamental solution to the Laplace equation (see [9,
Chap. II, p. 13-30]), namely (in dimension d ≥ 3):

|G(x, y)| ≤ C|x− y|−d+2, (2)

|∇xG(x, y)| ≤ C|x− y|−d+1, |∇yG(x, y)| ≤ C|x− y|−d+1, (3)

|∇x∇yG(x, y)| ≤ C|x− y|−d. (4)

Since the domain of interest Ω is bounded, the above quantity |x−y| is bounded;
hence, the difficulty in the above estimates is obviously when x is close to y.
Their results have been generalized to systems of elliptic equations. In partic-
ular, the same type of results is proved in [8], provided that the matrix A is
sufficiently regular.

On the opposite side, problems like (1) have the specificity that the coef-
ficients A(n·) are more and more oscillating when n increases, since the car-
acteristic scale 1/n of the microstructure goes smaller and smaller. Therefore,
the results that rely on the regularity of the coefficient do not apply uniformly :
the constants C of the estimates (3) and (4) blows up when n goes to infinity.
With a totally different approach than above, Avellaneda and Lin have proved
that the solutions to oscillatory elliptic problems enjoy Hölder and Lipschitz
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regularity properties, if the matrix A is elliptic, periodic, and Hölder continuous
(see [2]). For that purpose, they introduced a so-called compactness method,
showing that the oscillatory problems inherit regularity from the homogenized
problem. Applying their results to the Green function in Rd itself, they derived
the same type of estimates as (2), (3), and (4). We refer the reader to [5] for
a review on the pointwise estimates on multiscale Green functions in Rd, for
matrices A that are elliptic, bounded, periodic and sufficiently regular.

In [3], Avellaneda and Lin described the asymptotic behavior, in the limit
where the small scale vanishes, of the Green function in Rd of periodic elliptic
equations by using the Green function of the homogenized problem. Using the
same techniques, the authors of [13, 12] established the same kind of asymptotics
for the Green function of the multiscale problem set in a bounded domain, for
Dirichlet and Neumann boundary conditions.

Periodic Green functions can sometimes be expressed thanks to the associ-
ated Green functions in the whole space Rd. For example, such a decomposition
can be found in [7] for the case of the Laplacian. This consists in a series in-
volving the Green function in Rd, translated on the grid Zd. The main difficulty
of this decomposition is to ensure that the series actually converges; in the
case of the Laplacian, this is shown by resorting to the local symmetries of the
Green function of the Laplacian. We address the question of building a similar
decomposition for the case (1).

Most of the theoretical material and ideas used in the present article are
borrowed from [2, 3, 5, 13] for the homogenization aspect, and from [7] for the
decomposition of the periodic Green function.

1.1 Main results
Before getting to the oscillatory problem, we first establish the existence and
the uniqueness of the periodic Green function for general periodic, elliptic and
bounded coefficients. Henceforth, we denote by a subscript “per” the functional
spaces of periodic functions: for example, L2

per(Q) is the set of functions defined
on Rd that are periodic and square integrable on the cube Q. We consider the
operator

T : f 7→ u,

where f ∈ L2
per(Q) and u is the unique periodic solution with zero mean to

−div (A(x) · ∇u(x)) = f(x)−
ˆ

Q

f for x ∈ Q, (5)

in which the matrix A is periodic, elliptic and bounded. Namely, there exists a
constant µ > 0 such that A satisfies

µ|ξ|2 ≤ A(x) · ξ · ξ ≤ µ−1 |ξ|2 ∀x, ξ ∈ Rd, (6)

A(x+ z) = A(x) ∀x ∈ Rd, z ∈ Zd. (7)

The operator T admits the following integral formulation, involving the so-called
periodic Green function G associated with the operator −div (A · ∇):

Tf(x) =

ˆ

Q

G(x, y)f(y)dy. (8)

3



By classical arguments (see, e.g., [10]), such a Green function G exists and is
unique (see Section 2 for a precise statement). It satisfies the following equation:

−divx (A(x) · ∇xG(x, y)) = δy(x)− 1 in Q. (9)

Using a method that can be found in [2, Th. 13] (see also the proof of [13, Th.
3.3]), we show a pointwise estimate on the periodic Green function G associated
with the operator −div (A · ∇). In dimension d = 2, this estimate on G(x, y) is
logarithmic, which introduces some technicalities.

Proposition 1.1. Let the dimension be d ≥ 2. Assume that A ∈ L∞per

(
Q,Rd2

)
satisfies (6) and (7). Let G be the periodic Green function associated with the
operator −div (A · ∇). Then there exists a constant C > 0 that only depends
on d and µ such that the following estimates are satisfied, for all x ∈ Rd and y ∈
x+ Q, with x 6= y:

if d ≥ 3, |G(x, y)| ≤ C|x− y|−d+2, (10)
if d = 2, |G(x, y)| ≤ C log(2 + |x− y|). (11)

The proof of Proposition 1.1 is postponed until Section 3.
One can apply the above result to the multiscale problem (1). Thus, if A ∈

L∞per

(
Q,Rd2

)
satisfies (6) and (7), then the periodic Green function Gn associ-

ated with the operator −div (A(n·) · ∇) satisfies (10) or (11) (depending on the
dimension d), for a constant C that only depends on d and µ (and not on n).

