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Abstract—In this paper, we are interested in adaptive blind
channel identification of sparse single input multiple output
(SIMO) systems. A generalized Laplacian distribution is con-
sidered to enhance the sparsity of the channel coefficients with
a maximum a posteriori (MAP) approach. The resulting cost
function is composed of the classical deterministic maximum
likelihood (ML) term and an additive `p norm of the channel
coefficient vector which represents the sparsity penalization. The
proposed adaptive optimization algorithm is based on a simple
gradient step. Simulations show that our method outperforms
the existing adaptive versions of cross-relation (CR) method.

Index Terms— Adaptive algorithms, sparse channel, SIMO
channel, blind identification.

I. INTRODUCTION

The blind system identification (BSI) techniques aim to
estimate a systems unknown information from its output
only. This technology is particularly suitable for applications
where all the available data are generated from an unknown
system driven by an unknown input (SIMO system). The
need for BSI arises from a number of applications such as
in data communications [1], speech recognition [2], image
restoration [3], seismic signal processing [4], etc. The BSI
problem has received a lot of attention over the last two
decades and many efficient solutions exist in the literature. We
can distinguish two main classes of BSI methods: higher order
statistics (HOS) and second order statistics (SOS) techniques.
In general, HOS-based methods require large sample sizes to
achieve better estimation performances than the SOS-based
methods [5]. Among the famous SOS-based techniques, one
can cite the cross-relation (CR) method [6], the subspace
method [7], and the two-step maximum likelihood (TSML)
method [8]. Unfortunately, it seems likely that in case of
very long impulse response and sparse channel, these methods
perform poorly. Such sparse channels can be encountered in
many communication applications including High-Definition
television (HDTV) channels and underwater acoustic channels.
Recently, solutions have been proposed to handle this case
by adapting the standard blind identification methods with
the sparse case. To this end, they either constrain the desired
solution by adding an `p norm constraint (with 0 < p ≤ 1)
to the cost function [9] [10], or they use a specular channel
parametric model [11]. Furthermore, the main objective of
the derived algorithms is to be used in real-time applications,

therefore, they should be computationally simple and can be
adaptively implemented. A solution was proposed in [12] to
deal adaptively with such system identification based on the
CR method in the case of SIMO channel.

In this paper, we extend the work in [9] by considering the
SIMO case of a time varying sparse channel. A generalized
Laplacian distribution is considered to enhance the sparsity
of the channel coefficients with a Maximum a Posteriori
(MAP) approach. Then, An adaptive technique based on
gradient descent method is proposed to estimate efficiently
the sparse channel coefficients. The robustness against channel
overestimation errors will also be discussed.

The rest of this paper is organized as follows. In the next
section, we present the considered data model, then Section III
reviews the ML approach. In section IV, the MAP approach is
discussed in addition to the used gradient descent algorithm. In
section V, the simulation comparisons with the adaptive sparse
CR method [12] are provided followed by some concluding
remarks in Section VI.

II. DATA MODEL AND PROBLEM FORMULATION

Our focus is on the SIMO sparse channel case in a blind
identification context. We aim to estimate the channel state
information using only the observation data and the sparsity
information of the channel coefficients. Considering a mathe-
matical model where the input and the output are both discrete
but we have access only to the output. The system is driven
by the input sequence s(n) and yields M output sequences
x1(n), . . . , xM (n) at time n where the xi(n) correspond to
the i-th output observation. The system is defined by a finite
impulse responses (FIRs) hi(n) 6= 0, for n = 0, . . . , L and
i = 1, . . . ,M and can be described as follows

x1(n) = s(n) ∗ h1(n) + w1(n)
x2(n) = s(n) ∗ h2(n) + w2(n)

...
xM (n) = s(n) ∗ hM (n) + wM (n)

(1)

where ∗ denotes linear convolution and w(n) =
[w1(n), . . . , wM (n)]T is an additive spatial white noise.
It is assumed that the maximum order of the M channels
is L and the number of available output samples of each



channel is N . Note that the channel order L will be assumed
to be known throughout this paper unless stated otherwise in
the case of an over-estimation.

