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MODULAR INVARIANTS FOR GENUS 3 HYPERELLIPTIC

CURVES

SORINA IONICA, PINAR KILIÇER, KRISTIN LAUTER, ELISA LORENZO GARCÍA,

MAIKE MASSIERER, ADELINA MÂNZĂŢEANU, AND CHRISTELLE VINCENT

Abstract. In this article we prove an analogue of a theorem of Lachaud,
Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-
tics to Siegel modular forms of genus 3. We use this connection to show that
certain modular functions, when restricted to the hyperelliptic locus, assume
values whose denominators are products of powers of primes of bad reduc-
tion for the associated hyperelliptic curves. We illustrate our theorem with
explicit computations. This work is motivated by the study of the value of
these modular functions at CM points of the Siegel upper-half space, which, if
their denominators are known, can be used to effectively compute models of
(hyperelliptic, in our case) curves with CM.

1. Introduction

Given a CM field K, Shimura and Taniyama’s Complex Multiplication Theory
shows that the values of Siegel modular functions evaluated at points with CM
by OK , the maximal order of K, in the Siegel upper half-space lie in an abelian
extension of the reflex field of K with prescribed ramification. Because of the
classical connection between the ideal class group of K and the construction of the
points with CM by OK in the Siegel upper half-space, these modular functions are
often called modular invariants, and the minimal polynomials of their CM values
are called class polynomials.

For example, in the genus 1 case, the field of modular functions of level 1 is
generated by the j-invariant. It is well known that adjoining the j-invariant of an
elliptic curve with endomorphism ring OK to K generates the Hilbert class field
of K. Furthermore, one can then construct an elliptic curve with this given j-
invariant, thus giving an elliptic curve with endomorphism ring OK . In the genus
2 case, the field of Siegel modular functions of level 1 is generated by the absolute
Igusa invariants [Igu62]. Similarly, when evaluated at CM points corresponding
to a primitive quartic CM field, their values give invariants of hyperelliptic curves
whose Jacobian has complex multiplication, and the curve can be recovered from
the invariants. As a consequence, the effective computation of the values of Siegel
modular forms at CM points makes it possible to compute models for CM curves,
and also to effectively construct the related class fields.

In the genus 2 case, there is an obstacle to this effective computation. Indeed,
while the j-invariant is an algebraic integer, the Igusa invariants are algebraic num-
bers and the running time for their computation can be greatly improved when a
good description of the denominators is at hand. It is well known that the primes
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appearing in these denominators are primes of bad reduction for the hyperelliptic
curves. Building on the work of Goren and Lauter [GL07], who gave a bound for
these primes, Lauter and Viray [LV15b, LV15a] gave a formula for computing a
multiple of the denominators of Igusa invariants for an arbitrary primitive quartic
field.

In genus 3, the situation is more complicated and hence more interesting. In-
deed, even though the algebra of Siegel modular forms is known [Tsu86, Tsu87],
there is no “standard” set of generators for the field of Siegel modular functions
for which one might compute class polynomials. Thankfully, one can work around
this difficulty in the following way: Matsusaka and Ran [Mat59, Ran81] prove that
up to isomorphism over C, every simple principally polarized abelian variety of
dimension 3 is the Jacobian of a complete smooth projective curve of genus 3. Fur-
thermore, if C is such a curve, then by the Riemann–Roch Theorem, C is isomorphic
to either a hyperelliptic or a plane quartic curve. The hyperelliptic and the plane
quartic loci, when considered separately, do each have a standard set of invariants.
For hyperelliptic curves of genus 3, these are the Shioda invariants [Shi67], and in
the plane quartic case, one can use the Dixmier–Ohno invariants [Dix87, Ohn05].

For many applications (and especially the explicit construction of genus 3 curves
with complex multiplication), it would be interesting to relate these invariants to
a set of modular analogues, that can be computed in terms of a generating set of
Siegel modular functions. However, in contrast to the genus 2 case, little is known
on the relation between these invariants and the Siegel modular function field of
degree 3 as of yet. This work takes steps in this direction.

We focus in this work on the hyperelliptic locus. In [Igu67], Igusa defines two
distinguished Siegel modular forms of genus 3,

Σ140(Z) =

36
∑

i=1

∏

j 6=i

ϑ[ξj ](0, Z)8 (1.1)

and

χ18(Z) =
36
∏

i=1

ϑ[ξi](0, Z),

where for simplicity of notation the 36 even theta characteristics have been ordered
arbitrarily (we define the even theta characteristics in Section 2.2). In the same
article, Igusa shows that Σ140(Z) vanishes exactly on the locus of period matrices Z
that are symplectically reducible (this is equivalent to requiring that the associated
polarized abelian variety is isomorphic to a product of lower-dimensional polarized
abelian varieties), and χ18(Z) vanishes on the locus of period matrices Z whose
associated principally polarized abelian variety is a hyperelliptic Jacobian.

In this paper we introduce a family of modular functions of degree 3 who, when
evaluated on the hyperelliptic locus, yield values whose denominators are the primes
of bad reduction for the hyperelliptic curve. To do so, we begin by establishing an
analogue of a result of Lachaud, Ritzenthaler, and Zykin [LRZ10, Corollary 3.3.2],
and then extend and rephrase a result of Lockhart [Loc94, Proposition 3.2] on the
discriminant of the hyperelliptic curve, to prove the following theorem:

Theorem 1.1. Let Z be a CM point in H3 corresponding to a smooth genus 3
hyperelliptic curve C with CM by the ring of integers of a sextic CM field K and
CM type ΦK . Let f be a Siegel modular form of weight k such that the invariant Φ
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obtained in Corollary 3.6 is integral. Then

j(Z) =
f

140
gcd(k,140)

Σ
k

gcd(k,140)

140

(Z)

is an algebraic number lying in the compositum F = HKrL of the field L and the
Hilbert class field HKr of the reflex field Kr of the CM type (K,ΦK). Moreover,
if an odd prime p of OF divides the denominator of this number, then the curve C
has geometrically bad reduction modulo p.