Now, we consider a matrix A that is elliptic, periodic, and also Hölder con-
tinuous:

A ∈ C0,α
(

Q,Rd
2
)
, (12)

for α ∈ (0, 1). Using the results of [2], we derive pointwise estimates on the gra-
dients ∇xGn and ∇yGn and on the second derivatives ∇x∇yGn of the periodic
Green function Gn associated with the operator −div (A(n·) · ∇).

Proposition 1.2. Let the dimension be d ≥ 2. Assume that A ∈ L∞per

(
Q,Rd2

)
satisfies (6), (7) and (12). Let Gn be the periodic Green function associated
with the operator −div (A(n·) · ∇). Then, there exists a constant C > 0 such
that, for all n ∈ N\{0}, x ∈ Rd and y ∈ x+ Q, with x 6= y,

|∇xGn(x, y)| ≤ C|x− y|−d+1, (13)

|∇yGn(x, y)| ≤ C|x− y|−d+1, (14)

|∇x∇yGn(x, y)| ≤ C|x− y|−d. (15)

The proof of Proposition 1.2 is postponed until Section 4.
Let us underline that the salient point of Proposition 1.2 is that the con-

stant C does not depend on the characteristic scale 1/n of the microstructure.
The latter estimates are not unexpected; see, e.g., [5, Prop. 8] for similar esti-
mates on the Green function in the whole space Rd.

On the first hand, as is shown in [10, Th. 1.1], in the case of Dirichlet
boundary conditions, Estimate (10) does not require any regularity assumption
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on A. As expected, it is also the case for periodic boundary conditions. On the
other hand, Estimates (13), (14) and (15) critically rely on the fact that A is
periodic and sufficiently regular.

Using another approach, reminiscent of [7, p. 130-131], we show a decom-
position for the periodic Green function G. This formula extensively uses the
corresponding Green function G in Rd of the operator −div (A · ∇), which sat-
isfies

−div (A(x) · ∇xG(x, y)) = δy(x) in Rd. (16)

Proposition 1.3. Let the dimension be d ≥ 3. Assume that A ∈ L∞per

(
Q,Rd2

)
satisfies (6), (7) and (12). Let G be the periodic Green function associated with
the operator −div (A · ∇). Then, the function G can be decomposed as

G(x, y) =

+∞∑
m=0

( ∑
k∈Γm

Hk(x, y)

)
, (17)

where the functions Hk are defined by

Hk(x, y) := G(x, y − k)−
ˆ

Q

G(x, y + y′ − k)dy′ −
ˆ

Q

G(x+ x′, y − k)dx′

+

ˆ

Q

ˆ

Q

G(x+ x′, y + y′ − k)dy′dx′, (18)

and the function G by (16), and the sets Γm by

Γ0 =
{
k ∈ Zd, 0 ≤ k · (A?s )

−1 · k < 22
}
, (19)

Γm =
{
k ∈ Zd, 22m ≤ k · (A?s )

−1 · k < 22m+2
}

if m ≥ 1, (20)

where A?s is the symmetric part of the homogenized matrix A? associated with
the matrix A.

The proof of Proposition 1.3 is postponed until Section 5.
The above decomposition (17) naturally appears as a reasonable candidate,

being close (but not equivalent) to the decomposition [7, p. 130-131]. But the
difficulty is to ensure that the series actually converges, in the sense that

+∞∑
m=0

∣∣∣∣∣ ∑
k∈Γm

Hk(x, y)

∣∣∣∣∣ < +∞ for x 6= y. (21)

In [7, p. 130-131], where the Laplacian with periodic boundary conditions is
studied, the convergence is obtained by appealing to the local symmetries of the
Green function of the Laplacian. This cannot be applied to our case. Here, the
convergence is a consequence of the long-range behavior of the Green function G.
Thanks to the periodicity of A, the function G can be efficiently approximated
at large scale by the Green function of the homogenized problem (see [3, 13]).
Hence, taking advantage of the long-range symmetries of the Green function of
the homogenized problem, one can prove the convergence of the series in (17).
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In this regard, we underline that, in general, the series (17) does not converge
absolutely with respect to k:∑

k∈Zd

∣∣Hk(x, y)
∣∣ = +∞ for x 6= y.

This fact appears as a byproduct of the proof.
Last but not least, it should be underlined that the above decomposition

provides an alternative way for showing the pointwise estimates (10) on the
multiscale periodic Green function Gn of the operator −div (A(n·) · ∇). Indeed,
the proof of Proposition 1.3 (in Section 5) implies that the series (17) converges
uniformly with respect to n.