In vector form, equation (1) can be expressed as:

x(n) =

L∑
k=0

h(k)s(n− k) + w(n) (2)

where x(n) = [x1(n), x2(n), . . . , xM (n)]T . The transfer
function of the system h(z) =

∑L
k=0 h(k)z−k corresponds

to an unknown causal FIR satisfying h(z) 6= 0,∀z. The
aim of BSI is to estimate the channel coefficients vector
h = [h(0)T , . . . ,h(L)T ]T up to a scalar constant (for more
details about the indeterminacy of the problem, see [13]).

III. MAXIMUM LIKELIHOOD APPROACH

The deterministic maximum likelihood (ML) is a classical
approach applicable to parameter estimation problems where
the source signal is considered as being deterministic and the
probability density function (PDF) of the available data is
known. Stacking all observation samples into a single vector
x = [xT1 , . . . ,x

T
M ]T with xi = [xi(0), . . . , xi(N − 1)]T for

i = 1, . . . ,M and assuming that the system output vector is
corrupted by additive white Gaussian noise vector allows us
to write:

x = HMs + w (3)

with its PDF given by

f(x|h, s) =
1

(πσ2)N
exp(− 1

σ2
‖x−HMs‖22) (4)

where s = [s(−L), s(−L + 1), . . . , s(N − 1)]T , σ2 is the
variance of the white noise w and HM = [HT

1 , . . . ,H
T
M ]T is

a block Sylvester matrix, Hi being the Sylvester matrix of the
i-th channel. It then follows that the channel output vector x is
Gaussian distributed with the mean vector x̂ = HMs and the
covariance matrix Rx = σ2I. The ML criterion is expressed
as:

(HM, s) = arg min
HM ,s

f(x|h) (5)

= arg max
HM ,s

{
‖x−HMs‖22

}
(6)

Let’s define GM by

GH2 = [−H1,H2] (7)

and

GHq =


GHq−1 0

−Hq 0 H1

. . .
...

0 −Hq Hq−1

 (8)

for q = 3, . . . ,M . Where Hq is the top-left (N − L) × N
sub-matrix of Hq .

Under the necessary identifiability condition [5] and by
using projection techniques and commutativity property of
linear convolution, equation (6) yields the equivalent problem:

ĥ = arg min
‖h‖2=1

{hHXHM (GHMGM )#XMh} (9)

where (.)# refers to the pseudo inverse operator and XM is
defined by

X2 = [X2,−X1] (10)

and

Xq =


Xq−1 0

Xq 0 −X1

. . .
...

0 Xq −Xq−1

 (11)

for q = 3, . . . ,M , where Xq is given by:

Xq =

 xq(L) . . . xq(0)
...

...
xq(N − 1) . . . xq(N − L− 1)

 . (12)

The cost function is optimized under the constraint ‖h‖2 = 1
to avoid the scalar indeterminacy. The TSML method [8] uses
an iterative two-step estimation procedure to solve equation
(9) efficiently as shown below:
• Minimize hc = arg min

‖h‖2=1

{hHXHMXMh}

• Minimize h = arg min
h
{hHXHM (GHc Gc)#XMh}

where Gc is constructed from hc according to (8) and (7). Al-
though The CR method was developed based on an algebraic
insight into the M channel system, the first step of the TSML
method is equivalent to the CR method. This links between
the two methods makes our later comparison with the adaptive
CR method [12] more coherent.