To illustrate this theorem, we computed values of certain modular invariants,
whose expressions have a power of Σ140 in the denominator and showed that they
exhibit the behavior predicted by the Theorem. For our experiments, we used
genus 3 hyperelliptic CM curves defined over Q, a complete list of which is given
in [KS16b].

Outline. This paper is organized as follows. We begin in Section 2 with some
background on CM theory, theta functions and theta constants and the Shioda
invariants of hyperelliptic curves. Only the most basic facts are given, and references
are provided for the reader who would like to delve further.

Then, in Section 3, we give a correspondence that allows us to relate invariants of
octics to Siegel modular forms of degree 3. Using this correspondence, we show that
the primes dividing the denominators of modular invariants that have the Siegel
modular form Σ140 in the denominator are primes of bad reduction, which is our
main theorem (Theorem 1.1 above).

Finally, in Section 4 we present the complete set of hyperelliptic curves of genus 3
with complex multiplication and defined over Q. These curves are used as examples
for which we compute the values of several modular invariants having Σ140 in the
denominator evaluated at a period matrix of their Jacobian, and compare their
factorization against that of the denominators of the Shioda invariants of these
curves and the odd primes of bad reduction of these curves.

2. Hyperelliptic curves of genus 3 with complex multiplication

In this section we introduce quickly the notation we will use to discuss abelian
varieties with complex multiplication by the ring of integers of a CM field K and
their period matrices. We then discuss theta functions and theta characteristics,
as they are crucial to the definition of the Siegel modular invariants we consider in
this paper. Finally, we discuss the invariants of hyperelliptic curves.

2.1. CM abelian varieties and period matrices. In this Section we quickly
present some basic facts of the construction of CM abelian varieties, based on the
work of Shimura and Taniyama [Shi98].

Let K be a CM field of degree 2g (i.e., a totally imaginary quadratic extension
of a totally real number field of degree g) over Q, and let O be an order of the ring
of integers of K. We say that an abelian variety A defined over a field k has CM
by O if there exists an embedding O →֒ End(A), where End(A) is the geometric
endomorphism ring of A. In this article we focus on the case where End(A) ∼= OK ,
the ring of integers of K.

A CM type of K is a set ΦK = {φ1, . . . , φg} of g embeddings K →֒ C such that
no two embeddings appearing in ΦK are complex conjugates. We say that ΦK is
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induced from a CM subfield K0 of K if the set {φ|K0 : φ ∈ ΦK} is a CM type of K0.
A CM type of K is called primitive if it is not induced by a proper CM subfield
K0 ⊂ K. In the case where K is quartic, if all of its CM types are primitive we say
that K is a primitive quartic CM field.

Given a pair (K,ΦK) formed of a CM field and one of its CM types, there
exists an algorithm to generate data associated to each principally polarized abelian
variety with CM by OK and of CM type ΦK . First steps towards this were taken by
[vW99], who gave an algorithm which enumerates all principally polarized abelian
varieties with CM by the ring of integers of a given CM field, and the algorithm
was completed by Streng [Str14] so that every principally polarized abelian variety
is listed only once, up to isomorphism. We refer the interested reader to their work
for more details and only note here that our work uses this theory in Section 4 for
the computations.

The way in which we will interact with this data in this work is via a period
matrix for the abelian variety. In this work, by period matrix we will mean a g× g
symmetric matrix Z with positive imaginary part. In this case, the relationship
between the abelian variety and the period matrix is that the complex points of the
abelian variety are exactly the torus Cg/(Zg + ZZg). We denote the space of all
such matrices by Hg. There exist several good references that show how to do so;
we refer the reader to [BILV16a, Appendix A] for a particularly quick treatment.

2.2. Theta functions and theta characteristics. We now turn our attention
to the subject of theta functions. For ω ∈ Cg and Z ∈ Hg, we define the following
important series:

ϑ(ω,Z) =
∑

n∈Zg

exp(πinTZn+ 2πinTω). (2.1)

Given a period matrix Z ∈ Hg, we obtain a set of coordinates on the torus
Cg/(Zg +ZZg) in the following way: A vector x ∈ [0, 1)2g corresponds to the point
x2 +Zx1 ∈ Cg/(Zg +ZZg), where x1 denotes the first g entries and x2 denotes the
last g entries of the vector x of length 2g.

For reasons beyond the scope of this short text, it is of interest to consider the
value of this theta function as we translate ω by points that, under the natural
quotient map Cg → Cg/(Zg + ZZg), map to 2-torsion points. These points are of
the form ξ2 + Zξ1 for ξ ∈ (1/2)Z2g. This motivates the following definition:

ϑ[ξ](ω,Z) = exp(πiξT1 Zξ1 + 2πiξT1 (ω + ξ2))ϑ(ω + ξ2 + Zξ1, Z),

which is given in [Mum07a, page 123]. In this context, ξ is customarily called a
characteristic or theta characteristic. The value ϑ[ξ](0, Z) is called a theta constant.

For ξ ∈ (1/2)Z2g, let

e∗(ξ) = exp(4πiξT1 ξ2). (2.2)

We say that a characteristic ξ ∈ (1/2)Z2g is even if e∗(ξ) = 1 and odd if e∗(ξ) = −1.
If ξ is even we call ϑ[ξ](0, Z) an even theta constant and if ξ is odd we call ϑ[ξ](0, Z)
an odd theta constant.

We have the following fact about the series ϑ[ξ](ω,Z) [Mum07a, Chapter II,
Proposition 3.14]: For ξ ∈ (1/2)Z2g,

ϑ[ξ](−ω,Z) = e∗(ξ)ϑ[ξ](ω,Z).
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From this we conclude that all odd theta constants vanish. Furthermore, we have
that if n ∈ Z2g is a vector with integer entries,

ϑ[ξ + n](ω,Z) = exp(2πiξT1 n2)ϑ[ξ](ω,Z).

In other words, if ξ is modified by a vector with integer entries, the theta value at
worst acquires a factor of −1.