1.2 Extension to systems
Our proof of the existence and the uniqueness of the Green function uses the
De Giorgi-Nash-Moser theorem. In dimension d ≥ 3, this ingredient can be
replaced by the W1,p and L∞ estimates in [8, Lem. 2 & Lem. 3]. Hence, there
also exists a unique periodic Green function of the operator Lu := (Lαu)α∈[[1,m]]

defined by

Lαu := −div

 m∑
β=1

Aαβ · ∇uβ
 = −

d∑
i,j=1

∂i

 m∑
β=1

Aαβij ∂ju
β

 ,

where A =
(
Aαβij

)
, for i, j ∈ [[1, d]] and α, β ∈ [[1,m]], m ∈ N, is continuous,

periodic, and elliptic in the following sense:

µ|ξ|2 ≤
d∑

i,j=1

m∑
α,β=1

Aαβij (x)ξαi ξ
β
j ≤ µ−1 |ξ|2 ∀x ∈ Rd, ξ = (ξαi ) ∈ Rdm, (22)

In this case, the periodic Green function G (which is a matrix) satisfies, for
all α, γ ∈ [[1,m]],

−divx

 m∑
β=1

Aαβ(x) · ∇xGβγ(x, y)

 = δαγ (δy(x)− 1) in Q, (23)

where δαβ is the Kronecker symbol.
As can be seen in Sections 3 and 4, the proofs of Propositions 1.1 and 1.2 in-

volve arguments that are also valid if we study periodic oscillatory systems
instead of equations (note that the seminal article [2] dealt with systems).
More precisely, if d ≥ 3, the periodic Green function Gn associated with the
operator −div (A(n·) · ∇) satisfies (10), (11), (13), (14), and (15), provided
that A =

(
Aαβij

)
is periodic, satisfies (22), and is Hölder continuous. Notably,

the Hölder estimate [2, Lem. 9] can be used instead of the De Giorgi-Nash-
Moser theorem in the proof of Proposition 1.1. Besides, the Lipschitz estimate
borrowed from [2, Lem. 16] that we use in the proof of Proposition 1.2 also
applies.

Finally, the formula (17) can also be generalized to the case of systems, using
appropriate sets Γα,βm while decomposing Gαβ (see Section 5.3).
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1.3 Outline
Our article is articulated as follows. In Section 2, we precisely explain in which
sense there exists a unique periodic Green function. We briefly justify this
fact by classical arguments. Next, in Section 3, we proceed with the proof of
Proposition 1.1. In dimension d ≥ 3, the proof is based on a duality argument
involving the De Giorgi-Nash-Moser theorem. In dimension d = 2, using a trick
from [2], it reduces to expressing the 2-dimensional periodic Green function as
the integral of a 3-dimensional periodic Green function. In Section 4, combining
Estimate (10) of Proposition 1.1 and the Lipschitz estimates of [2], we show (13)
(and similarly (14)), from which we deduce (15). Finally, in Section 5, we prove
Proposition 1.3, which, under suitable hypotheses, yields a decomposition for
the periodic Green function. For the sake of simplicity, we first study the case
where the homogenized matrix is the identity in Section 5.1, and then the general
case in Section 5.2. Additional materials about such a decomposition in the case
of systems can be found in the Section 5.3.

2 Existence, uniqueness and basic properties of
the Green function

In this section, we justify that there exists a unique periodic Green function G
associated with the operator −div (A · ∇). It lies in the functional space E con-
taining all the functions G(x, y) satisfying, for all p ∈

[
1, d

d−2

)
(by convention,

if d = 2, then d/(d− 2) = +∞) and q ∈
[
1, d

d−1

)
,

sup
y∈Q
‖G(·, y)‖Lp(Q) < +∞ sup

y∈Q
‖∇xG(·, y)‖Lq(Q) < +∞, (24)

sup
x∈Q
‖G(x, ·)‖Lp(Q) < +∞, sup

x∈Q
‖∇yG(x, ·)‖Lq(Q) < +∞. (25)

Proposition 2.1. Let the dimension be d ≥ 2. Assume that A ∈ L∞per

(
Q,Rd2

)
satisfies (6) and (7). Then there exists a unique periodic Green function G(x, y)
associated with the operator −div (A · ∇) -namely, G satisfies (8)- that is in the
space E, defined by (24) and (25). Moreover, the function G†(x, y) := G(y, x)
is the periodic Green function associated with the operator −div

(
AT · ∇

)
. Last,

G is the unique periodic solution in E to (9) satisfying
ˆ

Q

G(x, y)dy = 0 ∀x ∈ Q, (26)

and
ˆ

Q

G(x, y)dx = 0 ∀y ∈ Q. (27)

Actually, if d ≥ 3, the Green function is expected to satisfy the following
estimates:

sup
y∈Q
‖G(·, y)‖

L
d
d−2

,∞
(Q)

< +∞, sup
y∈Q
‖∇xG(·, y)‖

L
d
d−1

,∞
(Q)

< +∞, (28)

sup
x∈Q
‖G(x, ·)‖

L
d
d−2

,∞
(Q)

< +∞, sup
x∈Q
‖∇yG(x, ·)‖

L
d
d−1

,∞
(Q)

< +∞, (29)

7



since it is the case when homogeneous Dirichlet boundary conditions are con-
sidered (see [10, Th. 1.1]). Here Lp,∞ denote the Marcinkiewicz spaces (see [4,
Chap. I p. 7-11] for a reference on such functional spaces). Thus, the proposed
space E is not optimal. However, for the purpose of the present article, it not
useful to find the optimal function space, since (28) and (29) are a straightfor-
ward corollary of Propositions 1.1 and 1.2 below.

