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LACK OF NULL-CONTROLLABILITY FOR THE FRACTIONAL HEAT1
EQUATION AND RELATED EQUATIONS∗2

ARMAND KOENIG†3

Abstract. We consider the equation (∂t + ρ(
√
−∆))f(t, x) = 1ωu(t, x), x ∈ R or T. We prove it is not null-4

controllable if ρ is analytic on a conic neighborhood of R+ and ρ(ξ) = o(|ξ|). The proof relies essentially on geometric5
optics, i.e. estimates for the evolution of semiclassical coherent states.6

The method also applies to other equations. The most interesting example might be the Kolmogorov-type equation7
(∂t−∂2

v+v2∂x)f(t, x, v) = 1ωu(t, x, v) for (x, v) ∈ Ωx×Ωv with Ωx = R or T and Ωv = R or (−1, 1). We prove it is not8
null-controllable in any time if ω is a vertical band ωx ×Ωv . The idea is to remark that, for some families of solutions,9
the Kolmogorov equation behaves like the rotated fractional heat equation (∂t +

√
i(−∆)1/4)g(t, x) = 1ωu(t, x),10

x ∈ T.11
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1. Introduction.14

1.1. Problem of the null-controllability. Consider the following equation, which is called15
the fractional heat equation, where Ω = R or T, ω is an open subset of Ω, α ≥ 0:16

(∂t + (−∆)α/2)f(t, x) = 1ωu(t, x) t ∈ [0, T ], x ∈ Ω17

Here, we define (−∆)α/2 with the functional calculus, that is, (−∆)α/2f = F−1(|ξ|αF(f)) if Ω = R,18
where F is the Fourier transform; and cn((−∆)−α/2f) = |n|αcn(f) if Ω = T, where cn(f) is the nth19
Fourier coefficient of f .20

It is a control problem with state f ∈ L2(Ω) and control u supported in ω. More precisely, we21
are interested in the exact null-controllability of this equation.22

Definition 1.1. We say that the fractional heat equation is null-controllable on ω in time T > 023
if for all f0 in L2(Ω), there exists u in L2([0, T ]× ω) such that the solution f of:24

(1.1)
(∂t + (−∆)α/2)f(t, x) = 1ωu(t, x) t ∈ [0, T ], x ∈ Ω

f(0, x) = f0(x) x ∈ Ω.
25

satisfies f(T, x, v) = 0 for all (x, v) in Ω.26

The main motivation for this study, apart from studying the fractional heat equation itself, is27
the null-controllability of a Kolmogorov-type equation. More specifically, we are interested in the28
following equation, where Ω = Ωx × Ωv with Ωx = R or T, Ωv = R or (−1, 1) and ω is an open29
subset of Ω:30

(∂t + v2∂x − ∂2
v)f(t, x, v) = 1ωu(t, x, v) t ∈ [0, T ], (x, v) ∈ Ω.31
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2 A. KOENIG

For convenience, we will just say in this paper “the Kolmogorov equation”. Note that thanks to32
Hörmander’s bracket condition [21, Section 22.2], the operator v2∂x − ∂2

v is hypoelliptic. Also, this33
equation is well-posed. This can be proved by Hille-Yosida’s theorem (see [2, Section 4] in the case34
Ω = T× (−1, 1)). As we will see, this Kolmogorov equation is related to the rotated fractional heat35
equation.36

Definition 1.2. We say that the Kolmogorov equation is null-controllable on ω in time T > 037
if for all f0 in L2(Ω), there exists u in L2([0, T ]× ω) such that the solution f of:38

(1.2)
(∂t + v2∂x − ∂2

v)f(t, x, v) = 1ωu(t, x, v) t ∈ [0, T ], (x, v) ∈ Ω
f(0, x, v) = f0(x, v) (x, v) ∈ Ω
f(t, x, v) = 0 t ∈ [0, T ], (x, v) ∈ ∂Ω (if non-empty)

39

satisfies f(T, x, v) = 0 for all (x, v) in Ω.40

1.2. Statement of the results. We will prove that the rotated fractional heat equation is41
never null controllable if Ω \ ω has nonempty interior, and that the Kolmogorov equation is never42
null-controllable if ω = ωx × Ωv where Ωx \ ωx has nonempty interior.43

Theorem 1.3. Let 0 ≤ α < 1 and Ω = R or Ω = T. Let ω be a strict open subset of Ω. The44
fractional heat equation (1.1) is not null controllable in any time on ω.45

This Theorem still holds in higher dimension, with Ω = Rd × Td′ , but our method seems46
ineffective to treat the case where Ω is, say, an open subset of R. This may be because we are using47
the spectral definition of the fractional Laplacian, and our method might be adapted if instead we48
used a singular kernel definition of the fractional Laplacian.49

Actually, we prove the non-null controllability of a class of equations of the form (∂t +50
ρ(
√
−∆))f(t, x) = 1ω(t, x).51

Theorem 1.4. Let K > 0, C = {ξ ∈ C,<(ξ) > K, |=(ξ)| < K−1<(ξ)} and ρ : C ∪R+ → C such52
that53

1. ρ is holomorphic on C,54
2. ρ(ξ) = o(|ξ|) in the limit |ξ| → +∞, ξ ∈ C,55
3. ρ is measurable on R+ and infξ∈R+ <(ρ(ξ)) > −∞.56

Let Ω = R or T, ω be a strict open subset of Ω and T > 0. Then the equation57

(1.3) (∂t + ρ(
√
−∆))f(t, x) = 1ωu(t, x), t ∈ [0, T ], x ∈ Ω58

is not null-controllable on ω in time T .59

For lack of a better name, we will call the equation (1.3) the generalized fractional heat equation.60
This Theorem can be generalized to the case Ω = Rd × Td′ . The hypothesis infR+ <(ρ) > −∞ is61
only used to ensure that the equation is well-posed.62

The fractional heat equation is the case ρ(ξ) = ξα. Note that if α = 0, then the fractional63
heat equation is just a family of decoupled ordinary differential equations, and the conclusion of64
Theorem 1.3 is unimpressive. At the other end, the method used in this article does not work as-is65
if α = 1, but we still expect non-null-controllability, even if this remains a conjecture if Ω is not the66
one-dimensional torus.67

Some equations behave like the fractional heat equation, at least in some regimes. This is the68
case of the Kolmogorov equation, and if the control acts on a vertical band, we will prove it is not69
null-controllable with the same method.70
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NON-NULL-CONTROLLABILITY OF FRACTIONAL HEAT EQUATION EQUATION 3

Theorem 1.5. Let Ωx = R or T, let Ωv = R or (−1, 1), and let Ω = Ωx × Ωv. Let T > 071
and ωx be a strict open subset of Ωx. The Kolmogorov equation (1.2) is not null-controllable on72
ω = ωx × Ωv in time T .73

This Theorem can be extended to higher dimension in x and v if Ωv = Rd. If we want, say74
Ωv = (−1, 1)d, we lack information on the eigenvalues and eigenfunctions of −∂2

v + inv2 on (−1, 1)d,75
but this is the only obstacle to the generalization of the Theorem to this case. We also give a76
non-null-controllability result in small time for more general control region.77

Theorem 1.6. Let Ωx = R or Ωx = T and Ωv = R or Ωv = (−1, 1). Let Ω = Ωx × Ωv.78
Let ω ⊂ Ω. Assume that there exist x0 ∈ Ωx and a > 0 such that the symmetric vertical interval79
{(x0, v),−a < v < a} is disjoint from ω. Then, the Kolmogorov equation (1.2) is not null-controllable80
on ω in time T < a2/2.81

Whether this condition T < a2/2 is optimal or not is an open question, but we conjecture that82
it is optimal, at least for some geometries. If ω = T× (a, b) with 0 < a < b, Theorem 1.6 proves that83
null-controllability does not hold in time T < a2/2. This special case was already known [6, Theorem84
1.3], it is also proved in the same reference that null-controllability holds for some T > 0. Our85
Theorem 1.6 sharpens the lower-bound on the minimal time of null-controllability if the geometry of86
ω is different than a cartesian product.87

While the fractional heat equation and the Kolmogorov equation are the main focus of this88
article, the method can be used to treat other equations: those that behave like the fractional heat89
equation for α < 1. In Appendix A, we briefly discuss the fractional Schrödinger equation, and90
sketch the proof for the Kolmogorov-type equation (∂t − ∂2

v − v∂x)f(t, x, v) = 1ωu(t, x, v) (notice91
the v instead of the v2), and the improved Boussinesq equation (∂2

t − ∂2
x − ∂2

x∂
2
t )f(t, x) = 1ωu(t, x).92

1.3. Bibliographical comments.93

1.3.1. Control of partial differential equations. Let A be on operator on a Hilbert space94
H such that the equation ∂tf + Af = 0 is well-posed (i.e. −A generates a strongly continuous95
semigroup of bounded linear operators on H, see for instance [34, Ch. 2] or [15, Sec. 2.3 and96
Appendix A] for the definition).97

Let U be a Hilbert space and B : U → H a bounded linear operator. With the right choice98
of H, A, U and B, the problems we are interested in can be stated the following way: for every99
f0 ∈ H, does there exist u ∈ L2(0, T ;U) such that the solution of ∂tf +Af = Bu, f(0) = f0 satisfies100
f(T ) = 0?101

For the fractional heat equation (1.1) on Rn, we choose H = L2(Rn), A = (−∆)α/2 with102
domain Hα(Rn), U = L2(ω) and B : u 7→ u1ω. For the Kolmogorov equation (1.2) on R2, we choose103
H = L2(R2), A = −∂2

v + v2∂x (the domain of A is a bit complicated to define, see [2, Sec. 4]),104
U = L2(ω) and B : u 7→ u1ω.105

