Real algebraic curves with large finite number of real points
Abstract
We address the problem of the maximal finite number of real points of a real algebraic curve (of a given degree and, sometimes, genus) in the projective plane. We improve the known upper and lower bounds and construct close to optimal curves of small degree. Our upper bound is sharp if the genus is small as compared to the degree. Some of the results are extended to other real algebraic surfaces, most notably ruled.
Domains
Algebraic Geometry [math.AG]
Fichier principal
FiniteCurves.pdf (492.69 Ko)
Télécharger le fichier
Figures.zip (163.95 Ko)
Télécharger le fichier
Origin : Files produced by the author(s)
Loading...