Adaptive Blind Identification of Sparse SIMO Channels using Maximum a Posteriori Approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Adaptive Blind Identification of Sparse SIMO Channels using Maximum a Posteriori Approach

Résumé

In this paper, we are interested in adaptive blind channel identification of sparse single input multiple output (SIMO) systems. A generalized Laplacian distribution is considered to enhance the sparsity of the channel coefficients with a maximum a posteriori (MAP) approach. The resulting cost function is composed of the classical deterministic maximum likelihood (ML) term and an additive $\ell_p$ norm of the channel coefficient vector which represents the sparsity penalization. The proposed adaptive optimization algorithm is based on a simple gradient step. Simulations show that our method outperforms the existing adaptive versions of cross-relation (CR) method.
Fichier principal
Vignette du fichier
adaptive-blind-identification.pdf (960.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01847560 , version 1 (23-07-2018)

Identifiants

Citer

Nacerredine Lassami, Abdeldjalil Aissa El Bey, Karim Abed-Meraim. Adaptive Blind Identification of Sparse SIMO Channels using Maximum a Posteriori Approach. Asilomar 2018 : 52nd Conference on Signals, Systems, and Computers, Oct 2018, Pacific Grove, Ca, United States. ⟨10.1109/ACSSC.2018.8645077⟩. ⟨hal-01847560⟩
131 Consultations
135 Téléchargements

Altmetric

Partager

More