Whether there exists a u ∈ L2(0, T ;U) such that the solution of ∂tf + Af = Bu, f(0) = f0106
satisfies f(T ) = 0 depends of course of A, B and on the spaces H and U . Let us discuss existing107
results when A is a parabolic operator related to the fractional heat equation or the Kolmogorov108
equation.109

1.3.2. Null-controllability of the (fractional) heat equation in dimension one: the110
moment method. Let us first look at the heat equation in dimension one with Dirichlet boundary111
conditions, i.e. H = L2(0, π), D(A) = H2(0, π) ∩H1

0 (0, π) and A : f ∈ D(A) 7→ −∂2
xf ∈ L2(0, π).112

Let us also denote λn the eigenvalues of A, and assume that λn is increasing, so that λn = n2.113
A possible strategy to control the heat equation in dimension one is to look for a control of the114
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4 A. KOENIG

form ũ(t, x) = u(t)v(x). In the framework of subsection 1.3.1, this is the choice U = R and Bu the115
function x ∈ (0, π) 7→ uv(x). We will call this kind of controls shaped controls. This is the strategy116
pioneered by Fattorini and Russel [18]. Let us describe it briefly.117

Let v : (0, π) → R. Let f0 ∈ L2(0, π), let u ∈ L2(0, T ) and let f be the solution of (∂t −118
∂2
x)f(t, x) = u(t)v(x), f(t, 0) = f(t, π) = 0 with initial condition f(0, x) = f0(x). Finally, for every119
g ∈ L2(0, π), let cn(g) :=

∫ π
0 g(x) sin(nx) dx be the n-th Fourier coefficient of g. Then, the relation120

f(T, ·) = 0 is equivalent to the moment problem121

∀n ∈ N \ {0},
∫ T

0
e(t−T )λnu(t) dt = −e

−Tλncn(f0)
cn(v) .122

Fattorini and Russel prove such a u exists by constructing a biorthogonal family to (e−tλn)n∈N\{0},123

i.e. a family of functions (gn)n∈N\{0} such that
∫ T

0 gn(t)e−λmt dt = 1 if n = m and 0 if n 6= m (see124
also [33] for a more streamlined proof that this family exists). Then the function u defined by125

u(t) = −
∑
n>0

e−Tλncn(f0)
cn(v) gn(T − t)126

formally solves the moment problem. Moreover, we can prove some estimates on the functions127
(gn)n>0, and if cn(v) does not decay too fast when n → +∞, the series that defines u actually128
converges.129

This strategy can be adapted for the fractional heat equation (1.1) when α > 1, as Micu and130
Zuazua [26] already remarked. Indeed, the construction and estimate on the biorthogonal family131
relies on the hypotheses

∑
n>0 |λn|−1 < +∞ and λn+1 − λn ≥ c > 0. These hypotheses still hold if132

we replace the operator A = −∂2
x on (0, π) by (−∂2

x)α/2 as long as α > 1. Indeed, the eigenvalues133
are now λn = nα.134

On the other hand, if α ≤ 1, this proof does not work anymore. In fact, Micu and Zuazua [26,135
Sec. 5] proved that if α ≤ 1, the fractional heat equation (1.1) is not null-controllable with controls136
of the form u(t)v(x). Miller [27, Sec. 3.3] (see also [17, Appendix]) also gets similar results, with137
similar methods.138

But these negative results, based on Müntz Theorem, only concern scalar controls, i.e. the case139
where the control space is U = R (or C). If the control space is larger, say U = L2(ω), we cannot140
rule out the existence of a control with Müntz Theorem. Indeed, there are many equations which141
are not null-controllable with scalar controls, but that are null-controllable with a larger control142
space. One of them is the heat equation in dimension larger than one. Let us discuss it now.143

1.3.3. Null-controllability of the (fractional) heat equation and the spectral inequal-144
ity. Let Ω be a bounded open subset of Rd. Let (λn)n≥0 be the sequence of the eigenvalues of145
−∆ on Ω with Dirichlet boundary conditions.1 According to Weyl’s law, if the dimension d is146
greater than 1, then

∑
n≥0 λ

−1
n = +∞, so we cannot prove null-controllability with the moment147

method. To build a control for the heat equation we have to choose a control space that is infinite148
dimensional [15, Th. 2.79]. We choose U = L2(ω) and B : u ∈ L2(ω) 7→ u1ω ∈ L2(Ω). We call this149
kind of controls internal controls.150

To prove the null-controllability of the heat equation in any dimension, Fursikov and Im-151
mananuvilov [20] use parabolic Carleman inequalities, which are weighted energy estimates, to prove152

1I.e. D(A) = {f ∈ H1
0 (Ω), ∆f ∈ L2(Ω)} where ∆f is in the sense of distributions.
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NON-NULL-CONTROLLABILITY OF FRACTIONAL HEAT EQUATION EQUATION 5

(more or less) directly the observability inequality that is equivalent to the null-controllability (see for153
instance [15, Th. 2.44 or Th. 2.66] for the equivalence between null-controllability and observability).154

Independently, Lebeau and Robbiano [25, 23] developped another strategy to prove the null-155
controllability of the heat equation. This strategy yields more insight for our purpose, so let us give156
more details.157

By means of elliptic Carleman inequalities, Lebeau and Robbiano proved a spectral inequality,158
which is the following: let M be a connected compact riemannian manifold with boundary, let ω159
be an open subset of M , and let (φi)i∈N be an orthonormal basis of eigenfunctions of −∆ with160
associated eigenvalues (λi)i∈N, then there exists C > 0 and K > 0 such that for every sequence of161
complex numbers (ai)i∈N and every µ > 0162

(1.4)
∣∣∣∑
λi<µ

aiφi

∣∣∣
L2(M)

≤ CeK
√
µ
∣∣∣∑
λi<µ

aiφi

∣∣∣
L2(ω)

.163

The key point to deduce the null-controllability of the heat equation from this spectral inequality164
is that if one takes an initial condition of the form f0 =

∑
λi≥µ aiφi with no component along165

frequencies less than µ, the solution of the heat equation decays like e−Tµ|f0|L2(M), and the exponent166
in µ in this decay (i.e. 1) is larger than the one appearing in the spectral inequality (i.e. 1/2).2167

For the fractional heat equation (1.1), the dissipation stays stronger that the spectral inequality168
as long as α > 1. Thus, for α > 1, we can prove the null-controllability with Lebeau and Robbiano’s169
method, as already mentioned by Micu and Zuazua [26] and Miller [27] (see also [28, 17]).170

Our Theorem 1.3 proves that the threshold α > 1 is optimal: if α < 1, then the fractional171
heat equation is not null-controllable (at least for Ω = Tn). Note that the case α = 1 and Ω = T172
has already been proved to lack null-controllability with internal controls [22, Th. 4]. Let us also173
mention an article where the null-controllability of an equation closely related to our fractional heat174
equation have been investigated [11].175

So it seems that the Lebeau-Robbiano method is in some sense optimal: if the dissipation is176
not stronger than the spectral inequality, then we do not have null-controllability. Let us finish177
with another class of parabolic equations for which Lebeau and Robbiano’s method does not work:178
degenerate parabolic equations.179

1.3.4. Null-controllability of degenerate parabolic partial differential equations. De-180
generate parabolic equations are equations of the form ∂tf(t, x) +Af(t, x) = 1ωu(t, x), 0 ≤ t ≤ T ,181
x ∈ Ω, where A is a second-order differential operator which is degenerate elliptic, i.e. its principal182
symbol P (x, ξ) satisfies P (x, ξ) ≥ 0 but is zero for some x ∈ Ω and ξ 6= 0.183

The interest in the null-controllability of degenerate parabolic equations is more recent. We now184
understand the null-controllability of parabolic equations degenerating at the boundary in dimension185
one [12] and two [13] (see also references therein), where the authors found that these equations186
where null-controllable if the degeneracy is not too strong, but might not be if the degeneracy is too187
strong. To the best of our knwoledge, the only other general family of degenerate parabolic equations188
whose null-controllability has been investigated is hypoelliptic quadratic differential equations [8, 7].189

Other equations have been studied on a case-by-case basis. For instance, the Kolmogorov190
equation has been investigated since 2009 [9, 2, 6]. In these papers, the authors found that if191
Ω = T× (−1, 1) and ω = T× (a, b) with 0 < a < b < 1, the Kolmogorov equation is null-controllable192
in large times, but not in time smaller than a2/2, and that if −1 < a < 0 < b < 1, it is null-193
controllable in arbitrarily small time [2]. If in the Kolmogorov equation (1.2) we replace v2 by194

2The exponent 1
2 of µ in the spectral inequality is optimal if ω is a strict open subset of M [23, Proposition 5.5].
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6 A. KOENIG

v, the null-controllability holds in arbitrarily small time if ω = T × (a, b) [9, 2]. On the other195
hand, if we replace v2 by vγ where γ is an integer greater than 2 and ω = T × (a, b), it is never196
null-controllable [6]. In this last article, the null-controllability of a model of the equation we are197
interested in, namely the equation (∂t + iv2(−∆x)1/2 − ∂2

v)g = 0, is also investigated.198
Another degenerate parabolic equation is the Grushin equation (∂t − ∂2

x − x2∂2
y)f(t, x, y) =199

1ωu(t, x, y) on Ω = (−1, 1) × (0, π) with Dirichlet boundary conditions. If the control domain200
is a vertical band ω = (a, b) × (0, π) with 0 < a < b, there exists a minimum time for the null-201
controllability to hold [4]. This minimum time has since been computed [5]. On the other end, if202
the domain control is an horizontal band ω = (0, π)× (a, b) with (a, b) ( (0, π), then the Grushin203
equation is not null controllable [22].204

