Lack of Null-Controllability for the Fractional Heat Equation and Related Equations - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2020

Lack of Null-Controllability for the Fractional Heat Equation and Related Equations

Résumé

We prove in this article that the Kolmogorov-type equation $(\partial_t -\partial_v^2 + v^2\partial_x)f(t,x,v) = \mathbf 1_\omega u(t,x,v)$ for $(t,x)\in \mathbb T\times \Omega_v$ with $\Omega_v = \mathbb R$ or $(-1,1)$ is not null-controllable in any time if $\omega$ is a vertical band $\omega_x\times \Omega_v$. The idea is to remark that, for some families of solutions, the Kolmogorov equation behaves like what we'll call the rotated fractional heat equation $(\partial_t + \sqrt i(-\Delta)^{1/4})g(t,x) = \mathbf 1_\omega u(t,x)$, $x\in \mathbb T$ and to disprove the observability inequality for rotated fractional equation by looking at how coherent states evolve.
Fichier principal
Vignette du fichier
ex_article.pdf (573.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01829289 , version 1 (04-07-2018)
hal-01829289 , version 2 (01-12-2020)

Identifiants

Citer

Armand Koenig. Lack of Null-Controllability for the Fractional Heat Equation and Related Equations. SIAM Journal on Control and Optimization, 2020, 58 (6), pp.3130-3160. ⟨10.1137/19M1256610⟩. ⟨hal-01829289v2⟩
208 Consultations
135 Téléchargements

Altmetric

Partager

More