We can now finally fully describe and justify the definitions of the Siegel modular
forms Σ140 and χ18 given in the Introduction, which are due to Igusa [Igu67].
Indeed, their definition rests on a certain vanishing behavior for the theta constants
associated to a hyperelliptic period matrix in genus g = 3 that was noticed by Igusa.
Since we remarked above that all odd theta constants vanish and the vanishing or
non-vanishing of an even theta constant is unaffected by its class modulo Z6, it
suffices, if we are concerned with vanishing, to consider classes in (1/2)Z6/Z6. As
in the Introduction, we note that there are exactly 36 even classes in that set. This
explains the notation we used.

2.3. Shioda Invariants and class polynomials. We lastly turn our attention
to the invariants under study in this article. In [Shi67], the author gives a set
of generators for the algebra of invariants of binary octavics over the complex
numbers, which are now called Shioda invariants. In addition, over the complex
numbers Shioda invariants completely classify isomorphism classes of hyperelliptic
curves of genus 3. More specifically, the Shioda invariants are 9 weighted projective
invariants (J2, J3, J4, J5, J6, J7, J8, J9, J10), where Ji has degree i, and J2, . . . , J7
are algebraically independent, while J8, J9, J10 depend algebraically on the previous
Shioda invariants.

In [LR12], the authors show that those invariants are also generators of the
algebra of invariants and determine hyperelliptic genus 3 curves up to isomorphism
in characteristic p > 7. Later, in his thesis [Bas15], Basson provided some extra
invariants that together with the classical Shioda invariants classify hyperelliptic
curves of genus 3 up to isomorphism in characteristic 3 and 7. The characteristic 5
case is still an unpublished work.

We note that the discriminant ∆ of a hyperelliptic curve C of genus 3, which
we will give in formula (3.1), is an invariant of degree 14 (Section 1.5 in [LR12]),
and that it does not appear in this generating set of invariants. We consider the
following absolute1 Shioda invariants:

Shiodaabs(C) = (J7
2/∆, J14

3 /∆3, J7
4/∆

2, J14
5 /∆5, J7

6/∆
3,

J2
7/∆, J7

8/∆
4, J14

9 /∆9, J7
10/∆

5).

3. Denominators of modular invariants and primes of bad reduction

The aim of this Section is to prove Theorem 1.1, which can be found in the
Introduction, and which is an analogue to Corollary 5.1.2 of [GL07] for hyperelliptic
curves of genus 3. While the result was certainly greatly inspired by this reference,
the proof we present here does not follow the template of the proof of the original
theorem, as we ran into difficulties generalizing certain parts of the argument.
The proof of this result has three main ingredients. We first adapt to the case
of hyperelliptic curves a result of Lachaud, Ritzenthaler and Zykin [LRZ10] that
connects invariants of curves to Siegel modular forms. We then generalize a result of

1An absolute invariant is a ration of homogeneous invariants of the same degree.
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Lockhart [Loc94] to specifically connect the discriminant of a hyperelliptic curve to
the Siegel modular form Σ140 of equation (1.1). Finally, we deduce the divisibility
of Σ140 by an odd prime p to the bad reduction of the curve using a result of Kılıçer,
Lauter, Lorenzo Garćıa, Newton, Ozman, and Streng [KLLG+16].

3.1. Invariants of hyperelliptic curves and Siegel modular forms. The aim
of this section is to establish an analogue for the hyperelliptic locus of Corollary 3.3.2
of [LRZ10]. Our result, while technically new, does not use any ideas that do not
appear in the original paper. We begin by establishing the basic ingredients neces-
sary, using the same notation as in [LRZ10] for clarity, and with the understanding
that, when omitted, all details may be found in loc. cit.

Roughly speaking, the main idea of the proof is to compare three different “fla-
vors” of modular forms and invariants of non-hyperelliptic curves (which will here
be replaced with invariants of hyperelliptic curves). The comparison goes as fol-
lows: to connect analytic Siegel modular forms to invariants of curves, the authors
first connect analytic Siegel modular forms to geometric modular forms. Following
this, geometric modular forms are connected to Teichmüller modular forms, via the
Torelli map and a result of Ichikawa. Finally Teichmüller forms are connected to
invariants of curves.

3.2. From analytic Siegel modular forms to geometric Siegel modular

forms. Let Ag be the moduli stack of principally polarized abelian schemes of
relative dimension g, and π : Vg → Ag the universal abelian scheme with zero
section ǫ : Ag → Vg. Then the relative canonical line bundle over Ag is given in
terms of the rank g bundle of relative regular differential forms of degree one on
Vg over Ag by the expression

ω =

g
∧

ǫ∗Ω1
Vg/Ag

.

With this notation, a geometric Siegel modular form of genus g and weight h,
for h a positive integer, over a field k, is an element of the k-vector space

Sg,h(k) = Γ(Ag ⊗ k,ω⊗h).

If f ∈ Sg,h(k) and A is a principally polarized abelian variety of dimension g defined
over k equipped with a basis α of the 1-dimensional space ωk(A) =

∧g
Ω1

k(A), we
define

f(A,α) =
f(A)

α⊗h
.

In this way f(A,α) is an algebraic or geometric modular form in the usual sense,
i.e.,

(1) f(A, λα) = λ−hf(A,α) for any λ ∈ k×, and
(2) f(A,α) depends only on the k̄-isomorphism class of the pair (A,α).

Conversely, such a rule defines a unique f ∈ Sg,h.
We first compare these geometric Siegel modular forms to the usual analytic

Siegel modular forms:

Proposition 3.1 (Proposition 2.2.1 of [LRZ10]). Let Rg,h(C) denote the usual
space of analytic Siegel modular forms of genus g and weight h. Then there is an
isomorphism

Sg,h(C) → Rg,h(C),
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given by sending f ∈ Sg,h(C) to

f̃(Z) =
f(AZ)

(2πi)gh(dz1 ∧ . . . ∧ dzg)⊗h
,

where AZ = Cg/(Zg + ZZg), Z ∈ Hg and each zi ∈ C.

Furthermore, this isomorphism has the following pleasant property:

Proposition 3.2 (Proposition 2.4.4 of [LRZ10]). Let (A, a) be a principally po-
larized abelian variety of dimension g defined over C, let ω1, . . . , ωg be a basis of
Ω1

C
(A) and let ω = ω1 ∧ . . . ∧ ωg ∈ ωC(A). If Ω = (Ω1 Ω2 ) is a Riemann matrix

obtained by integrating the forms ωi against a basis of H1(A,Z) for the polarization
a, then Z ∈ Hg = Ω−1

2 Ω1, and

f(A,ω) = (2πi)gh
f̃(Z)

detΩh
2

.