IV. MAXIMUM A POSTERIORI APPROACH

The main idea of the Maximum a Posteriori (MAP) ap-
proach is to estimate h using its conditional probability
distribution as follows:

ĥMAP =arg max
h

{ f(x|h)f(h)∫
f(x|h′)f(h′)dh′

}
(13)

=arg max
h
{f(x|h)f(h)} (14)

Generally speaking, the MAP allows us to exploit prior
information about the desired parameter. Hence, one needs to
a priori know the probability distribution function f(h) of the
channel vector. This a priori depends on the application context
and its physical environment. In our case, it is the channel
vector sparsity that we model by representing the channel PDF
with the generalized Laplacian distribution given by:

f(h) =
[
2βΓ(1 +

1

p
)
]−M(L+1)

exp
(
−
‖h‖pp
βp

)
(15)

where β > 0 is a scale parameter, 0 < p ≤ 1 and Γ(z) =∫∞
0
tz−1e−tdt, z > 0 is the Gamma function. With this PDF,

one increases the chances to get channel coefficients close



to zero. Combining equations (4), (14) and (15) leads to the
following objective function:

J (h) = hHXHM (GHMGM )#XMh + λ‖h‖pp (16)

where λ = σ2

βp is a good approximation to the ’optimal’
weighting parameter which controls the trade-off between
the ML term and the penalty term. The cost function is
optimized under the same constraint ‖h‖2 = 1 to avoid the
scalar indeterminacy. The minimization of such a problem is
computationally expensive and may be even intractable when
the channel impulse responses are long and the number of
channels is large.

For a slowly varying channel, one can reduce the com-
putational cost and track the channel variations by using a
stochastic adaptive gradient technique to solve the previous
minimization problem efficiently.

Let h(t) be the solution after the t-th iteration, then the
solution at the (t+ 1)-th iteration is given by:

h(t+ 1) = h(t)− µ∇J (h(t)) (17)

where µ is a small positive optimization step and the gradient
∇J (h(t)) is given by:

∇J (h(t)) = 2XHM (t+ 1)(GHM (t)GM (t))#XM (t+ 1)h(t)

+λ p h̃(t) (18)

where h̃i = sign(hi) |hi|p−1 for i = 1, . . . ,M(L+ 1).
We define the matrix:

Qw(t+ 1) = XHM (t+ 1)W(t)XM (t+ 1) (19)

with W(t) = (GHM (t)GM (t))#.
A more elegant way to update Qw(t + 1) is to use the

adaptive exponential window

XM (t+ 1) = [
√
γXM (t)T ,XM (t+ 1)T ]T (20)

with 0 < γ < 1 being a forgetting factor and XM (t + 1) is
given by:

X 2(t+ 1) = [x2(t+ 1),−x1(t+ 1)] (21)

and

X q(t+ 1) =


X q−1(t+ 1) 0

xq(t+ 1) 0 −x1(t+ 1)
. . .

...
0 xq(t+ 1) −xq−1(t+ 1)

 (22)

for q = 3, . . . ,M with xq(t) = [xq(t), . . . , xq(t− L)].
Hence, combining equation (19) and (20) yields:

Qw(t+ 1) = γXHM (t)W(t)XM (t)

+ XHM (t+ 1)W(t)XM (t+ 1) (23)

Using the approximation Qw(t) ≈ XHM (t)W(t)XM (t), we
can rewrite:

Qw(t+ 1) = γQw(t) + XHM (t+ 1)W(t)XM (t+ 1) (24)

The algorithm can be summarized as follows:
1) Update W(t) = (GHM (t)GM (t))#

2) Update Qw(t+ 1) using (24)
3) Update h(t+ 1) using (17) and (18)
4) Normalize h(t+ 1) such that ‖h(t+ 1)‖2 = 1

Note that the proposed algorithm can be modified by using
another optimization descent method. We can also change
sparsity prior which will lead us to change the final objective
function. Next, we will provide two ideas that are used
to extend this work: derive an optimal gradient step and
approximate the update of W(t) in order to further reduce
the computational complexity.

