Modular invariants for genus 3 hyperelliptic curves - Archive ouverte HAL
Article Dans Une Revue Research in Number Theory Année : 2019

Modular invariants for genus 3 hyperelliptic curves

Résumé

In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-tics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the value of these modular functions at CM points of the Siegel upper-half space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.
Fichier principal
Vignette du fichier
modular_invariants.pdf (285.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01845011 , version 1 (19-07-2018)
hal-01845011 , version 2 (16-02-2019)

Identifiants

Citer

Sorina Ionica, Pinar Kilicer, Kristin Lauter, Elisa Lorenzo García, Adelina Manzateanu, et al.. Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory, 2019, 5 (1), pp.article n°9. ⟨10.1007/s40993-018-0146-6⟩. ⟨hal-01845011v1⟩
321 Consultations
317 Téléchargements

Altmetric

Partager

More