3.3. From geometric Siegel modular forms to Teichmüller modular forms.

We now turn our attention to so-called Teichmüller modular forms, which were
studied by Ichikawa [Ich94, Ich95, Ich96, Ich00]. Let Mg be the moduli stack of
curves of genus g, let π : Cg → Mg be the universal curve, and let

λ =

g
∧

π∗Ω
1
Cg/Mg

be the invertible sheaf associated to the Hodge bundle.
With this notation, a Teichmüller modular form of genus g and weight h, for h

a positive integer, over a field k, is an element of the k-vector space

Tg,h(k) = Γ(Mg ⊗ k,λ⊗h).

As before, if f ∈ Tg,h(k) and C is a curve of genus g defined over k equipped with
a basis λ of λk(C) =

∧g
Ω1

k(C), we define

f(C, λ) =
f(C)

λ⊗h
.

Again, f(C, λ) is an algebraic modular form in the usual sense. Ichikawa proves:

Proposition 3.3 (Proposition 2.3.1 of [LRZ10]). The Torelli map θ : Mg → Ag,
associating to a curve C its Jacobian JacC with the canonical polarization j, sat-
isfies θ∗ω = λ, and induces for any field a linear map

θ∗ : Sg,h(k) → Tg,h(k)

such that (θ∗f)(C) = θ∗(f(JacC)). In other words, for a basis λ of λk(C) and
fixing α such that θ∗α = λ,

f(JacC,α) = (θ∗f)(C, λ).

3.4. From Teichmüller modular forms to invariants of binary forms. We
finally connect the Teichmüller modular forms to invariants of hyperelliptic curves.
To this end, let E be a vector space of dimension 2 over a field k of characteristic
different from 2, and put G = GL(E) and Xd = Symd(E∗), the space of homoge-
neous polynomials of degree d on E. We define the action of G on Xd, u · F for
F ∈ Xd, by

(u · F )(x, z) = F (u−1(x, z)).
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(By a slight abuse of notation we denote an element of E by the pair (x, z), effec-
tively prescribing a basis. Our reason to do so will become clear later.)

We say that Φ is an invariant of degree h if Φ is a regular function on Xd,
homogeneous of degree h (by which we mean that Φ(λF ) = λhΦ(F ) for λ ∈ k×

and F ∈ Xd) and

u · Φ = Φ for every u ∈ SL(E),

where the action u · Φ is given by

(u · Φ)(F ) = Φ(u−1 · F ).

We note the space of invariants of degree h by Invh(Xd). Note that in what follows
we will define an open set of X0

d, and be interested in the invariants of degree h
that are regular on that open set. The definition of invariance is the same, all that
changes is the set on which the function is required to be regular.

From now on we require d ≥ 6 to be even, and put g = d−2
2 , then the universal

hyperelliptic curve over the the affine space Xd = Symd(E) is the variety

Yd =

{

(F, (x, y, z)) ∈ Xd × P

(

1,
d

2
, 1

)

: y2 = F (x, z)

}

,

where P(1, g + 1, 1) is the weighted projective plane with x and z having weight 1
and y having weight g + 1. The non-singular locus of Xd is the open set

X0
d = {F ∈ Xd : Disc(F ) 6= 0}.

We denote by Y0
d the restriction of Yd to the nonsingular locus. The projection

gives a smooth surjective k-morphism

π : Y0
d → X0

d

and its fiber over F is the nonsingular hyperelliptic curve CF : y2 = F (x, z) of genus
g. In this case we have en explicit k-basis for the space of holomorphic differentials
of CF , denoted Ω1(CF ), given by

η1 =
dx

y
, η2 =

xdx

y
, . . . , ηg =

xg−1dx

y
.

Now let u ∈ G act on Yd by

u · (F, (x, y, z)) = (u · F, u · (x, y, z)),
where the action on F is given by

(u · F )(x, z) = F (u−1(x, z))

and the action of u on (x, y, z) is given by replacing the vector (x, z) by u(x, z) and
leaving y invariant. Then the projection

π : Y0
d → X0

d

is G-equivariant.
Then as in [LRZ10], the section

η = η1 ∧ . . . ∧ ηg

is a basis of the one-dimensional space Γ(X0
d,α), where

α =

g
∧

π∗Ω
1
Y0

d
/X0

d
,
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the Hodge bundle of the universal curve over X0
d. For every F ∈ X0

d, an element
u ∈ G induces an isomorphism

φu : CF → Cu·F ,

and this defines a linear automorphism φ∗
u of α.

For any h ∈ Z, we define Γ(X0
d,α

⊗h)G the subspace of sections s ∈ Γ(X0
d,α

⊗h)
such that

φ∗
u(s) = s

for every u ∈ G. Then if α ∈ Γ(X0
d,α) and F ∈ X0

d, we define

s(F, α) =
s(F )

α⊗h
.

This gives us the space that will be related to invariants of hyperelliptic curves,
which we now define.

In this setting we have the exact analogue of Proposition 3.2.1 of [LRZ10]:

Proposition 3.4. The section η ∈ Γ(X0
d ,α) satisfies the following properties:

(1) If u ∈ G, then

φ∗
uη = det(u)w0η,

with

w0 =
dg

4
.

(2) Let h ≥ 0 be an integer. The linear map

τ : Inv gh
2
(X0

d) → Γ(X0
d,α

⊗h)G

Φ 7→ Φ · η⊗h

is an isomorphism.