A. Computational complexity reduction

The complexity of the proposed algorithm is domi-
nated by the computation of the pseudo inverse W(t) =
(GHM (t)GM (t))# where GM (t) is defined in (7) and (8). One
way to reduce the cost of this step is to use the previous gra-
dient step and the fact that we are using a small optimization
step µ to approximate the pseudo inverse. Actually, one can
use the first order approximation of the pseudo inverse of the
sum of two matrices A+ µB of size (n×m) which is given
by :

(A+ µB)# ≈ A# − µA#BA#

+ µA#A#TBT (In −AA#)

+ µ(Im −A#A)BTA#TA# +O(µ2) (25)

In our case, we have

h(t) =
h(t− 1)− µ∇J (h(t− 1))

‖h(t− 1)− µ∇J (h(t− 1))‖2
(26)

The linear construction of GHM (t) from h(t) as entry allows
us to write :

GHM (t) =
GHM (t− 1)− µ∇GHM (t− 1)

‖h(t− 1)− µ∇J (h(t− 1))‖2
(27)

with ∇GHM (t − 1) is the same construction as is (7) and (8)
with the gradient ∇J (h(t− 1)) as entry. which leads to:

GHM (t)GM (t) ≈ 1
‖h(t−1)−µ∇J (h(t−1))‖22

× {

GHM (t− 1)GM (t− 1)

− µGHM (t− 1)∇GM (t− 1)

− µ∇GHM (t− 1)GM (t− 1)}+O(µ2) (28)

Separating terms with and without µ in (28) and using them
as B and A respectively in (25) enables us to approximate
(GHM (t)GM (t))# without an expensive complexity.

Remark: Another way to reduce the numerical cost would be
to choose a noise subspace generating matrix G̃M that is ’non
redundant’ so that matrix G̃HM G̃M is invertible which allows
us to replace the pseudo-inversion by the relatively simpler
matrix inversion. To build matrix G̃M , one can follow similar
steps as for the minimum CR method in [6].



B. Gradient step optimization

The choice of the optimization step µ is really important to
achieve good convergence performance. Choosing µ too large
can cause the divergence of the algorithm and in the same
time, a too small µ will induce a poor convergence rate. To
avoid these problems, one can use the fact that we are using a
gradient descent method which allows us to derive an optimal
step that minimizes:

µ̂ = arg min
µ

J {h(t+ 1)} (29)

Let’s start by replacing h(t + 1) by its formula from (17) in
(16) which yields:

J (h(t+ 1)) =

(h(t)− µ∇J (h(t)))HQw(t+ 1)(h(t)− µ∇J (h(t)))

+λ‖h(t)− µ∇J (h(t))‖pp (30)

hence, the derivative of the previous formula w.r.t. µ is:
∂J (h(t+1))

∂µ = K(µ) =

{2(µ∇J (h(t))− h(t))HQw(t+ 1)− µλr̃H}
×∇J (h(t)) (31)

where

r̃i = sign(hi(t)− µ∇J (h(t))i) |hi(t)− µ∇J (h(t))i|p−1

for i = 1, . . . ,M(L+ 1).
Finally, we can use a Newton method to approximate the

optimal solution of (29) at every iteration with

µt = µt−1 −K(µt−1)
µt−1 − µt−2

K(µt−1)−K(µt−2)
(32)

The resulting algorithm is summarized in the table below.

Algorithm 1 MAP-adapt & AMAP-adapt

Require: x(t) data vector, γ the forgetting factor, λ the
sparsity parameter, h(t − 1), Qw(t − 1) and W(t − 1)
from the previous iteration.