Proposition 2.1 can be proven by standard arguments (see, e.g., [10]) that
we briefly describe here (see [11, Chapter 3]).

First, we establish existence and uniqueness by using the regularizing prop-
erties of (5). Then, we show that (x, y) 7→ G(y, x) is the Green function of
the transposed problem by considering the adjoint operator of T . In a third
step, we use the variational formulation of (5) and establish that the Green
function G satisfies (9), (26) and (27). Finally, we show the uniqueness of the
solution to (9), (26) and (27), using a variational argument. The detailed proof
of each above argument can be found in [11, Chapter 3].

3 Pointwise estimates on the periodic Green func-
tion

This section is devoted to the proof of Proposition 1.1. For technical reasons,
we proceed first with the case of dimension d ≥ 3, and then with the case of
dimension d = 2.

3.1 The case of d ≥ 3

Pointwise estimates on the Green functions of elliptic problems with Dirichlet
boundary conditions have been established in the seminal article [10] of Grüter
and Widman. Their proof makes use of the comparison principle. The lat-
ter is an appropriate tool for an elliptic equation with homogeneous Dirichlet
boundary conditions: in this case, the Green function is positive. But, such
an argument fails when considering the periodic Green function, the sign of
which varies (it has zero mean). As a consequence, here, we resort to a duality
argument and to the De Giorgi-Nash-Moser theorem (see [2, Th. 13]). Also,
when considering multiscale periodic elliptic systems, the latter theorem does
not hold and the Hölder estimates of [2] are necessary for concluding the proof
(see Section 1.2).

The proof below is a straightforward adaptation of the proof of [2, Th. 13].
The fact that we study periodic boundary conditions do not raise substantial
difficulties, since the strategy involves local estimates.

Let us first explain in a few words the ingredients of the proof of Proposi-
tion 1.1 in the case d ≥ 3. The first step of the proof consists in combining the
De Giorgi-Nash-Moser theorem, the classical Hilbert theory and the Sobolev
injections in order to obtain an optimal L∞ estimate on the periodic solution u
to (5) for localized right-hand terms f . By a duality argument used in [2, Th.
13], this provides a local L2 bound on the Green function G(x, y). Using once
more the De Giorgi-Nash-Moser theorem, this proves Estimate (10).

Proof of Proposition 1.1 in dimension d ≥ 3. The proof falls in two steps.
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Let x0 ∈ Rd, y0 ∈ x0 + Q, x0 6= y0, and 2r := |x0 − y0| (by periodicity, it is
the only relevant case).

×x0

×y0

×y′′0

×y′0

×y′′′0

−div (A(x) · ∇u(x)) = −
´

Q f

Support of f

x0 +Q

Figure 1: Illustration of Step 1 of proof of Proposition 1.1.

Step 1: Let us consider f ∈ L
2d
d+2
per (Q) that has a support contained in Zd +

B(y0, r/4) (see Figure 1). Define u as the periodic solution with zero mean

to (5). Since L
2d
d+2
per (Q) is in the dual of H1

per(Q) (see [6, Th. 9.9 p. 278]), then,
by the Lax-Milgram theorem, u ∈ H1

per(Q) and there obviously holds

‖∇u‖L2(Q) ≤ C ‖f‖L 2d
d+2 (Q)

. (30)

As the support of f is contained in Zd + B(y0, r/4), then u satisfies in B(x0, r)
the following equation:

−div (A(x) · ∇u(x)) = −
ˆ

Q

f = −
{
ˆ

B(y0,r/4)

f

}
div

(
x− x0

d

)
.

Therefore, as a consequence of the De Giorgi-Nash-Moser theorem (see [9, Th.
8.24 p. 202]), there exists β ∈ (0, 1) and C > 0 depending only on d and µ such
that

|u(x0)| ≤Cr−d/2
(
ˆ

B(x0,r)

|u(x)|2 dx

)1/2

+ Cr2

∣∣∣∣∣
ˆ

B(y0,r/4)

f

∣∣∣∣∣ . (31)

We now bound the two terms on the right-hand side. For the second term, by
the Hölder inequality, we obtain∣∣∣∣∣

ˆ

B(y0,r/4)

f

∣∣∣∣∣ ≤ Cr d−2
2

(
ˆ

B(y0,r/4)

|f(x)| 2d
d+2 dx

) d+2
2d

. (32)
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For the first term, again using the Hölder inequality, we have(
ˆ

B(x0,r)

|u(x)|2 dx

)1/2

≤Cr
(
ˆ

Q

|u(x)| 2d
d−2 dx

) d−2
2d

. (33)

By Sobolev injection of H1(Q) in L
2d
d−2 (Q) (and since u has zero mean),(

ˆ

Q

|u(x)| 2d
d−2 dx

) d−2
2d

≤C
(
ˆ

Q

|∇u(x)|2 dx

)1/2

, (34)

whence, we deduce from (33), (34) and (30) that(
ˆ

B(x0,r)

|u(x)|2 dx

)1/2

≤Cr
(
ˆ

B(y0,r/4)

|f(x)| 2d
d+2 dx

) d+2
2d

. (35)

Finally, since 2r ≤
√
d, (31), (32), and (35) yield

|u(x0)| ≤ Cr−(d−2)/2

(
ˆ

B(y0,r/4)

|f(x)| 2d
d+2 dx

) d+2
2d

. (36)

Step 2: The function u can be expressed thanks to the Green function as

u(x) =

ˆ

Q

G(x, y)f(y)dy.