Proof. The proof of the first part goes exactly as in the original: For u ∈ G, we
have that

(φ∗
uη)(F, η) = c(u, F )η(F, η),

and we can conclude, via the argument given in [LRZ10], that c(u, F ) is independent
of F and a character χ of G, and that in fact

c(u, F ) = χ(u) = detuw0

for some integer w0. To compute w0 we again follow the original and set u = λI2
with λ ∈ k× to obtain

ηi(λ
−dF )

ηi(F )
=

xi−1dx
√

λ−dF (x, y)
÷ xi−1dx

√

F (x, y)
= λd/2,

since y =
√

F (x, y), for each i = 1, . . . , g. Hence

(φ∗
uη)(F, η) = λdg/2 = det(u)w0

and since det(u) = λ2 we have

w0 =
dg

4
=

d(d − 2)

8
.

The proof of the second part also goes exactly as in the original, with the re-
placement of a denominator of 4 instead of 3 in the quantity that is denoted w in
[LRZ10]. �
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3.5. Final step. With this in hand, we immediately obtain the analogue of Propo-
sition 3.3.1 of [LRZ10]. We begin by setting up the notation we will need. We con-
tinue to have d ≥ 6 an even integer and g = d−2

2 . Because the fibers of π : Y0
d → X0

d

are smooth hyperelliptic curves of genus g, by the universal property of Mg, we get
a morphism

p : X0
g → Mhyp

g ,

where this time Mhyp
g is the hyperelliptic locus of the moduli stack Mg of curves

of genus g. By construction we have p∗λ = α, and therefore we obtain a morphism

p∗ : Γ(Mhyp
g ,λ⊗h) → Γ(X0

d,α
⊗h).

As in [LRZ10], by the universal property of Mhyp
g , we have

φ∗
u ◦ p∗(s) = p∗(s)

for s ∈ Γ(Mhyp
g ,λ⊗h). From this we conclude that p∗(s) ∈ Γ(X0

d ,α)G, and combin-
ing this with the second part of Proposition 3.4, which establishes the isomorphism
of Γ(X0

d ,α)G and Invgh(X
0
d), we obtain:

Proposition 3.5. For any even h ≥ 0, the linear map given by σ = τ−1 ◦ p∗ is a
homomorphism

σ : Γ(Mhyp
g ,λ⊗h) → Inv gh

2
(X0

d)

satisfying

σ(f)(F ) = f(CF , (p
∗)−1η)

for any F ∈ X0
d and any section f ∈ Γ(Mhyp

g ,λ⊗h).

This is the last ingredient necessary to show the analogue of Corollary 3.3.2 of
[LRZ10].

Corollary 3.6. Let f ∈ Sg,h(C) be a geometric Siegel modular form, f̃ ∈ Rg,h(C)
be the corresponding analytic modular form, and Φ = σ(θ∗f) the corresponding
invariant. Let further F ∈ X0

d give rise to the curve CF equipped with a basis of
regular differentials given by η1, . . . , ηg. Then if Ω = (Ω1 Ω2 ) is a Riemann matrix
for the curve CF obtained by integrating the forms ηi against a symplectic basis for
the homology group H1(CF ,Z) and Z = Ω−1

2 Ω1 ∈ Hg, we have

Φ(F ) = (2iπ)
gh
2

f̃(Z)

det Ωh
2

.

The last two results display a connection between Siegel modular forms of even
weight restricted to the hyperelliptic locus and invariants of binary forms of degree
2g + 2. In his beautiful paper, Igusa [Igu67] proved that there is a homomorphism
from a subring (containing forms of even weight) of the graded ring of Siegel mod-
ular forms of genus g and level 1 to the graded ring of invariants of binary forms
of degree 2g + 2. Interestingly, both constructions send a form of weight h to an
invariant of degree gh

2 . We leave it as an open question to prove that the two
constructions are equivalent.
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3.6. The modular discriminant. We now turn our attention to the work of
Lockhart, [Loc94, Definition 3.1], in which the author gives a relationship between
the discriminant ∆ of a hyperelliptic curve of genus g given by y2 = F (x, 1), which
is related to the discriminant of the binary form F (x, z) by the relation

∆ = 24g disc(F ), (3.1)

and a Siegel modular form similar to Σ140. From a computational perspective,
the issue with the Siegel modular form proposed by Lockhart is that its value, as
written, will be nonzero only for Z a period matrix in a certain Γ(2)-equivalence
class. Indeed, on page 740, the author chooses a certain canonical symplectic basis
for H1(C,Z) which is given by Mumford [Mum07b, Chapter III, Section 5]. If one
acts on the symplectic basis by a matrix in Γ(2), the value of the form given by
Lockhart will change by a nonzero constant (the appearance of the principal con-
gruence subgroup of level 2 is related to the use of half-integral theta characteristics
to define the form), but if one acts on the symplectic basis by a general element of
Sp6(Z), the value of the form might become zero.

As explained in [BILV16a], in general to allow for the period matrix to belong to
a different Γ(2)-equivalence class, one must attach to the period an element of a set
defined by Poor [Poo94], which we call an η-map. Therefore in general one must
either modify Lockhart’s definition to vary with a map η admitted by the period
matrix or use the form Σ140, which is valid for any period matrix. We give here
the connection between these two options. We begin by describing the maps η that
can be attached to a hyperelliptic period matrix. We refer the reader to [Poo94] or
[BILV16a] for full details.

Throughout, let C be a smooth hyperelliptic curve of genus g defined over
C equipped with a period matrix Z for its Jacobian, and for which the branch
points of the degree 2 morphism π : C → P1 have been labeled with the symbols
{1, 2, . . . , 2g + 1,∞}. We note that this choice of period matrix yields an Abel–
Jacobi map,

AJ : Jac(C) → Cg/(Zg + ZZg).

We begin by defining a certain combinatorial group we will need.

Definition 3.7. Let B = {1, 2, . . . , 2g + 1,∞}. For any two subsets S1, S2 ⊆ B,
we define

S1 ◦ S2 = (S1 ∪ S2)− (S1 ∩ S2),

the symmetric difference of the two sets. For S ⊆ B we also define Sc = B − S,
the complement of S in B. Then we have that the set

{S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc}
is a commutative group under the operation ◦, of order 22g, with identity ∅ ∼ B.