Let us finally just mention an article on the heat equation on the Heisenberg group since 2017 [3],205
and that some parabolic equations on the real half-line, some of them related to the present work,206
have been shown to strongly lack controllability [16].207

1.4. Outline of the proof, structure of the article. As usual in controllability problems, we208
focus on observability inequalities on the adjoint systems, that are equivalent to the null-controllability209
(see [15, Theorem 2.44]).210

Specifically, the null-controllability of the fractional heat equation (1.1) is equivalent to the211
existence of C > 0 such that for every solution g of212

(1.5) (∂t + (−∆)α/2)g(t, x) = 0 t ∈ (0, T ), x ∈ Ω213

we have214

(1.6) |g(T, ·)|L2(Ω) ≤ C|g|L2((0,T )×ω).215

So, to disprove the null controllability, we only have to find solutions of (1.5) that are concentrated216
outside ω. To construct such solutions, we consider initial states that are (essentially) semiclassical217
coherent states, i.e. initial states of the form g0,h : x 7→ h−1/4e−(x−x0)2/2h+ixξ0/h. We will prove that218
solutions of Eq. (1.5) with these initial conditions stay concentrated around x0. More precisely, we219
get asymptotic expansion of these solutions thanks to the saddle point method. We do this informally220
at first, in section 2, then rigorously in subsection 4.1 in the case Ω = R and in subsection 4.2 in the221
case Ω = T. This proof relies on some technical computations that are done in section 3. These222
computations are carried over in a slightly general framework, that allows to directly treat the other223
equations, namely the Kolmogorov-type equations and the improved Boussinesq equation. We also224
sketch the proof of the generalization of Theorem 1.4 in higher dimension in subsection 4.3.225

Let us finish this introduction by explaining how the Kolmogorov equation for Ωx = Ωv = R and226
the fractional heat equation are related. The first eigenfunction of−∂2

v+iξv2 on R, is3 e−
√
iξv2/2 (up to227

a normalization constant), with eigenvalue
√
iξ. So, Φξ : (x, v) ∈ R2 7→ eiξx−

√
iξv2/2 is a generalized228

eigenfunction of the Kolmogorov operator v2∂x − ∂2
v , with eigenvalue

√
iξ. So, the solution of the229

Kolomogorov equation (∂t + v2∂x − ∂2
v)f = 0 with initial condition f(0, x, v) =

∫
R a(ξ)Φξ(x, v) dξ is230

f(t, x, v) =
∫
R a(ξ)Φξ(x, v)e−

√
iξt dξ. This suggests that, dropping the v variable for the moment, the231

Kolmogorov equation behaves like an equation where the eigenfunctions are the eiξx with eigenvalue232 √
iξ, i.e. the equation (∂t +

√
i(−∆x)1/4)f(t, x) = 0 with x ∈ R.233

3Here and in all this paper, we choose the branch of the square root with positive real part.

This manuscript is for review purposes only.



NON-NULL-CONTROLLABILITY OF FRACTIONAL HEAT EQUATION EQUATION 7

Based on this observation and the non-null-controllability result of the rotated fractional heat234
equation on the whole real line, we prove in subsection 5.2 that the Kolmogorov equation is not null-235
controllable in the case Ω = R× R. For Kolmogorov’s equation on Ω = Ωx × (−1, 1), we need some236
information on the eigenvalues and the eigenfunctions, which are not explicit anymore. We already237
proved most of what we need in another article [22, Section 4]. We prove the non-null-controllability238
of Kolmogorov equation with Ωv = (−1, 1) in subsection 5.4.239

Finally, we sketch the proof for the Kolmogorov equation with v instead of v2 and for the240
improved Boussinesq equation in Appendix A.241

2. Informal presentation of the proof. As we explained in subsection 1.4, we will try to242
disprove the observability inequality (1.6). We only discuss here the case Ω = R.243

Since the fractional heat equation is invariant by translation, we may assume that ω ⊂ {|x| > δ}244
for some δ > 0. Then, for h > 0, we consider the solution gh of the fractional heat equation (1.5)245
with initial condition g0,h(x) = e−x

2/2h+iξ0/h with some ξ0 > 0. The solution of the fractional heat246
equation is then247

gh(t, x) = 1
2π

∫
R
e−t|ξ|

α+ixξF(g0,h)(ξ) dξ,248

where F is the Fourier transform defined by Ff(ξ) =
∫
R f(x)e−ixξ dx. But the Fourier transform of249

g0,h has a closed-form expression. Indeed, F(e−x2/2)(ξ) =
√

2πe−ξ2/2, and using the properties of250
the Fourier transform (scaling and translation), we find F(g0,h)(ξ) =

√
2πhe−(hξ−ξ0)2/2h. Thus251

gh(t, x) =
√

h

2π

∫
R
e−(hξ−ξ0)2/2h+ixξ−t|ξ|αdξ.252

If we make the change of variables ξ′ = hξ, we find253

(2.1) gh(t, x) = 1√
2πh

∫
R
e−(ξ−ξ0)2/2h+ixξ/h−t|ξ|α/hαdξ.254

Notice that if h is small, the term e−(ξ−ξ0)2/2h is concentrated around ξ = ξ0, and so is the255
integrand. Thus, the major part of this integral comes from a neighborhood of ξ0. In this situation,256
we can compute asymptotic expansion with the saddle point method.257

More precisely, the saddle point method (see for instance [32, Ch. 2]) is a way to compute258
asymptotic expansion of integrals of the form I(h) =

∫
eφ(x)/hu(x) dx in the limit h→ 0+, where φ259

and u are entire functions.260
If the main contribution in the integral I(h) comes from a nondegenerate critical point of φ at261

x = 0, the “standard” saddle point method gives262

(2.2) I(h) ∼ eφ(0)/h
∑
k

√
2π ũ2kh

k+1/2263

where the ũ2k are of the form A2ku(0), and A2k are differential operators of order 2k, with in264
particular ũ0 = u(0)|φ′′(0)|−1/2.265

The term e−|ξ|
α/hα prevents us from applying the saddle point method to Eq. (2.1) as-is, but266

let us pretend we can do it anyway (the rigorous computation will be carried in section 3). Since267
the critical point of ξ 7→ −(ξ − ξ0)2/2 + ixξ is ξc = ξ0 + ix, we get from the saddle point method268

gh(t, x) ≈ e−(ξc−ξ0)2/2h+ixξc/h−tξαc/h
α

= e−x
2/2h+ixξ0/h−t(ξ0+ix)α/hα .269
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By integrating this asymptotic expansion, we get the following lower bound on the left-hand side of270
the observability inequality (1.6):271

(2.3) |gh(T, ·)|2L2(R) ≥ |gh(T, ·)|L2(|x|<δ) ≥ ch−1
∫
|x|<δ

e−x
2/h−Ch−α dx ≥ c′e−C

′h−α .272

Again by integrating the asymptotic expansion on gh, we get the following upper on the right-hand273
side of the observability inequality274

(2.4) |gh|L2([0,T ]×ω) ≤ |gh|2L2([0,T ]×{|x|>δ}) ≤ Ch
−1
∫

[0,T ]×{|x|>δ}
e−x

2/h−cth−α dtdx ≤ C ′e−δ
2/h.275

Comparing this upper bound (2.4) and the lower bound (2.3), and taking the limit h→ 0+, we see276
that the observability inequality (1.6) cannot be true if α < 1. Thus the fractional heat equation is277
not null-controllable.278

3. Some technical computations. Before we make rigorously the proof outlined in section 2,279
we carry here some computations as a technical preparation.280

3.1. Perturbation of the saddle point method. The “standard” saddle point method can281
be stated in the following way [32, Th. 2.1].282

Theorem 3.1. Let U be an open bounded neighborhood of 0 in Rd. For every N ∈ N, there283
exists CN > 0 such that for every h > 0 and every holomorphic function u on a complex neighborhood284
V of U ,285 ∫

U

e−x
2/2hu(x) dx =

N−1∑
j=0

hd/2+j

(2π)d/2j!2j
(∆)ju(0) +RN (h),286

where287
|RN (h)| ≤ CNλhd/2+N sup

z∈V
|u(z)|.288

By using the Morse lemma (see for instance [21, Lemma C.6.1]), one can often transform integral of289
the form

∫
eφ(x)/hu(x) dx into integrals of the form of Theorem 3.1, plus some exponentially small290

error. Notice that in this theorem, the phase −x2/2 does not depend on h. However, to rigorously291
treat the integral of Eq. (2.1), we need to allow the phase to depend on h.292

Proposition 3.2 (Perturbation of the saddle point method). Let h0 > 0 and ε : (0, h0]→ R+293
such that ε(h)→ 0 as h→ 0. Let U ⊂ R be an open interval around 0. Let V be a complex open294
bounded neighborhood of U in C.295

For every 0 < h ≤ h0, let rh : V → C such that296
1. ∀0 < h ≤ h0, rh is holomorphic on V ,297
2. there exists C > 0 such that for every 0 < h ≤ h0 and ξ ∈ V , |rh(ξ)| ≤ Cε(h).298

For such rh, we define |r|ε := inf{C > 0,∀0 < h ≤ h0,∀ξ ∈ V, |rh(ξ)| ≤ Cε(h)}.299
For every 0 < h ≤ h0, let uh be a holomorphic bounded function on V . We consider300

Ih,r(u) :=
∫
U

e−ξ
2/2h+rh(ξ)/huh(ξ) dξ.301

Let M > 0. We have uniformly in |r|ε < M , and uniformly in uh holomorphic bounded on V302

Ih,r(u) =
√

2πherh(0)/h+O(ε(h)2/h)
(
uh(0) +O

(
(h+ ε(h))|uh|L∞(V )