As a consequence, by duality, (36) implies that there exists a constant C > 0
such that (

ˆ

B(y0,r/4)

|G(x0, y)| 2d
d−2 dy

) d−2
2d

≤ Cr−(d−2)/2. (37)

As G(x0, ·) satisfies

−divy
(
AT (y) · ∇yG(x0, y)

)
= −1, (38)

in B(y0, r/4), then, using once more [9, Th. 8.24 p. 202], we obtain (in the same
manner as (31))

‖G(x0, ·)‖L∞(B(y0,r/8)) ≤ r−d/2
(
ˆ

B(y0,r/4)

|G(x0, y)|2 dy

)1/2

+ Cr2.

By the Hölder inequality, we deduce from the above estimate that

‖G(x0, ·)‖L∞(B(y0,r/8)) ≤ r
2−d
2

(
ˆ

B(y0,r/4)

|G(x0, y)| 2d
d−2 dy

) d−2
2d

+ Cr2.

Finally, since 2r = |x0 − y0| ≤
√
d and thanks to (37), we deduce (10). This

concludes the proof of Proposition 1.1 in dimension d ≥ 3.
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3.2 The case d = 2

We now turn to the dimension d = 2. According to an idea that can be found
in [2, Th. 13] (see also [5, Prop. 4]), the 2-dimensional periodic Green function G
associated with the operator −div (A · ∇) can be expressed as

G(x, y) =

ˆ 1

0

G̃((x, t), (y, 0))dt (39)

where x, y ∈ R2 and t ∈ R in the equation above, and G̃ is the 3-dimensional
periodic Green function of the following operator:

L̃u := −divx (A · ∇xu)− ∂ttu. (40)

Indeed, it is easily shown (by an integration argument) that the function G
defined by (39) satisfies (9), (26) and (27). Hence, G is the (2-dimensional)
periodic Green function associated with the operator −div (A · ∇).

Next, applying Proposition 1.1 –which we have already proved in dimension
d ≥ 3– to the Green function G̃, we obtain

|G(x, y)| ≤ C
ˆ 1

0

1

|t|+ |x− y|dt ≤ C log (2 + |x− y|) ,

which is (11). This concludes the proof of Proposition 1.1 in the case d = 2.

4 Pointwise estimates on the derivatives ∇xGn,
∇yGn and ∇x∇yGn of the multiscale periodic
Green function

Proposition 1.2 relies on the Lipschitz theory of [2]. Indeed, if un satisfies

−div (A(nx) · ∇un(x)) = a in B(x0, r), (41)

for some a ∈ R, then [2, Lem. 16] shows that

|∇un(x0)| ≤ Cr−1−d/2
(
ˆ

B(x0,r)

|un|2
)1/2

+ C|a|r, (42)

where C > 0 is a constant independent of n. As is detailed below, we treat
separately the 2-dimensional case.

Proof of Proposition 1.2. Assume first that the dimension satisfies d ≥ 3. Let x0 ∈
Rd, y0 ∈ x0 +Q, x0 6= y0, and 2r := |x0 − y0| (once more, by periodicity, this is
the only relevant case).

Since Gn(x, y0) satisfies

−divx (A(nx) · ∇xGn(x, y0)) = −1 in B(x0, r),

and thanks to [2, Lem. 16], id est (42), there holds

|∇xGn(x0, y0)| ≤ Cr−1 ‖Gn(·, y0)‖L∞(B(x0,r))
+ Cr. (43)
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As a consequence, Estimate (10) and (43) yield (13) (for x = x0 and y = y0).
By transposition, (14) is also established.

By differentiating (9) with respect to y, we obtain

−divx (A(nx) · ∇x∇yGn(x, y0)) = 0 in B(x0, r/2).

Therefore, thanks to (42),

|∇x∇yGn(x0, y0)| ≤Cr−1 ‖∇yG(·, y0)‖L∞(B(x0,r/2)) .

By using (14) and since 2r = |x0 − y0|, we conclude that

|∇x∇yGn(x0, y0)| ≤ C|x0 − y0|−d,

and establish (15).

Now, let the dimension d = 2. As shown in the proof of Proposition 1.1, the
2-dimensional periodic Green function Gn can be expressed as

Gn(x, y) =

ˆ 1

0

G̃n((x, t), (y, 0))dt (44)

where x, y ∈ R2 and t ∈ R in the equation above, and G̃n is the 3-dimensional pe-
riodic Green function of the operator L̃u := −divx (A(n·) · ∇xu)− ∂ttu. Hence,
we deduce the 2-dimensional versions of (13), (14) and (15) by integrating their
3-dimensional versions applied to G̃n (in the same manner as in Section 3.2).

5 A decomposition of the periodic Green func-
tion

In this section, we prove Proposition 1.3. For the sake of simplicity, we first
assume that the homogenized matrix A? is the identity. We postpone the proof
in the general case until Section 5.2.

