Non-null-controllability of the fractional heat equation and of the Kolmogorov equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Non-null-controllability of the fractional heat equation and of the Kolmogorov equation

Armand Koenig

Résumé

We prove in this article that the Kolmogorov-type equation $(\partial_t -\partial_v^2 + v^2\partial_x)f(t,x,v) = \mathbf 1_\omega u(t,x,v)$ for $(t,x)\in \mathbb T\times \Omega_v$ with $\Omega_v = \mathbb R$ or $(-1,1)$ is not null-controllable in any time if $\omega$ is a vertical band $\omega_x\times \Omega_v$. The idea is to remark that, for some families of solutions, the Kolmogorov equation behaves like what we'll call the rotated fractional heat equation $(\partial_t + \sqrt i(-\Delta)^{1/4})g(t,x) = \mathbf 1_\omega u(t,x)$, $x\in \mathbb T$ and to disprove the observability inequality for rotated fractional equation by looking at how coherent states evolve.
Fichier principal
Vignette du fichier
kolmogorov.pdf (483.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01829289 , version 1 (04-07-2018)
hal-01829289 , version 2 (01-12-2020)

Identifiants

Citer

Armand Koenig. Non-null-controllability of the fractional heat equation and of the Kolmogorov equation. 2018. ⟨hal-01829289v1⟩
208 Consultations
135 Téléchargements

Altmetric

Partager

More