))
.303
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Proof of Proposition 3.2. The strategy is to see ϕh,r(ξ) = −ξ2/2 + rh(ξ) as the phase, and to304
change the integration variable and the integration path to rewrite Ih,r(u) in the form Ih,r(u) =305 ∫
e−ξ

2/2hvh(ξ) dξ, even if this change of variables depends on h, and then apply Theorem 3.1.306
In this proof, M > 0 is fixed. We also choose V ′ ⊂ C convex such that4 U b V ′ b V . Also, we307

use the convention that C denotes a constant, that depends only on ε, M , V and V ′, but not on h308
small enough, |r|ε ≤M or ξ ∈ V ′, and that may be different each line.309

Step 1: finding the critical point. We claim that for h small enough, for every |rh|ε ≤M , there exists310
a unique critical point ξc,h,r of ϕh,r in V ′, and that this critical point is non-degenerate.311

Indeed, ξ ∈ V ′ is a critical point of ϕh,r if and only if ∂ξrh(ξ) = ξ. But for every5 ξ ∈ V ′,312
|∂ξrh(ξ)| ≤ C|rh|L∞(V ) ≤ C|r|εε(h). Moreover, since V ′ is convex, according to the mean value313
inequality, for ξ, ξ′ ∈ V ′, 0 < h ≤ h0 and |r|ε ≤M ,314

|∂ξrh(ξ)− ∂ξrh(ξ′)| ≤ sup
V ′
|∂2
ξ rh||ξ − ξ′| ≤ C sup

V
|rh||ξ − ξ′| ≤ C|r|εε(h)|ξ − ξ′| ≤ CMε(h)|ξ − ξ′|.315

Thus, if h is small enough such that CMε(h) < 1, ξ 7→ ∂ξrh(ξ) takes its value in V ′ and is a316
contraction. Then, according to the contraction mapping theorem, there exists a unique ξc,h,r ∈ V ′317
such that ∂ξrh(ξc,h,r) = ξc,h,r. This is the unique critical point of ϕh,r in V ′.318

Note that we have |ξc,h,r| ≤ C|r|εε(h), where C depends only on ε, M , V and V ′. Also, the319
critical value ch,r := ϕh,r(ξc,h,r) satisfies320

|ch,r − rh(0)| =
∣∣∣−ξ2

c,h,r

2 + rh(ξc,h,r)− rh(0)
∣∣∣ ≤ |ξc,h,r|24 + |ξc,h,r| sup

V ′
|∂ξrh| ≤ Cε(h)2|r|ε.321

Moreover, we have |∂2
ξϕh,r(ξc,h,r) + I| = |∂2

ξ rh(ξc,h,r)| ≤ C|r|εε(h). So, if h is small enough, the322
critical point ξc,h,r is nondegenerate.323

Step 2: change of variables. Now that we know where the critical point is, and what the critical324
value of the phase is, we want to change the intergation variables to rewrite Ih,r(u) in the form325
Ih,r(u) =

∫
e−ξ

2/2hũh(ξ) dξ.326
We define ψh,r(ξ) on V ′, for h small enough by327

ψh,r(ξ + ξc,h,r) = ξ

(
2
∫ 1

0
∂2
xϕh,r(sξ) ds

)1/2

.328

According to Taylor’s formula, for every ξ ∈ V ′, we have ϕh,r(ξ) = ch,r + ψh,r(ξ)2/2.329
So, by the change of variables/integration path η = ψh,r(ξ), we have:330

(3.1) Ih,r(u) = ech,r/h
∫
ψh,r(U)

e−η
2/2huh(ξ(η)) dξ

dη dη = ech,r/h
∫
ψh,r(U)

e−η
2/2hũh(ξ(η)) dη,331

where ũh(η) := uh(ξ(η)) dξ/dη.332
Note that according to the definition of ψh,r, for ξ ∈ V ′, we have |ψh,r(ξ) − ξ| ≤ Cε(h)|r|ε.333

Thus, we have for every η ∈ ψh,r(V ′), |ψ−1
h,r(η)− η| ≤ Cε(h)|r|ε. Thus, dη/dξ = 1 +O(ε(h)|r|ε).334

4We denote A b B for “A compact and A ⊂ B”.
5We will frequently use the following standard consequence of the integral Cauchy formula: if f is holomorphic on

D(z0, r), then |f (n)(z0)| ≤ Cn,r|f |L∞(D(z0,r)).

This manuscript is for review purposes only.



10 A. KOENIG

Step 3: conclusion. So, by the standard saddle point method (Theorem 3.1):335

(3.2)
Ih,r(u) = ech,r/h

√
2πh

(
ũh(0) +O

(
h|ũh|L∞(V )

))
= ech,r/h

√
2πh

(
uh(0) +O

(
(h+ ε(h))|uh|L∞(V )

))336

and since ch,r/h = rh(0)/h+O(ε(h)2/h) the Proposition is proved.337

3.2. The framework: truncated coherent states. As we said in the introduction, our aim338
is to prove the lack of null-controllability of several equations, that behave in some sense like the339
fractional heat equation. However, treating these equations requires more precise estimates than the340
fractional heat equation does.341

To avoid making similar computations several times, we do them in a somewhat general342
framework. This way, we will be able to treat the other equations (Kolmogorov, etc.) directly.343

Hypothesis 3.3. We consider the following domain, constants and functions:344
1. let K > 0 and C = {ξ ∈ C,<(ξ) > K, |=(ξ)| < K−1<(ξ)},345
2. let ξ0 > 0 large enough (for instance ξ0 = 4(K + 1)),346
3. let δ > 0 small enough such that for every ξ ∈ R and x ∈ R, |ξ− ξ0| < δ and |x| < δ implies347
ξ + ξ0 + ix ∈ C,348

4. let χ ∈ C∞c (−δ, δ) such that 0 ≤ χ ≤ 1 and χ ≡ 1 on a neighborhood of 0, say (−δ2, δ2),349
5. let X be a topological space, and 0 < h0 < 1, and for every γ ∈ X and 0 < h ≤ h0, let350
ργ,h : C → C be a holomorphic function,351

6. we assume that uniformly in γ ∈ X and 0 < h ≤ h0, ργ,h(ξ) = o(|ξ|) in the limit |ξ| → +∞,352
ξ ∈ C,353

7. finally, for every 0 < h ≤ h0, we define354

ε(h) := sup
|ξ|<δ,|x|<δ,γ∈X

h

∣∣∣∣ργ,h(ξ + ξ0 + ix

h

)∣∣∣∣ .355

The goal of the next subsections is to get upper and lower bounds on the following integral,356
where (vh) is a family of bounded holomorphic functions on C:357

(3.3) Iγ,h,v(x) =
∫
R
χ(ξ − ξ0)e−(ξ−ξ0)2/2h+ixξ/h+ργ,h(ξ/h)vh(ξ) dξ.358

Remark 3.4. 1. The hypothesis 6 implies that ε(h)→ 0 as h→ 0.359
2. For instance, if ρ is independent of γ and h, with ρ(ξ) = |ξ|α and 0 ≤ α < 1, then we have360
C−1h1−α < ε(h) < Ch1−α for some C > 0.361

3. In the applications, we will typically choose X = [0, T ] and for t ∈ X, ρt,h(ξ) = −tρ(ξ)362
with some ρ : C → C such that ρ(ξ) = o(|ξ|). We will also usually choose vh = 1. In363
that case, gh(t, x) := It,h,1(x) is solution of (∂t + ρ(

√
−∆))gh = 1 with initial condition364

g0,h(x) =
√

2πhχ(−ih∂x − ξ0)e−x2/2h+ixξ0/h, which belongs in L2(R). However, some365
applications will require a larger parameter space X and vh 6= 1.366

3.3. Asymptotics for the evolution of coherent states.367

Proposition 3.5. Assuming Hypothesis 3.3, we have uniformly in γ ∈ X, |x| small enough,368
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<(φx) > 0<(φx) > 0

<(φx) < 0 χ−1(1)

ix

Figure 1. In blue, the interval where χ = 1. The diagonal lines define four sectors; in the left and right ones,
<(ϕx) > 0 and in the top and bottom ones, <(φx) < 0. In red, the path of integration we chose in the integral
defining Iγ,h,v(x) (Eq. 3.3). If |x| is small enough, we choose a path that goes through the saddle point ix, but that
stays in {<(ϕx) > 0}.