5.1 Case where the homogenized matrix is the identity
For convenience, we have split the proof of Proposition 1.3 in two parts: first,
we show that the series in (17) actually converges; second, we check that its
limit is the periodic Green function G.

The two main steps of the proof of convergence are the following: first a Tay-
lor expansion allows for expressing the terms Hk in (17) as functions of ∇x∇yG.
Then, we approximate the Green function of the multiscale problem with the
Green function of the homogenized problem (see [3]). Second, we take advan-
tage of the long-range symmetries of the Green function of the homogenized
problem and establish the convergence of the series in (17). There, the sets Γm
are crucial, since the convergence in (17) is not uniform in k.

Proof of convergence of the series in (17). We denote by G?(x, y) the funda-
mental solution in Rd to the homogenized problem. The homogenized matrix is
the identity; therefore G? is explicitly expressed as

G?(x, y) = Cd|x− y|2−d, (45)
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where Cd is a constant (see [9, (2.12) p. 17]). Since G?(x, y) only depends
on |x− y|, we henceforth redefine

G?(x) := G?(x, 0).

Step 1: Assume that x ∈ Q, y−x ∈ Q and k /∈ 4Q. We reformulate Hk using
the Taylor formula:

Hk(x, y) =−
ˆ

Q

x′ ·
ˆ 1

0

(
∇xG(x+ tx′, y − k)

−
ˆ

Q

∇xG(x+ tx′, y + y′ − k)dy′
)

dtdx′

=

ˆ

Q

x′ ·
(
ˆ 1

0

ˆ

Q

y′

·
ˆ 1

0

∇y∇xG(x+ tx′, y + τy′ − k)dτdy′dt

)
dx′. (46)

We approximate ∇x∇yG by ∇x∇yG?. More precisely, thanks to [3, Corollary p.
905], there exists constants C > 0 and β ∈ (0, 1) such that, for all x′ 6= y′ ∈ Rd,∣∣∣∣∣∇x∇yG(x′, y′)−

d∑
i,j=1

∂xi∂yjG?(x′ − y′) (ei +∇wi (x′))⊗
(
ej +∇w†j (y′)

) ∣∣∣∣∣
≤ C|x′ − y′|−d−β . (47)

In (47), wi and w†j denote the correctors associated to the matrix A, respec-
tively AT . That is, wi is the periodic function of zero mean satisfying

−div (A(x) · (∇wi(x) + ei)) = 0, for x ∈ Q.

Identity (46) and Estimate (47) imply

Hk(x, y) =H1,k(x, y) +H2,k(x, y), (48)

where ∣∣H1,k(x, y)
∣∣ ≤ C|k|−d−β , (49)

and

H2,k(x, y) :=

d∑
i,j=1

ˆ

Q2

ˆ

[0,1]2
(x′ · (ei +∇wi(x+ tx′)))(

y′ ·
(
ej +∇w†j(y + τy′ − k)

))
∂xi∂yjG? (x+ tx′ − (y + τy′ − k)) dτdtdy′dx′.

All the correctors wi and w
†
j are bounded; furthermore, Formula (45) implies

that the third-order derivatives of G? evaluated at x− y are bounded by C|x−
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y|−d−1, where C is a constant independent of x and y. Therefore, a Taylor
expansion yields a constant C such that∣∣∣∣∣H2,k(x, y)−

d∑
i,j=1

∂xi∂yjG?(k)Qij(x, y)

∣∣∣∣∣ ≤ C|k|−d−1, (50)

where

Qij(x, y) :=

ˆ

Q2

ˆ

[0,1]2
(x′ · (ei +∇wi(x+ tx′)))(

y′ ·
(
ej +∇w†j(y + τy′)

))
dτdtdy′dx′.

Then, a straightforward integration yields

Qij(x, y) =

ˆ

Q

(x′i + wi(x+ x′)− wi(x)) dx′
ˆ

Q

(
y′j + w†j(y + y′)− w†j(y)

)
dy′,

which can be simplified as

Qij(x, y) =wi(x)w†j(y),

since the correctors wi and w
†
j are of zero mean. Note that Qij defined above

does not depend on k ∈ Zd because the correctors wi and w
†
j are periodic. As

a consequence, collecting (48), (49), and (50) yields∣∣∣∣∣ ∑
k∈Γm

Hk(x, y)

∣∣∣∣∣ ≤C2−mβ + |Qij(x, y)|
d∑

i,j=1

∣∣∣∣∣ ∑
k∈Γm

∂xi∂yjG?(k)

∣∣∣∣∣ . (51)

Step 2: Remark that Qij(x, y) 6= 0 in general and that
∣∣∂xi∂yjG?(k)

∣∣ scales
like |k|−d. Therefore, by (50), in general, the series in (17) does not converge
absolutely with respect to k.

Invoking once more (45), we obtain

∂xi∂yjG?(k) =


Cdd(d− 2)

kikj
|k|d+2

if i 6= j,

Cd(d− 2)
dk2
i − |k|2
|k|d+2

if i = j.