Given the labeling of the branch points of C, there is a group isomorphism (see
[Mum07b, Corollary 2.11] for details) between the 2-torsion of the Jacobian of C
and the group GB in the following manner: To each set S ⊆ B such that #S ≡ 0
(mod 2), associate the divisor class of the divisor

eS =
∑

i∈S

Pi − (#S)P∞. (3.2)

Then we can assign a map which we denote η by sending S ⊆ B to the unique
vector ηS in (1/2)Z2g/Z2g such that AJ(eS) = (ηS)2 + Z(ηS)1. Since there are
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(2g+2)! different ways to label the 2g+2 branch points of a hyperelliptic curve X
of genus g, there are several ways to assign a map η to a matrix Z ∈ Hg. It suffices
for our purposes to have one such map η.

Given a map η attached to Z, one may further define a set Uη ⊆ B:

Uη = {i ∈ B − {∞} : e∗(η({i})) = −1} ∪ {∞},
where for ξ = ( ξ1 ξ2 ) ∈ (1/2)Z2g, we write

e∗(ξ) = exp(4πiξT1 ξ2).

Then following Lockhart [Loc94, Definition 3.1], we define

Definition 3.8. Let Z ∈ Hg be a hyperelliptic period matrix. Then we write

φη(Z) =
∏

T∈I

ϑ[ηT◦Uη
](0, Z)4 (3.3)

where I is the collection of subsets of {1, 2, . . . , 2g + 1,∞} that have cardinality
g + 1.

Remark 3.9. We note that in this work we write our hyperelliptic curves with a
model of the form y2 = F (x, 1), where F is of degree 2g + 2. In other words we
do not require one of the Weierstrass points of the curve to be at infinity. It is for
this reason that we modify Lockhart’s definition above, so that the analogue of his
Proposition 3.2 holds for F of degree 2g + 2 rather than 2g + 1.

The form that we define here is equal to the one given in his Definition 3.1
for the following reason: Because T c ◦ Uη = (T ◦ Uη)

c, it follows that ηT◦Uη
≡

ηT c◦Uη
(mod Z). Therefore ϑ[ηT◦Uη

](0, Z) differs from ϑ[ηT c◦Uη
](0, Z) by at worse

their sign. Since we are raising the theta function to the fourth power, the sign
disappears, and the product above is equal to the product given by Lockhart, in
which T ranges only over the subset of {1, 2, . . . , 2g + 1} of cardinality g + 1, but
each theta function is raised to the eighth power.

We now restrict our attention to the case of genus g = 3 which is of interest to
us in this work. We note that since Z is a hyperelliptic period matrix, by [Igu67] a
single one of its even theta constants vanishes, and therefore, we have

φη(Z) = Σ140(Z).

Otherwise, in general φη has weight 2
(

2g+2
g+1

)

= 4
(

2g+1
g+1

)

.

We then have the following Theorem, which is a generalization to our setting of
Proposition 3.2 of [Loc94]:

Theorem 3.10. Let C be a hyperelliptic curve of genus g defined over C with
Weierstrass equation y2 = F (x, 1) and period matrix Z = Ω−1

2 Ω1. Let r =
(

2g+1
g+1

)

and n =
(

2g
g+1

)

. Then

24g Disc(F )n = 24gnπ4gr det(Ω2)
−4rφη(Z). (3.4)

Proof. We show how to modify Lockhart’s proof. We first note that ∆ = 24g Disc(F )
by [Loc94, Definition 1.6] Then as Lockhart does, we may use Thomae’s formula,
which by [BILV16a, Theorem 2] is true for any period matrix:

ϑ[ηT◦Uη
](0, Z)4 = (det(Ω2))

2π−2g
∏

i<j
i,j∈T

(ai − aj)
∏

i<j
i,j 6∈T

(ai − aj)
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if T is a subset of {1, 2, . . . , 2g + 1,∞} that have cardinality g + 1. Taking the
product over all such T , we get

φη(Z) = (detΩ2)
4rπ−4gr

∏

T









∏

i<j
i,j∈T

(ai − aj)
∏

i<j
i,j 6∈T

(ai − aj)









,

with r =
(

2g+1
g+1

)

= 1
2

(

2g+2
g+1

)

. We now count how many times each factor of (ai − aj)

appears on the left-hand side:

#{T : i, j ∈ T or i, j 6∈ T } = #{T : i, j ∈ T }+#{T : i, j 6∈ T }

=

(

2g

g − 1

)

+

(

2g

g + 1

)

= 2

(

2g

g + 1

)

= 2n.

From here the proof follows as in [Loc94]. �

We note that, up to the factors of 2 appearing in the formula, this Theorem
realizes Corollary 3.6, as it connects explicitly an invariant of a hyperelliptic curve
to a Siegel modular form.

3.7. Proof of Theorem 1.1. We are now in a position to prove Theorem 1.1.

For simplicity, we replace f
140

gcd(k,140) with f̃ , a Siegel modular form of weight k̃ =
140k

gcd(k,140) , and let ℓ = k
gcd(k,140) . Note that k̃ = 140ℓ and is divisible by 4.

Using the notation of Section 3.1, the analytic Siegel modular form f̃ corresponds
to a geometric Siegel modular form f by Proposition 3.1. Let Φ = σ(θ∗f) be the
corresponding invariant of the hyperelliptic curve. Then by Corollary 3.6, if the
hyperelliptic curve y2 = F (x, 1) has period matrix Z, we have

Φ(F ) = (2πi)3k̃ det(Ω2)
−k̃f(Z).

Therefore we have

j(Z) =
f

Σℓ
140

(Z) =
(2πi)−3k̃ det(Ω2)

k̃Φ(F )

2−168ℓπ−420ℓ det(Ω2)140ℓ Disc(F )15ℓ

= 2−
252k

gcd(k,140)
Φ(F )

Disc(F )15ℓ
.

We note that since Φ is assumed to be an integral invariant, it does not have a
denominator when evaluated at F ∈ Z[x, z]. We have thus obtained an invariant
as in [KLLG+16, Theorem 7.1] (we note that this article assumes throughout that
invariants of hyperelliptic curves are integral, see the discussion between Proposition
1.4 and Theorem 1.5), having negative valuation at the prime p. We conclude that
C has bad reduction at this prime.