γ ∈ X and vh : C → C holomorphic bounded369

Iγ,h,v(x) =
∫
R
χ(ξ − ξ0)e−(ξ−ξ0)2/2h+ixξ/h+ργ,h(ξ/h)vh(ξ) dξ370

=
√

2πheixξ0/h−x2/2h+ργ,h
(
ξ0+ix
h

)
+O
(
ε(h)2

h

)(
vh (ξ0 + ix) +O

(
(h+ ε(h))|vh|L∞(C)

))
,371

372

in the limit h→ 0+.373

Remark 3.6. For most of the applications, we don’t care about the term ρ((ξ0 + ix)/h), apart374
from the fact it is O(ε(h)/h). Moreover, we usually have vh(ξ) = 1, or at least vh(ξ)→ 1 as h→ 0,375
uniformly in ξ ∈ C. Under this condition, Proposition 3.2 implies the slightly less precise asymptotic376
expansion377

Iγ,h,v(x) =
√

2πheixξ0/h−x2/2h+O
(
ε(h)
h

)
(1 + o(1)) ,378

which will be enough in most cases.379

Proof. The idea is that this integral has almost the form of Proposition 3.2. Let us actually380
rewrite it as such.381

Step 1: change of integration path. Note that χ(ξ − ξ0) ≡ 1 for ξ0 − δ2 < ξ < ξ0 + 2δ2, so χ(ξ − ξ0)382
extends holomorphically to |<(ξ)−ξ0| < δ2 by 1. Moreover, if ξ ∈ C and |<(ξ)−ξ0| < δ2, |=(ξ)| < δ2,383
then, according to Hypothesis 3.3 item 3, ξ ∈ C. We deduce that the integrand of Iγ,h,v(x) is384
holomorphic on {ξ ∈ C, |<(ξ)− ξ0| < δ2, |=(ξ)| < δ2}.385

Thus, we can change the integration path of Iγ,h,v(x), as long as we modify it only between386
ξ0 − δ2 and ξ0 + δ2, and that the modified part of the integration path stays inside {|<(ξ)− ξ0| <387
δ2, |=(ξ)| < δ2}.388

Let ξc = ξ0 + ix be the critical point of ϕx(ξ) := −(ξ − ξ0)2/2 + ixξ. We choose an integration389
path Γ parametrized by Γ(t) = t + ξ0 + ixχ2(t), where χ2 ∈ C∞c (−δ2, δ2) with 0 ≤ χ2 ≤ 1 and390
χ2 ≡ 1 on a neighborhood of 0 (say (−δ3, δ3)). Then, we have391

Iγ,h,v(x) =
∫

Γ
χ(<(z))eϕx(z)/h−ργ,h(z/h)vh(z) dz392

=
∫ δ3

−δ3

e−t
2/2h−x2/2h+ixξ0/h−ργ,h( ξ0+ix+t

h )vh (ξ0 + ix+ t) dt+Rγ,h,v(x),393
394
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12 A. KOENIG

where we used that for δ3 < t < δ3, ϕx(Γ(t)) = −(t+ ix)2/2 + ix(t+ ξ0 + ix) = −t2/2− x2/2 + ixξ0,395
and where Rγ,h,v(x) is the part of the integral out of (−δ3, δ3).396

Step 2: upper-bound for the remainder. Since support(χ) ⊂ (−δ, δ), so that the integrand is 0 for397
|t| > δ, the remainder Rγ,h,v(x) is upper-bounded by398

|Rγ,h,v(x)| ≤ 2δe−δ
2
3/2h+ε(h)/h|χ′2|L∞ .399

where we used the definition of ε (Hypothesis 3.3 item 7) to bound ργ,h. Moreover, ε(h)→ 0, so we400
have (for instance)401

(3.4) |Rγ,h,v(x)| ≤ Ce−δ
2
3/4h|vh|L∞ .402

Step 3: asymptotic expansion for the integral in (−δ3, δ3). To get an asymptotic expansion of the403
part of the integral between −δ3 and δ3, we can apply Proposition 3.2. Indeed, for 0 < h ≤ h0,404
γ ∈ X, |x| < δ3/2 and ξ in a small enough complex neighborhood U of [−δ3, δ3], let405

rγ,x,h(ξ) = hργ,h

(
ξ0 + ix+ ξ

h

)
.406

By definition of ε(h), we have |rγ,h,x| < ε(h), or, in other words, |rγ,x,h|ε ≤ 1. For the same407
parameters, we also define408

ux,h(ξ) = vh (ξ0 + ix+ ξ) .409

Then, according to Proposition 3.2,410

Iγ,h,v(x) =
∫ δ3

−δ3

e−x
2/2h+ixξ0/h−t2/2h+rγ,x,h(t)/hux,h(t) dt+Rγ,h,v(x)411

=
√

2πhe−x
2/2h+ixξ0/h+rγ,x,h(0)/h

(
ux,h(0) +O((h+ ε(h))|ux,h|L∞(U)

))
+Rγ,h,v(x)412

413

uniformly in γ ∈ X, |x| < δ3/2 and vh holomorphic bounded on C.414

Step 4: conclusion. With the upper-bound (3.4) on Rγ,h,v(x), the claimed asymptotic expansion415
follows.416

3.4. Upper bounds for the evolution of coherent states. We will also need upper bounds417
for Iγ,h,v(x) that hold for large x.418

Proposition 3.7. We assume Hypothesis 3.3, except that the item 6 is only assumed to hold419
locally uniformly in γ ∈ X (and uniformly in 0 < h ≤ h0). We define for γ ∈ X and 0 < h ≤ h0420

εγ(x) := sup
|ξ|<δ,|x|<δ

h<
(
ργ,h

(
ξ + ξ0 + ix

h

))
.421

Let η > 0. For every N > 0, there exist c, C > 0 such that for every |x| > η, γ ∈ X and vh422
holomorphic bounded on C,423

|Iγ,h,v(x)| ≤ C

|x|N
e−c/h+εγ(h)/h|vh|L∞(C).424

Remark 3.8. 1. In the applications, we will typically choose X = R+ and ρt,h(ξ) = −tρ(ξ).425
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ix

χ−1(1)Γ

Figure 2. As in Figure 1, the interval where χ = 1 in blue. If x is not too small, we deform a bit the integration
path toward ix.

2. For instance, consider the case X = R+ and ρt,h(ξ) = −tzξα, where <(z) > 0. This choice426
is relevant to the equation (∂t + z(−∆)α/2)f(t, x) = 1ωu(t, x). If K > 0 is large enough, for427
every ξ ∈ C, <(zρ(ξ)) ≥ c|ξ|α for some c > 0.6 Then εt(h) ≤ −cth1−α.428

Proof. Step 1: integration by parts. First, we integrate by parts to get the decay in x. As429
in the previous proof, we denote ϕx(ξ) = −(ξ − ξ0)2/2 + ixξ. We remark that h∂ξeϕx(ξ)/h =430
−(ξ − ξ0 − ix)eϕx(ξ)/h. Thus, with Lx = 1

h∂ξ
1

ξ−ξ0−ix , we have431

Iγ,h,v(x) =
∫ +∞

−∞
e−ϕx(ξ)LNx

(
χ(ξ − ξ0)eργ,h

(
ξ
h

)
vh (ξ)

)
dξ.432

Step 2: change of integration path. Next, as in the proof of Proposition 3.5, we can change the433
integration path between ξ0 − δ2 and ξ0 + δ2, as long as this modification stays inside {|<(ξ)− ξ0| <434
δ2, |=(ξ)| < δ2}. We choose χ2 as in the proof of Proposition 3.5, i.e. χ2 ∈ C∞c (−δ2, δ2), 0 ≤ χ2 ≤ 1,435
χ2 ≡ 1 on (−δ3, δ3). Then we choose the path Γ(t) = t+ iη2 sgn(x)χ2(t− ξ0), where η2 > 0 is small436
enough, for instance η2 = min(η/2, δ2/2) (see Figure 2).437

Step 3: upper-bound for eϕx(ξ). On this path Γ, for every |x| > η and 0 < h ≤ h0,438

|eϕx(Γ(t))/h| = e<(ϕx(Γ(t)))439

= e(−t2/2+η2
2χ

2
2(t−ξ0)/2−|x|η2χ2(t−ξ0))/h440

≤ e−t
2/2h−|x|η2χ2(t−ξ0)/2h,441442

where we used that |x| > η2 and 0 ≤ χ2 ≤ 1. Thus, for some c > 0, we have for every |x| > η2 and443
t ∈ R444

(3.5) |eϕx(Γ(t))/h| ≤ e−c/h.445

Step 4: upper bound for the rest of the integrand. We claim that there exists CN > 0 such that for446
every f C∞ on Γ, for every |x| > η and ξ ∈ Γ,447

(3.6) |LNx f(ξ)| ≤ CN
|hx|N

∑
k≤N

|∂kξ f(ξ)|.448

6Indeed, if z = r0eiθ0 , then |θ0| < π/2. And if ξ = reiθ, then <(zξα) = r0rα cos(αθ + θ0). But if ξ ∈ C, then
r|sin(θ)| ≤ rK−1 cos(θ), or |θ| ≤ arctan(K−1). So, if K is large enough, for every ξ = reiθ ∈ C, |αθ + θ0| ≤ π/2− τ
for some τ > 0. Then, <(zξα) = r0rα cos(αθ + θ0) ≥ r0rα cos(π/2− τ) = c|ξ|α.
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Indeed, according to Leibniz’ rule, for any k ≥ 0, ξ ∈ Γ and f C∞ on Γ,449

∂kξLxf(ξ) = h−1∂k+1
ξ

f(ξ)
ξ − ξ0 − ix

= h−1
∑
`≤k+1

Ck,`
∂`ξf(ξ)

(ξ − ξ0 − ix)k+2−` .450

So, reminding that |x| > η and |=(ξ)| < η
2451

|∂kξLxf(ξ)| ≤ Ck
|hx|

∑
`≤k+1

|∂`ξf(ξ)|.452

By iterating this estimate, we get the upper bound (3.6). Now, choosing f(ξ) = χ(ξ−ξ0)e−ργ,h(ξ/h)vh(ξ),453
we get454

|LNx (χ(ξ − ξ0)eργ,h(ξ/h)vh(ξ))| ≤ CN
|hx|N

∑
k≤N

∣∣∣∂kξ (χ(ξ − ξ0)eργ,h(ξ/h)vh(ξ)
)∣∣∣455

≤ C ′N
|hx|N

∑
k≤N

∣∣∣∂kξ (eργ,h(ξ/h)vh(ξ)
)∣∣∣ .456

457

Moreover, for any f holomorphic on C, and for any ξ ∈ Γ and r > 0 such that D(ξ, r) ⊂ C, the458
Cauchy integral formula implies that |∂kξ f(ξ)| ≤ Cr|f |L∞(D(ξ,r)). So,459

|LNx (χ(ξ − ξ0)eργ,h(ξ/h)vh(ξ))| ≤ C ′′N
|hx|N

∣∣∣eργ,h(ξ/h)vh(ξ)
∣∣∣
L∞(D(ξ,r))