Thanks to the symmetry of Γm with respect to the hyperplane xi = 0, in the
case i 6= j, and thanks to the invariance of Γm under the relabeling of the
components of the vector k, in the case i = j, we deduce that∑

k∈Γm

∂xi∂yjG?(k) = 0, ∀i, j ∈ [[1, d]]. (52)

As a consequence, recalling (51),∣∣∣∣∣ ∑
k∈Γm

Hk(x, y)

∣∣∣∣∣ ≤ C2−mβ . (53)
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Moreover, by [5, Prop. 4], there exists a constant C such that for any x′ 6= y′,
there holds

|G(x′, y′)| ≤ C|x′ − y′|−d+2. (54)

Hence, for any k ∈ Zd, ∣∣Hk(x, y)
∣∣ ≤C|x− y|−d+2. (55)

As a consequence of (53) and (55), the series (17) converges absolutely in m as
follows:

+∞∑
m=0

∣∣∣∣∣ ∑
k∈Γm

Hk(x, y)

∣∣∣∣∣ ≤ C|x− y|−d+2,

for all x 6= y, y− x ∈ Q. Thus, we have recovered (10) by an approach different
from Proposition 1.1.

Now that we have justified that the series in (17) converges, we prove that
its limit, that we denote by G for the moment, id est,

G(x, y) :=

+∞∑
m=0

( ∑
k∈Γm

Hk(x, y)

)
, (56)

is actually equal to G. It can easily be checked that G is periodic in x and y
and satisfies (9). The technical point is (26), the proof of which relies on the
former Taylor expansion and on the classical result [5, Prop. 8]. According to
the latter, there exists a constant C > 0 such that, for all x′ 6= y′,

|∇x∇yG(x′, y′)| ≤ C|x′ − y′|−d. (57)

Proof of Identity (17). Obviously, G is periodic in y. Since A is periodic, there
even holds

G(x, y − k) = G(x+ k, y),

for any k ∈ Zd. Therefore G is also periodic in x. Moreover, we check that

−div
(
A(x) · ∇Hk(x, y)

)
=δ0(x− y + k)

− 2χQ(x− y + k) +

ˆ

Q

χQ(x− y − y′ + k)dy′,

where χQ is the characteristic function of the set Q. Whence

−div

(
A(x) ·

(
+∞∑
m=0

( ∑
k∈Γm

∇xHk(x, y)

)))
=
∑
k∈Zd

δ0(x− y + k)− 1 in Rd.

To summarize, G(x, y) defined by (56) is x-periodic and y-periodic, and satis-
fies (9).
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Next, we justify that G satisfies (26). By integrating (46) along the y
variable, there holds
ˆ

Q

Hk(x, y)dy =

ˆ 1

0

ˆ 1

0

ˆ

Q

ˆ

y∈∂Q

x′ ·
(
ˆ

Q

∇xG(x+ tx′, y + τy′ − k)⊗ y′dy′
)
· d~S(y)dx′dτdt.

Hence, due to cancellations on the boundaries of the translated cubes k +Q,

ˆ

Q

∑
|k|<2m

Hk(x, y)dy =

ˆ 1

0

ˆ 1

0

ˆ

Q

ˆ

y∈Ξm

x′ ·
(
ˆ

Q

∇xG(x+ tx′, y + τy′ − k)

⊗ y′dy′
)
· d~S(y)dx′dτdt,

where Ξm is the boundary of the following set:

∪
|k|<2m+1

(k +Q) .

Now, by Taylor expansion, and thanks to (57), for all τ ∈ [0, 1], x, x′, y′ ∈ Q,
and y ∈ Ξm,

|∇xG(x+ tx′, y + τy′)−∇xG(x+ tx′, y)| ≤ C2−md.

Therefore∣∣∣∣ˆ
Q

∇xG(x+ tx′, y + τy′)⊗ y′dy′
∣∣∣∣ ≤ ∣∣∣∣ˆ

Q

∇xG(x+ tx′, y)⊗ y′dy′
∣∣∣∣+ C2−md.

The integral in the right-hand term of the above estimate vanishes since, by
symmetry,

´

Q
y′dy′ = 0. As a consequence,∣∣∣∣ˆ

Q

∇xG(x+ tx′, y + τy′)⊗ y′dy′
∣∣∣∣ ≤ C2−md.

Whence, since the surface area of Ξm is bounded by C2m(d−1), we have∣∣∣∣∣∣
ˆ

Q

∑
|k|<2m+1

Hk(x, y)dy

∣∣∣∣∣∣ ≤C2−m.

As a consequence, letting m → +∞, we deduce that G satisfies (26). By the
same arguments transposed from G(x, y) to G(y, x), it can be shown that G
also satisfies (27). Therefore, by Proposition 2.1, we have

G(x, y) = Gn(x, y),

which concludes the proof.
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5.2 General case
As is easily seen in the proof of Proposition 1.3, the fact that the homogenized
matrix A? is the identity is only used for establishing (52). One also realizes
that, would (52) be replaced by the following estimates:∣∣∣∣∣ ∑

k∈Γm

∂xi∂yjG?(k)

∣∣∣∣∣ ≤ Cm for all m ∈ [[1,+∞), and
+∞∑
m=1

Cm < +∞, (58)

for well-chosen sets Γm, then the conclusions of Proposition 1.3 would also apply.
We show that the sets Γm defined by (19) and (20) are such that Esti-

mates (58) are satisfied. Hence, the conclusions of Proposition 1.3 are true
without any assumption on the homogenized matrix A? of A.