Ensure: Qw(t), W(t) and the sparse channel h(t)

1: Update W(t) by
{

(GHM (t)GM (t))# if MAP-adapt
use (25) (28) if AMAP-adapt

2: Build XM (t) as explained in (21) (22)
3: Update Qw(t) using (24)
4: Calculate the gradient ∇J (h(t− 1)) given by (18)

5: Update h(t) with (17)
{

fixed µ
optimal µ using (32)

6: Normalize h(t+ 1) w.r.t. ‖h(t+ 1)‖2 = 1

V. SIMULATIONS

To assess the performance of the proposed algorithm, we
consider a SIMO system with M outputs represented by
a polynomial transfer function of degree L. The channel
impulse response is a sparse sequence of random variables
with Bernoulli-Gaussian distribution generated by the MAT-
LAB function SPRANDN. In our simulation, we have used a
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Fig. 1: Example of channel used in simulation with M = 3
and L = 25.

sparsity level of 30%, which means that 30% of the vector h
entries are nonzeros as illustrated in Figure 1. The input signal
is a random binary sequence and the additive white Gaussian
noise has a variance σ2 chosen according to the target signal
to noise ratio SNR = 10 log(

‖h‖22
σ2 ). The used performance

factor is the normalized mean-square error criterion given by

NMSE =
1

Nr

Nr∑
k=1

1−

(
ĥHk h

‖ĥk‖2 ‖h‖2

)2

(33)

with Nr = 100 is the number of Monte-Carlo runs. For the
comparison, we use the CR-based algorithm [12] which we
will refer to as SCR-adapt. MAP-adapt will refer to the first
proposed algorithm and AMAP-adapt will refer to the version
that uses the pseudo inverse approximation.
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Fig. 2: NMSE in dB versus time for (M = 3, L = 15) and
SNR = 20dB.

Figure 2 shows the NMSE evolution as function of time for
the parameters M = 3, L = 15, γ = 0.98 and SNR = 20.
The optimization step is chosen fixed µ = 0.0001, then we use
the optimal one calculated according to the previous section. It
is clearly shown that the proposed algorithms outperform the
SCR-adapt algorithm. In addition, the following observations
can be made out of this experiment: (i) the AMAP method is
better that the MAP one due to the fact that the considered
approximation allows us to control the slow variation of the
up-date vector estimate contrary to the adaptive MAP using
exact (batch) pseudo-inversion. In other words, the AMAP-
adapt is better aligned with the spitit of the gradient method
than the MAP-adapt. (ii) As expected, the optimal step size
allows increasing the convergence rate of the considered



algorithms. (iii) the best results are obtained by the AMAP-
adapt with optimal step size which has the joint advantages of
reduced complexity, faster convergence rate and lower steady
state error as compared to the other methods.
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Fig. 3: NMSE in dB versus time for (M = 3, L = 30) and
SNR = 20dB.

Although, we have changed the parameters to M = 3, L =
30, γ = 0.95 and SNR = 20, we can see in Figure 3
relatively the same NMSE evolution over time. The AMAP-
adpat algorithm with optimal µ remains the best among all
considered algorithms.
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Fig. 4: NMSE in dB versus SNR en dB for (M = 3, L = 15).

In Figure 4, the NMSE is plotted versus the SNR after T =
10000 snapshots for a SIMO system with M = 3 and L =
15. Generally, our algorithms MAP-adapt and AMAP-adapt
keep having better performance than SCR-adapt algorithm for
moderate and high SNRs.

In order to illustrate the behavior of the AMAP algorithm
in case of overestimation of the channel order, we consider a
system with M = 3, L = 60 and SNR = 20. Figure 5 shows
the robustness of the AMAP-adapt algorithm for a channel
order overestimation by 15 and 30, respectively.

VI. CONCLUSION

In this paper, adaptive blind identification of sparse SIMO
channels has been considered. A sparsity prior on the channel
coefficients was considered within a MAP approach to solve
the BSI problem. Based on an adaptive gradient descent
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Fig. 5: NMSE in dB of AMAP-adapt algorithm versus time
for (M = 3, L = 60) and SNR = 20dB.

method, the proposed algorithm has improved the estimation
accuracy as compared to the adaptive CR method. Improve-
ments has been proposed to enhance the computational com-
plexity and the convergence speed of our solution.
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