460

≤ C ′′N
|hx|N

eεγ(h)/h|vh|L∞(C).(3.7)461
462

Step 5: conclusion. Putting together the bounds (3.7) and (3.5), we get463

|Iγ,h,v(x)| ≤ CN
|x|N

h−Ne−c/h+εγ(h)/h|vh|L∞(C),464

which implies the claimed estimate.465

We also have the following upper-bound, which is weaker but valid for any x, even small. We466
will need it for some applications.467

Proposition 3.9. Under the same hypotheses as Proposition 3.7, there exist c, C > 0 such that468
for every x ∈ R, γ ∈ X and vh holomorphic bounded on C,469

|Iγ,h,v(x)| ≤ Ceεγ(h)/h|vh|L∞(C).470

Proof. It is only the integral triangle inequality.471

4. Non-null-controllability of the generalized fractional heat equation.472

4.1. The generalized fractional heat equation on the whole real line.473

Proof of Theorem 1.4 in the case Ω = R. Well-posedness. Let us recall that infR+ <(ρ) < +∞.474
So, denoting M this infinimum, we have for every t ≥ 0, supξ∈R |e−tρ(|ξ|)| ≤ etM . Thus, for every475
t ≥ 0, we can define a linear bounded operator on L2(R) by476

∀f0 ∈ L2(R), ∀x ∈ R, S(t)f0(x) = F−1(e−tρ(|ξ|)Ff0)(x) = 1
2π

∫
R
eixξ−tρ(|ξ|)Ff0(ξ) dξ.477
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We can see that S(t) is a strongly continuous semigroup of bounded operators on L2(R). Moreover,478
the infinitesimal generator of S(t) is ρ(

√
−∆). Thus, the equation (1.3) is well-posed, in the sense479

of semigroups (see for instance [15, Def. 2.36 and Th. 2.37]).480

Construction of the counterexample to the observability inequality. We remind that the null-481
controllability of the generalized fractional heat equation on ω and in time T is equivalent to the482
following observability inequality [15, Th. 2.44]: there exists C > 0 such that for every g0 ∈ L2(R),483
the solution g of484

(4.1) ∂tg + ρ(
√
−∆)g = 0, g(0, ·) = g0485

satisfies486

(4.2) |g(T, ·)|L2(R) ≤ C|g|L2([0,T ]×ω).487

In Hypothesis 3.3 item 1, we choose K and C to be those of the statement of Theorem 1.4. Let488
ξ0, δ and χ as in Hypothesis 3.3 item 2–3. Then, for h > 0, we consider g0,h ∈ L2(R) defined by489

g0,h(x) =
√

2πhχ(−ih∂x − ξ0)e−x
2/2h+ixξ0/h = h

∫
R
χ(hξ − ξ0)e−(hξ−ξ0)2/2h+ixξ dξ.490

The solution gh of the generalized fractional heat equation (4.1) with this initial condition is491

(4.3)
gh(t, x) = h

∫
R
χ(hξ − ξ0)e−(hξ−ξ0)2/2h+ixξ−tρ(ξ) dξ

=
∫
R
χ(ξ − ξ0)e−(ξ−ξ0)2/2h+ixξ0/h−tρ(ξ/h) dξ

492

(let us remind that according to Hypothesis 3.3, χ(hξ− ξ0) is zero for |hξ− ξ0| ≥ δ, and in particular493
for ξ < 0 if δ is chosen small enough, as in Hypothesis 3.3).494

Conclusion. In Hypothesis 3.3 item 5, we choose X = [0, T ]. For t ∈ X and h > 0, we choose495
ρt,h : ξ ∈ C 7→ −tρ(ξ). Since ρ is holomorphic on C with ρ(ξ) = o(|ξ|), so is ρt,h for every t ∈ X496
and h > 0. In other words Hypothesis 3.3 item 5–6 are satisfied. Moreover, with the notations of497
Eq. (3.3), the function gh given by (4.3) can be writen as gh(t, x) = It,h,1(x).498

So, according to Proposition 3.5 (or more precisely Remark 3.6), there exists C, c > 0 such that499
for t ∈ [0, T ], x small enough (say |x| < η′) and h > 0 small enough500

(4.4) |gh(t, x)| ≥ 1
2e
−x2/2h−Cε(h)/h.501

Moreover, according to Proposition 3.7, there exists C, c > 0 such that for t ≥ 0, |x| > η and h > 0502
small enough,503

(4.5) gh(t, x) ≤ C

|x|2
e−c/h.504

Thus, we have according to the lower bound (4.4)505

|gh(T, ·)|L2(R) ≥ |gh(T, ·)|L2(|x|<η′) ≥ ch1/4e−Cε(h)/h(4.6)506507
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16 A. KOENIG

and according to the upper bound (4.5),508

|gh|2L2((0,T )×ω) ≤ T
∫
|x|>η

C

x4 e
−c/h dx ≤ Ce−c/h.(4.7)509

510

and since ε(h)→ 0 as h→ 0, taking h→ 0 disproves the observability inequality.511

Remark 4.1. We implicitly looked at the generalized fractional heat equation with complex512
valued solutions. This means that we proved that there exists an initial condition f0 of the generalized513
fractional heat equation that we cannot steer to 0, but this initial condition might not be real514
valued. In the case where ρ(R+) ⊂ R+, we might be more interested in real valued solutions. But515
our results actually implies there exists a real valued initial condition that cannot be steered to 0,516
for if both the real part <(f0) and the imaginary part =(f0) could be steered to 0, then f0 itself517
could be steered to 0. A similar arguments stays valid for the Kolmogorov-type equation.518

4.2. The generalized fractional heat equation on the torus. The case of the generalized519
fractional heat equation on the torus is a bit different because we are not dealing with integrals, but520
sums. Therefore, tools like the saddle point method do not seem to be of much use. Nonetheless,521
with a trick, we can deduce the theorem on the torus from the theorem on the whole real line.522

Proof of Theorem 1.4 in the case Ω = T. The basic idea is the trick of the proof of Poisson523
summation formula, namely the fact that the Fourier coefficients of a function of the form g0per(x) =524 ∑
k∈Z g0(x+ 2πk) are the values of the Fourier transform of g0 evaluated at the integers (up to a525

multiplication by
√

2π).526
So, let gh ∈ C∞(R) be as in the previous section. Since the Fourier transform of gh(t, ·) is527

C∞ with compact support,7 gh(t, x) decays faster than any polynomials as |x| → ∞ and we can528
define ghper(t, x) =

∑
k∈Z gh(t, x+ 2πk). According to the trick described before, cn(ghper(t, ·)) =529

(2π)−1/2F(gh)(t, ·)(n). But, by definition of gh as the solution of the rotated fraction heat equation,530
F(gh)(t, ·)(ξ) = F(gh)(0, ·)(ξ)e−tρ(|ξ|), so, using the trick again:531

(4.8) cn(ghper(t, ·)) = cn(ghper(0, ·))e−tρ(|n|).532

So ghper is a solution to the generalized fractional heat equation (4.1) on the torus. Now we prove533
that the terms for k 6= 0 are negligible. Indeed, we have by definition of ghper534

|ghper(T, ·)|L2(T) =
∣∣∣∑
k∈Z

gh(T, ·+ 2πk)
∣∣∣
L2(T)

(4.9)535
536

and by singling out to term for k = 0 and thanks to the triangle inequality537

|ghper(T, ·)|L2(T) ≥ |gh(T, ·)|L2(−π,π) −
∑
k 6=0
|gh(T, ·)|L2((2k−1)π,(2k+1)π)(4.10)538

539

and thanks to the pointwise estimates on gh (Eq. (4.5) and (4.4))540

|ghper(T, ·)|L2(T) ≥ ch1/4e−Cε(h)/h −
∑
k 6=0

C

k2 e
−c/h ≥ ch1/4e−Cε(h)/h − Ce−c/h.(4.11)541

542

7We added the cutoff function χ just to localize the Fourier transform away from the singularity of |ξ|α at ξ = 0.
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In the same spirit, we have thanks to the triangle inequality, and identifying ω = T \ [−ε, ε] with543
(−π, π) \ [−ε, ε] ⊂ R544

|ghper|L2([0,T ]×ω) ≤
∑
k∈Z
|gh|L2([0,T ]×(ω+2πk))(4.12)545

546

and according to the estimate (4.5),547

|ghper|L2([0,T ]×ω) = O(e−c/h).(4.13)548549

Taking h→ 0+ disproves the observability inequality (4.2) and proves the Theorem.550

4.3. Higher dimension. Theorem 1.4 can be generalized to take into account the case551
Ω = Rd × Td′ . Indeed, the Propositions of section 3 are still valid in higher dimension. The552
computations are carried essentially the same way, only with the added technicalities of the higher553
dimension, for instance:554

• in Proposition 3.2, U and V are assumed to be open, bounded and convex subset of Rd and555
Cd respectively,556

• in the proof of Proposition 3.2, the change of variables of step 2 is given by a Morse Lemma557
with parameter, in the spirit of [21, Lemma C.6.1],558
• in Hypothesis 3.3 χ is chosen to be C∞c (B(0, δ)) (open ball in Rd),559

• ρ(|ξ|) has to be replaced by ρ
[(∑

i ξ
2
i

)1/2] (i.e. what happens to be holomorphic in ξ ∈ Cd560

and that is equal to ρ(|ξ|) if ξ ∈ Rd),561
• in all the complex integrals that follows, we integrate against dξ1 ∧ · · · ∧ dξd,562
• also, the power of 2πh in front of the asymptotic expansion is (2πh)d/2 (but it does not563
matter).564