The homogenized matrix A? is (constant) coercive. Henceforth the Green
function in Rd associated with the operator −div (A? · ∇) is

G?(x) =
C (A?s )(

x · (A?s )
−1 · x

)(d−2)/2
,

where C (A?s ) is a constant and A?s is the symmetric part of the matrix A?.
Whence

∇2G?(x) = C(d− 2)
d
(

(A?s )
−1 · x

)
⊗
(

(A?s )
−1 · x

)
−
(
x · (A?s )

−1 · x
)

(A?s )
−1(

x · (A?s )
−1 · x

)(d+2)/2
.

Besides, there exists an orthogonal matrixO and positive scalars λi, i ∈ [[1, d]]
such that

A?s = O−1 · diag
(
λ−2

1 , · · · , λ−2
d

)
·O.

Therefore, denoting by fj the orthonormal base related to O, and decomposing

x =

d∑
j=1

λ−1
j x̃jfj ,

one obtains

∇2G?(x) = C(d− 2)
d
∑d
i,j=1 λiλj x̃ix̃jfi ⊗ fj −

(∑d
i=1 x̃

2
i

)(∑d
i=1 λ

2
i fi ⊗ fi

)
(∑d

i=1 x̃
2
i

)(d+2)/2
.

For r ∈ R+, we define the following set:

Ωr :=

x ∈ Rd,
d∑
j=1

|x̃j |2 = r2

 . (59)

Remark that there obviously holds

Ωr =
{
x ∈ Rd,

(
x · (A?s )

−1 · x
)

= r2
}
.
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On the one hand, if i 6= j, fi ⊗ fj : ∇2G?(x) changes sign with respect to the
transformation x̃j 7→ −x̃j . Therefore, if i 6= j, there holds

ˆ

Ωr

fi ⊗ fj : ∇2G?(x)dS(x) = 0. (60)

On the other hand,

fi ⊗ fi : ∇2G?(x) = C(d− 2)
λ2
i

(
dx̃2

i −
(∑d

j=1 x̃
2
j

))
(∑d

k=1 x̃
2
k

)(d+2)/2
.

By invariance of Ωr under the relabeling of the coordinates x̃j ,

ˆ

Ωr

∑d
k=1 x̃

2
k(∑d

k=1 x̃
2
k

)(d+2)/2
dS(x) = d

ˆ

Ωr

x̃2
i(∑d

k=1 x̃
2
k

)(d+2)/2
dS(x).

As a consequence,
ˆ

Ωr

fi ⊗ fi : ∇2G?(x)dS(x) = 0. (61)

Hence, we define

Λm := ∪
r∈[2m,2m+1)

Ωr,

and Γm := Λm ∩ Zd. By convergence of Riemann integrals, we deduce that∣∣∣∣∣ ∑
k∈Γm

∂i∂jG?(k)

∣∣∣∣∣ ≤C |∂Λm| sup
x∈Λm

|∂i∂jG?(x)|

+ C |Λm| sup
x∈Λm

|∂i∂j∇G?(x)|

+ C

∣∣∣∣ˆ
Λm

∂i∂jG?(x)dx

∣∣∣∣ .
By (60) and (61), we deduce that the last integral in the above estimate vanishes.
Furthermore, straightforward estimates on the derivatives of G? yield∣∣∣∣∣ ∑

k∈Γm

∂i∂jG?(k)

∣∣∣∣∣ ≤C2−m.

This implies the convergence of the series in (17) in the general case.

5.3 Case of systems
In the case of systems, the Green function G? of −div (A? · ∇) in Rd reads:

Gαβ? (x) = C
(

(A?s )
αβ
) d∑

i,j=1

xi

(
(A?s )

αβ
)−1

ij
xj

−
d−2
2

, (62)
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where C
(

(A?s )
αβ
)
is a constant depending on the matrix

(
(A?s )

αβ
ij

)
i,j
, and

(A?s )
αβ
ij =

1

2

(
(A?)

αβ
ij + (A?)

αβ
ji

)
.

Whence, by the above arguments of Sections 5.1 and 5.2, we have the following
decomposition:

Gαβ(x, y) =

+∞∑
m=0

 ∑
k∈Γαβm

(
Hk
)αβ

(x, y)

 , (63)

where the definition of each term will be made precise below.
The functions Hk are defined by(

Hk
)αβ

(x, y) := Gαβ(x, y − k)−
ˆ

Q

Gαβ(x, y + y′ − k)dy′

−
ˆ

Q

Gαβ(x+ x′, y − k)dx′

+

ˆ

Q

ˆ

Q

Gαβ(x+ x′, y + y′ − k)dy′dx′, (64)

where the function G is the Green function in Rd of the operator −div (A · ∇).
Last, we define the sets Γαβm by:

Γαβ0 =

{
k ∈ Zd, 0 ≤ k ·

(
(A?s )

αβ
)−1

· k < 22

}
,

Γαβm =

{
k ∈ Zd, 22m ≤ k ·

(
(A?s )

αβ
)−1

· k < 22m+2

}
if m ≥ 1,

where (A?s )
αβ is considered as a matrix in Rd×d.
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