Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2024

Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder

Résumé

We consider the stochastic heat equation on $\mathbb R^d$ with multiplicative space-time white noise noise smoothed in space. For $d\geq 3$ and small noise intensity, the solution is known to converge to a strictly positive random variable as the smoothing parameter vanishes. In this regime, we study the rate of convergence and show that the pointwise fluctuations of the smoothened solutions as well as that of the underlying martingale of the Brownian directed polymer converge to a Gaussian limit.
Fichier principal
Vignette du fichier
ConvRateSHE_J10.pdf (361.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01837908 , version 1 (12-07-2018)

Identifiants

Citer

Francis Comets, Clément Cosco, Chiranjib Mukherjee. Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2024, 60 (1), ⟨10.1214/22-AIHP1272⟩. ⟨hal-01837908⟩
151 Consultations
107 Téléchargements

Altmetric

Partager

More