Then, the construction of the counterexample to the observability inequality if Ω = Rd is the same.565
For the case Ω = Rd × Td′ , we first consider a counter example in Rd+d′ , and we periodize the last566
d′ components with the method of subsection 4.2.567

5. Non-null-controllability of the Kolmogorov equation.568

5.1. Introduction. Now, we look at the Kolmogorov equation (1.2). As for the fractional heat569
equation, the null-controllability of the Kolmogorov equation (1.2) is equivalent to the existence of570
C > 0 such that for every solution g of 8571

(5.1) (∂t − v2∂x − ∂2
v)g(t, x, v) = 0 t ∈ (0, T ), (x, v) ∈ Ω572

with Dirichlet boundary conditions if Ωv = (−1, 1),573

(5.2) |g(T, ·)|L2(Ω) ≤ C|g|L2((0,T )×ω).574

As hinted in the introduction, we look for counterexamples of the observability inequal-575
ity among solutions of the adjoint of the Kolmogorov equation (5.1) of the form g(t, x, v) =576 ∫
R a(ξ)eixξgξ(v)e−λξt dξ, where gξ(v) is the first eigenfunction of −∂2

v − iξv2 and λξ its associated577
eigenvalue. Let us remind that9 λξ =

√
−iξ if Ωv = R, and is close to

√
−iξ if Ωv = (−1, 1).578

8Note that this is the adjoint of the Kolmogorov equation where we reversed the time.
9We choose the branch of the square root with positive real part.
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We remark that apart from the gξ(v) term, those solutions have the same form as solutions579
of the rotated fractional heat equation (∂t +

√
−i(−∆)1/4)g = 0. So, the strategy is to prove the580

same estimates we proved for the rotated fractional heat equation, but with some uniformity in the581
parameter v. Since the computations are essentially the same, we only tell what we need to care582
about in comparison with the rotated fractional heat equation, but we do not give the full details of583
the computations again.584

5.2. The Kolmogorov equation with unbounded velocity.585

Proof of Theorem 1.5 with Ωx = Ωv = R. In the case Ωv = R, the first eigenfunction of −∂2
v −586

iξv2 is gξ(v) = e−
√
−iξv2/2 with eigenvalue λξ =

√
−iξ. Without loss of generality, we may assume587

ωx = R \ [−η, η] (let us remind that ω = ωx × R).588
Thus, we consider the function gh : R+ × R2 → C defined by589

(5.3)
gh(t, x, v) = h

∫
R
χ(hξ − ξ0)eixξ−(hξ−ξ0)2/2h−

√
−iξ(v2/2+t) dξ

=
∫
R
χ(ξ − ξ0)eixξ/h−(ξ−ξ0)2/2h−

√
−iξ/h(v2/2+t) dξ.

590

Since every (t, x, v) 7→ eixξ−
√
−iξ(t+v2/2) is a generalized solution to the Kolmogorov equation (5.1),591

the function gh is also solution to the Kolmogorov equation. We also remark that gh(0, ·, ·) ∈ L2(R2).592
Notice that these solutions are of the form g̃h(t + v2/2, x), where g̃h is solution to the “rotated593
fractional heat equation” (∂t +

√
−i(−∆x)1/4)g̃h(t, x) = 0. Thus we have asymptotic expansion on594

g̃h similar to (4.4) and (4.5).595
For t ≥ 0, h > 0 and <(ξ) > 0, we define ρt,h(ξ) = −t

√
−iξ. Thus, with any K > 0, and with596

X = [0, T + 1/2], Hypothesis 3.3 holds. Thus, with the notations of Hypothesis 3.3 and Eq. (3.3),597
we have for h small enough598

gh(t, x, v) = It+v2/2,h,1(x).599

Moreover, still with the notations of Hypothesis 3.3, we have for some C > 0 and for every 0 < h < 1,600
C−1h1/2 ≤ ε(h) ≤ Ch1/2.601

Thus, according to Proposition 3.5 (or more precisely Remark 3.6), there exist C, c > 0 such602
that for every h > 0 small enough, 0 ≤ t ≤ T , |x| small enough (say |x| < η′) and |v| < 1603

|gh(t, x, v)| ≥ ce−x
2/2h−Ch−1/2

.(5.4)604605
Moreover, assuming K large enough and choosing X = R+, according to Proposition 3.7 (see also
Remark 3.8), there exist C, c > 0 such that for every h > 0 small enough, |x| > η, t ≥ 0 and v ∈ R606

|gh(t, x, v)| ≤ C|x|−2e−c/h−c(t+v
2/2)h−1/2

,(5.5)607608
So, integrating these estimates, we have609

(5.6) |gh|L2([0,T ]×ω) ≤ Ce−c/h610

and611

(5.7) |gh(T, ·, ·)|L2(Ω) ≥ |gh(T, ·, ·)|L2(|x|<η′,|v|<1) ≥ ce−Ch
−1/2

.612

Taking again h→ 0 disproves the observability inequality and proves the Theorem.613

For the Kolmogorov equation with Ωx = T and Ωv = R, we define ghper(t, x, v) =
∑
k∈Z gh(t, x+614

2πk, v), and as in subsection 4.2, all but the term for k = 0 are O(e−c/h). We let the careful reader615
work out the details.616
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x0

−a

a

x

v

ω Figure 3. In green, the control domain
ω. If there is a vertical line, symmetrical with
respect to {v = 0}, that does not intersect ω̄
(in dark blue), for every a′ < a, there exists a
rectangle of the form {|x− x0| < b,−a′ < v <
a′} that does not intersect ω̄ (in lighter blue).

5.3. The Kolmogorov equation with non-rectangular control domain.617

Proof of Theorem 1.6 in the case Ωx = Ωv = R. If 0 < a′ < a, there exists b > 0 such that the618
rectangle R = {|x − x0| < b, |v| < a′} does not intersect ω (see Figure 3). Since the equation is619
invariant by translation in the x direction, we may assume without loss of generality that x0 = 0.620

We will use the same functions gh as in the previous proof. But while we used only the terms621
of order h−1 in the exponent of estimate of Proposition 3.5, we will now use the next term. More622
precisely, according to Proposition 3.5 with X = [0, T + a2/2] and ρt,h(ξ) = −t

√
−iξ, we have623

uniformly in |x| small enough, 0 ≤ t ≤ T and |v| < a:624

(5.8) gh(t, x, v) = It+v2/2,h,1(x) =
√

2πheφ(t,x,v)/h(1 +Oh(
√
h)
)

625

with626

(5.9) φ(t, x, v) = ixξ0 −
x2

2 −
√
−iξ0 − x

(
t+ v2

2

)
h1/2 +Oh(h).627

The idea is that, when computing
∫

Ω |gh(T, x, v)|2 dxdv, the dominant part of this integral is628
around x = v = 0, and when computing

∫
[0,T ]×ω |gh(t, x, v)|2 dt dx dv, the dominant part is around629

t = 0, x = x0 = 0 and v = a or −a. So, noting c0 = <(
√
−iξ0) > 0 and ignoring the error terms for630

the moment, we have631

(5.10)
∫

Ω
|gh(T, x, v)|2 dxdv ≈ 2πh

∫
|x|<ε
|v|<ε

e−x
2/h−c0(2T+v2)/

√
h dx dv ≈ Ch7/4e−2Tc0/

√
h632

and633
634

(5.11)∫
[0,T ]×ω

|gh(t, x, v)|2 dtdxdv ≈ 2πh
∫

|x|<ε
a<|v|<a+ε

t<ε

e−x
2/h−c0(2t+v2)/

√
h dtdxdv ≈ Ch5/2e−c0a

2/
√
h.635

636

So, if 2T < a2, the observability inequality cannot hold. Now, let us rigorously prove this. Let ε > 0637
and T = a′2/2− ε. We have <(

√
−iξ0 − x) = c0 +Ox(x). So, for x small enough, say, |x| < δξ0 , we638

have639

(5.12) c0 − ε ≤ <
(√
−iξ0 − x

)
≤ c0 + ε.640
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So, we have locally uniformly in |x| < δξ0 , t ≥ 0 and v ∈ R :641

(5.13) <(φ(t, x, v)) ≥ −x
2

2 − (c0 + ε)
(
t+ v2

2

)
h1/2 −Oh(h)642

and643

(5.14) <(φ(t, x, v)) ≤ −x
2

2 − (c0 − ε)
(
t+ v2

2

)
h1/2 +Oh(h).644

Now, let us get a lower bound for the left-hand side of the observability inequality (5.2). We645
have:646

|gh(T, ·, ·)|2L2(Ω) ≥ |gh(T, ·, ·)|2L2(|x|<b,|v|<a′)(5.15)647648

and thanks to the asymptotic of Eq. (5.8):649

|gh(T, ·, ·)|2L2(Ω) ≥ 2πh
∫
|x|<b
|v|<a′

e2<(φ(T,x,v))/h dxdv
(
1 +O(

√
h)
)

(5.16)650

651

and with the lower bound above (Eq. (5.13)):652

|gh(T, ·, ·)|2L2(Ω) ≥ 2πheOh(1)
∫
|x|<b
|v|<a′

e−x
2/h−(c0+ε)(2T+v2)/

√
h dxdv

(
1 +O(

√
h)
)
.(5.17)653

654

The integral in x is655

(5.18)
∫
|x|<b

e−x
2/h dx =

√
πh+O(e−c/h)656

while the integral in v is657

(5.19)
∫
|v|<a′

e−(c0+ε)v2/
√
h dv =

√
π

c0 + ε
h1/4 +O

(
e−c/

√
h
)
.658

So, we have659

|gh(T, ·, ·)|2L2(R2) ≥ c
2π2
√
c0 + ε

h7/4e−(c0+ε)2T/
√
h
(
1 +O(

√
h)
)