4. Computing class invariants

In this last Section, we recall the list of hyperelliptic curves of genus 3 that have
simple Jacobian with CM by the ring of integers of a CM sextic field. We then
define some modular functions having Σ140 in the denominator, evaluate them at
a period matrix of these Jacobians with CM, and show that the denominators of
these algebraic numbers are indeed divisible by the primes of geometrically bad
reduction of the curve.
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4.1. Hyperelliptic curves of genus 3 with CM by a ring of integers. There
exist exactly 37 isomorphism classes of sextic CM fields for which there is exactly
one geometrically simple CM point over Q in the moduli space of principally po-
larized abelian threefolds (see Theorems 4.3.1 and 4.1.1 in [Kıl16], which will be
published as [KS16b]). The list of these 37 sextic CM fields is given in Table 3.1
of [Kıl16] and will be published in [Kıl17]. It is later proven in Theorem 1.1 of
[KLL+17] that the principally polarized abelian threefolds corresponding to these
rational CM points are the Jacobians of genus 3 curves defined over Q.

We pull from this list of curves those that are hyperelliptic; the curves numbered
(1)–(8) below are the complete list of hyperelliptic CM curves of genus 3 that are
defined over Q. As we mentioned in the introduction, they are taken from a list
that can be found in [KS16b]. We note more specifically that the curves (5), (6)
and (8) were found by Balakrishnan, Ionica, Kilicer, Lauter, Somoza, Streng, and
Vincent, and (1), (2), (3), and (7) were computed by Weng [Wen01]. Moreover, the
hyperelliptic model of the curve with complex multiplication by the ring of integers
in CM field (3) was proved to be correct by Tautz, Top, and Verberkmoes [TTV91,
Proposition 4], and the hyperelliptic model of the curve with complex multiplication
by the ring of integers in CM field (4) was given by Shimura and Taniyama [Shi98]
(see Example (II) on page 76).

We note that as shown in [Kıl16], each of the CM fields K below will be Galois,
with cyclic Galois group. Furthermore, as shown by Weng [Wen01, Lemma 4.5], if
i ∈ K, then under our hypotheses (that the Jacobian is simple and has CM by OK)
the curve is guaranteed to be hyperelliptic. Furthermore, in what follows every
time we say that a prime is of bad reduction, we will mean that it is a prime of
geometrically bad reduction of the curve.

For each curve below, the discriminant and the odd primes of bad reduction are
computed using Proposition 4.5 and Corollary 4.6 in [BW17].

(1) ([Wen01, §6 - 3rd ex.]) Let K = Q[x]/(x6 + 13x4 + 50x2 + 49), which is of
class number 1 and contains Q(i). A model for the hyperelliptic curve with
CM by OK is

y2 = x7 + 1786x5 + 44441x3 + 278179x

with ∆ = −218 · 724 · 1112 · 197. There are only two odd primes of bad
reduction for the curve C, namely 7 and 11.

(2) ([Wen01, §6 - 2nd ex.]) Let K = Q[x]/(x6+6x4+9x2+1), which is of class
number 1 and contains Q(i). A model for the hyperelliptic curve with CM
by OK is

y2 = x7 + 6x5 + 9x3 + x

with ∆ = −218 · 38. The prime 3 is the only odd prime of bad reduction
for the curve.

(3) ([Wen01, §6 - 1st ex.]) Let K = Q[x]/(x6+5x4+6x2+1) = Q(ζ7 + ζ−1
7 , i),

which is of class number 1. A model for the hyperelliptic curve with CM
by OK is

y2 = x7 + 7x5 + 14x3 + 7x

with ∆ = −218 · 77. The curve C has good reduction at each odd p 6= 7
and potentially good reduction at p = 7.
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(4) Let K = Q[x]/(x6 + 7x4 + 14x2 + 7) = Q(ζ7), which is of class number 1
and contains Q(

√
−7). A model for the hyperelliptic curve with CM by OK

is

y2 = x7 − 1

with ∆ = −212 · 77. The curve C has good reduction at each odd p 6= 7
and potentially good reduction at p = 7.

(5) Let K = Q[x]/(x6 + 42x4 + 441x2 + 847), which is of class number 12 and
contains Q(

√
−7). A model for the hyperelliptic curve with CM by OK is

y2 + x4y = −7x6 + 63x4 − 140x2 + 393x− 28

with ∆ = −1 · 38 · 524 · 77. The odd primes of bad reduction of C are 3 and
5.

(6) Let K = Q[x]/(x6 + 29x4 + 180x2 + 64), which is of class number 4 and
contains Q(i). A model for the hyperelliptic curve with CM by OK is

y2 = 1024x7 − 12857x5 + 731x3 + 688x

with ∆ = −260 · 1124 · 437. The only odd prime of bad reduction of C is 11.

(7) ([Wen01, §6 - 4th ex.]) Let K = Q[x]/(x6 + 21x4 + 116x2 + 64), which is
of class number 4 and contains Q(i). A model for the hyperelliptic curve
with CM by OK is

y2 = 64x7 − 124x5 + 31x3 + 31x

with ∆ = −244 · 317. The curve has potentially good reduction at 31.

(8) Let K = Q[x]/(x6 + 42x4 + 441x2 + 784), which is of class number 4 and
contains Q(i). A model for the hyperelliptic curve with CM by OK is

y2 = 16x7 + 357x5 − 819x3 + 448x

with ∆ = −248 · 38 · 77. The only odd prime of bad reduction of C is 3.

4.2. Computation of the modular invariants. For a given sextic CM field K,
we used the available Sage code [BILV16b] to compute a period matrix for the
abelian variety under consideration. This code implements the theory alluded to
in Section 2.1. Once we obtained a period matrix Z, we then applied the reduc-
tion algorithm given in [KLL+17] and implemented by Kılıçer and Streng [KS16a]
to obtain another period matrix that is Sp2g(Z)-equivalent to the first matrix ob-
tained, but that provides faster convergence of the theta constants. Finally, using
Labrande’s Magma implementation for fast theta function evaluation [Lab17], we
computed the 36 even theta constants for these reduced period matrices, up to
15,000 bits of precision. These theta constants were used for the computations
of the modular invariants that we define below. In most cases, 10,000 bits were
enough to recognize these values as algebraic numbers.2

2 In fact, for CM field (6), the theta constants obtained using the Magma implementa-
tion [Lab17] for high precision (i.e. ≥ 5000 bits) were not conclusive. We therefore ran an im-
proved implementation of the naive method to get these values up to 10,000 bits of precision, and
recognized the invariants as algebraic numbers after multiplying by the expected denominators.
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As illustrations of Theorem 1.1, we implemented and computed with high pre-
cision certain class invariants involving the form Σ140, which is defined in (1.1), in
the denominator. To defined these modular functions, we will need the following
Siegel modular forms in their denominators: We first use h4, the Eisenstein series
of weight 4 that is given by

h4(Z) =
1

23

∑

ξ

θ[ξ]8(Z), (4.1)

where ξ ranges over all even theta characteristics. Next we present α12, which is a
weight 12 modular form defined by Tsuyumine [Tsu86]:

α12(Z) =
1

23 · 32
∑

(ξi)

(θ[ξ1](Z)θ[ξ2](Z)θ[ξ3](Z)θ[ξ4](Z)θ[ξ5](Z)θ[ξ6](Z))4, (4.2)

where (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) is a maximal azygetic system of even theta character-
istics. By this we mean that (ξi) is a sextuple of even theta characteristics such
that the sum of any three among these six is odd. Notice that α12 is one of the 35
generators given by Tsuyumine [Tsu87] of the graded ring A(Γ3) of modular forms
of degree 3 and cannot be written as a polynomial in Eisenstein series.

In the computations below, we consider thus the following three modular func-
tions:

j1(Z) =
h35
4

Σ140
(Z), j2(Z) =

α35
12

Σ3
140

(Z), j3(Z) =
h5
4α

10
12

Σ140
(Z). (4.3)

The numerical data in Table 4.1 shows the tight connection between the odd
primes appearing in the denominators of the Shioda invariants for a curve, the odd
primes of bad reduction for the hyperelliptic curve, and the odd primes dividing the
denominators of j1, j2 and j3. In the denominators of j1, j2 and j3, we intentionally
omitted the denominators of the formulae (4.1) and (4.2), i.e. 23 and 23 · 32. Note
that we do not have a proof for the fact that h4 and α12 fulfill the condition
in Theorem 1.1, i.e. that their corresponding curve invariants are integral. Our
results are evidence that either this condition is a reasonable one, or that the result
in Theorem 1.1 may be extended to a larger class of modular forms.

Finally, the last column in Table 4.1 shows the odd primes appearing in the de-
nominators of the Shioda invariants. Note that the Shioda invariants J2, J3, . . . , J10
are not integral and their denominators factor as products of powers of 2,3,5 and
7 (see [LR12] for a set of formulae). This is the reason why, in the last column of
Table 4.1, these primes may appear in the denominators of the Shioda invariants,
even when they are not primes of bad reduction. However, one can see that the
primes > 7 appearing in the denominators of the Shioda invariants Shiodaabs(C)
are exactly the primes of bad reduction, which confirms Theorem 7.1 in [KLLG+16].
All the entries marked by − in the Table represent values equal to zero.

We note that because of its large weight, Σ140 is expensive to compute, so the
modular invariants computed here may not be the most convenient to use from a
computational point of view. As suggested by Lockhart [Loc94, p. 741], it might
be worth finding a Siegel modular form that corresponds to a lower power of the
discriminant, especially if one is to pursue further the goal of finding modular
invariants having the property that the primes of geometrically bad reduction of
the curve appear in the denominator.
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Table 4.1. Denominators of invariants

curve odd primes of denominators odd primes in the deno-
CM field discriminant bad reduction of j1, j2, j3 minators of Shiodaabs(C)

(1) −218 · 724 · 1112 · 197 7, 11
−780 · 1140 7311112,−, 7761124

7240 · 11120 −, 71141136,−
780 · 1140 5771591141,−, 5771971160

(2) −212 · 38 3
1 3877,−, 323728

23 · 312 −, 338742,−
1 33257763,−, 34757777

(3) −218 · 77 none
1 1,−, 714

23 −, 721,−
1 57735,−, 57742

(4) −212 · 77 none
1 −,−,−
23 −,−, 77

1 −,−,−

(5) −38 · 524 · 77 3,5
− 38 · 531, 5100, 323 · 541

23 · 312 · 5240 312 · 5120, 338 · 572, 36 · 526
− 332 · 5103, 372 · 5216, 347 · 5120

(6) −260 · 1124 · 437 11
2125 · 1180 771124,−, 7281148

2413 · 11240 −, 7421172,−
2135 · 1180 577771196,−, 5777711120

(7) −244 · 317 none
225 77,−, 728

2113 −, 742,−
235 57763,−, 57777

(8) −248 · 38 · 77 3
285 38,−, 323714

2293 · 312 −, 338721,−
295 33257735,−, 34757742

Finally, we note that in the non-hyperelliptic curve case, one could show with
similar reasoning as in Theorem 1.1 that a modular function having a power of
χ18 in the denominator, when evaluated at a plane quartic period matrix, has
denominator divisible by the primes of bad reduction or of hyperelliptic reduction of
the curve associated to the period matrix. In this direction, a relationship between
χ18 and the discriminant of the non-hyperelliptic curve was shown by Lachaud,
Ritzenthaler, and Zykin [LRZ10, Theorem 4.1.2, Klein’s formula].

5. Conclusion

We have displayed a connection between geometric modular forms of even weight
restricted to the hyperelliptic locus and invariants of binary forms of degree 2g+2.
In his beautiful paper, Igusa [Igu67] proved that there is a homomorphism from
a subring (containing forms of even weight) of the graded ring of Siegel modular
forms of genus g and level 1 to the graded ring of binary forms of degree 2g + 2.
Interestingly, both constructions increase the weight by a 1

2g ratio. We leave it as
an open question to prove that the two constructions are equivalent.
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[KLL+17] Pınar Kılıçer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijs-
ling, and Marco Streng. Plane quartics over Q with complex multiplication. Preprint,
2017. 4.1, 4.2
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