(5.20)660
661

and for h small enough:662

|gh(T, ·, ·)|2L2(Ω) ≥ ch
7/4e−(c0+ε)2T/

√
h.(5.21)663664

Now, let us bound the right-hand side of the observability inequality (5.2). Let us remind that665
ω is a subset of Ω \ {|x| < b, |v| < a′}. Let a′′ > a′, that will be chosen large enough afterwards. We666
define667

ω0 = {|x| < δξ0 , a
′ < |v| < a′′}(5.22)668

ω1 = {|x| ≥ δξ0}(5.23)669

ω2 = {|x| < δξ0 , |v| > a′′}.(5.24)670671
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With these definitions, if δξ0 < b, we have ω ⊂ ω0 ∪ ω1 ∪ ω2. So,672

(5.25) |gh|2L2([0,T ]×ω) ≤ |gh|
2
L2(|0,T ]×ω0) + |gh|2L2(|0,T ]×ω1) + |gh|2L2(|0,T ]×ω2)673

First, according to Proposition 3.9, we have for every t ≥ 0, v ∈ R and x ∈ R,674

(5.26) |gh(t, x, v)| ≤ Ce−c
′(t+v2/2)h−1/2

675

So, integrating this estimate, we have676

(5.27) |gh|2L2([0,T ]×ω2) = O
(∫
|v|≥a′′

e−c
′v2/
√
h dv

)
= O

(
e−c

′a′′2/
√
h
)
.677

We choose a′′ large enough so that c′a′′2 > (c0 − ε)a′2. That way, we have678

(5.28) |gh|2L2([0,T ]×ω2) = O
(
e−(c0−ε)a′2/

√
h
)
.679

We have already seen in subsection 5.2 that680

(5.29) |gh|2L2([0,T ]×ω1) = O(e−c/h).681

Finally, thanks to Eq. (5.8) with upper bound (5.14), we have uniformly in 0 ≤ t ≤ T , |x| < δξ0 and682
a′ < |v| < a′′683

(5.30) |gh(t, x, v)|2 ≤ 2πhe−x
2/h−(c0−ε)(2t+v2)/

√
h+Oh(1).684

So, we have685

(5.31) |gh|2L2([0,T ]×ω0) = O
(∫

a′<|v|<a′′
e−(c0−ε)v2/

√
h dv

)
= O

(
e−(c0−ε)a′2/

√
h
)
.686

So, putting the three upper bounds (5.28) (5.29) and (5.31) together, we have687

(5.32) |gh|2L2([0,T ]×ω) = O
(
e−(c0−ε)a′2/

√
h
)
.688

Let us assume that (c0 − ε)a′2 > 2T (c0 + ε). Then, considering the previous upper bound (5.32)689
and the lower bound (5.21), and taking h → 0 disproves the observability inequality. So, the690
Kolmogorov equation is not null-controllable in time T < c0−ε

c0+εa
′2/2. This is true for every a′ < a691

and ε > 0, so the Kolmogorov equation is not null-controllable in time T < a2/2.692

The case Ωx = T, Ωv = R is similar. We look at ghper(t, x, v) =
∑
k∈Z gh(t, x+ 2πk, v). In this693

sum, as in subsection 4.2, only the term for k = 0 matters, as the other are O(e−c/h).694

5.4. The Kolmogorov equation with bounded velocity. To treat the Kolomogorov equa-695
tion with Ωv = (−1, 1), we need some information on the first eigenfunction gξ of −∂2

v − iξv2 with696
Dirichlet boundary conditions on (−1, 1), and with associated eigenvalue λξ =

√
−iξ+ ρξ. Moreover,697

as we will use Theorems 3.5–3.9, we also need some analycity in ξ. We will denote g̃ξ̃ the first10698

10“First” in the sense that it is the analytic continuation in ξ̃ of the first eigenfunction of −∂2
v + (ξ̃v)2 for ξ̃ ∈ R+,

assuming it exists.
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eigenfunction of −∂2
v + (ξ̃v)2, and λ̃ξ̃ = ξ̃ + ρ̃ξ̃ the associated eigenvalue, so that, with ξ̃ =

√
−iξ, we699

have gξ = g̃ξ̃ and ρξ = ρ̃ξ̃, when this is defined.700

In an article on the Grushin equation [22, Section 4] we proved that ρ̃ξ̃ and g̃ξ̃ exist if <(ξ̃) > 0701

and |ξ̃| > r(|arg(ξ̃)|) for some non-decreasing function r : (0, π/2)→ R+. We also proved the next702
two theorems.703

Theorem 5.1 (Theorem 22 and Remark 23 of [22]). Let 0 < θ < π/2. With ρ̃ξ̃ defined above,704
we have705

ρ̃ξ̃ ∼
4√
π
ξ̃3/2e−ξ̃706

in the limit |ξ̃| → ∞, |arg(ξ̃)| < θ.707

Proposition 5.2 (Proposition 25 of [22]). Let g̃ξ̃ be defined above and normalized by g̃ξ̃(0) = 1708

(instead of |g̃ξ̃|L2 = 1). Let 0 < θ < π/2 and ε > 0. We have for all v ∈ (−1, 1) and |ξ̃| > r(θ),709

|arg(ξ̃)| < θ:710

|e(1−ε)ξ̃v2/2g̃ξ̃(v)| ≤ Cε,θ.711

Theorem 5.1 gives us all we need to know on the eigenvalue, while Proposition 5.2 gives us an712
upper bound on the eigenfunction. We will also need the following lower bound, that we prove in713
Appendix B.714

Proposition 5.3. Let 0 < θ < π/2 and ε > 0. We normalize g̃ξ̃ again by g̃ξ̃(0) = 1 and define715

ũξ̃(v) = eξ̃v
2/2g̃ξ̃(v). Then ũξ̃(v) converges exponentially fast to 1, as |ξ̃| → ∞, |arg(ξ̃)| < θ, this716

convergence being uniform in |v| < 1− ε.717

With this, we know all we need to adapt the proof of the non-null-controllability of the718
Kolmogorov equation with Ωv = R to the case of Ωv = (−1, 1).719

Proof of Theorem 1.5 with Ωv = (−1, 1). We start with the case Ωx = R.720

Step 1: construction of the counterexample to the observability inequality. The counterexample we721
build to the observability inequality (5.2) is basically the same as in the case Ωv = R, only with722
the added corrections to the eigenvalues and eigenfunctions. We define gh(t, x, v) for t ≥ 0, x ∈ R,723
v ∈ (−1, 1) and h > 0 small enough by:724

(5.33) gh(t, x, v) =
∫
R
χ(ξ − ξ0)e−ixξ/h−(ξ−ξ0)2/2h−λξ/htgξ/h(v) dξ,725

where ξ0 > 0 and χ ∈ C∞c (R) are chosen as follows.726
First note that according to the discussion at the top of this subsection, λξ and gξ are defined727

and holomorphic with respect to ξ ∈ C such that |arg(ξ)| < 3π/8 (for instance) and |ξ| large enough.728
Let then K > 0 be large enough so that for any ξ ∈ C := {<(ξ) > K, |=(ξ)| < K−1<(ξ)}, λξ and gξ729
are defined and holomorphic with respect to ξ ∈ C. Finally, let ξ0 > 0 and χ as in Hypothesis 3.3730
(see Figure 4). With these choices, gh is well-defined for 0 < h ≤ 1, t ≥ 0, x ∈ R and v ∈ (−1, 1).731

We remark that each function (t, x, v) 7→ e−ixξ−λξtgξ(v) is solution to the Kolmogorov equa-732
tion (5.1). So gh is solution of the Kolmogorov equation.733

Step 2: estimates on gh. Note that Theorem 5.1 and Propositions 5.2 and 5.3 (with the choice734
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C

arctan(1/K)K

√
−iC

Figure 4. Left figure: in red, shape of C for some K. Right figure: if ξ̃ is in the gray domain, the eigenvalue ρ̃ξ̃
and the eigenfunction g̃ξ̃ of −∂2

v + (ξ̃v)2 are defined. Thus, the eigenvalue λξ and eigenfunction gξ of −∂2
v + iξv2

are defined for ξ ∈ C if
√
−iC lies inside the gray domain.

ε = 1/2) translate respectively into the estimates:735

|e−tρξ − 1| ≤ Ce−c
√
|ξ| for ξ ∈ C and 0 ≤ t ≤ T(5.34)736

|e
√
−iξv2/4gξ(v)| ≤ C for ξ ∈ C and |v| < 1(5.35)737

|e
√
−iξv2/2gξ(v)− 1| ≤ Ce−c

√
|ξ| for ξ ∈ C and |v| < 1/2.(5.36)738739

for some C, c > 0.740

Step 2a: lower bound on gh. We want to write gh(t, x, v) in the form of Eq. (3.3). Let X = [0, T+1/2],741
and for t ∈ X, 0 < h ≤ 1 and ξ ∈ C, let ρt,h(ξ) = −t

√
−iξ. Finally, for 0 < h ≤ 1, t ≥ 0, v ∈ (−1, 1)742

and ξ ∈ C, let743

(5.37) δh,t,v(ξ) := e
√
−iξ/hv2/2gξ/h(v)e−tρξ/h .744

Then, according to the definition of gh (Eq. (5.33)),745

(5.38) gh(t, x, v) =
∫
R
χ(ξ − ξ0)e−ixξ/h−(ξ−ξ0)2/2h−

√
−iξ/h(t+v2/2)δh,t,v(ξ) dξ = It+v2/2,h,δ(x).746

Moreover, according to estimates Eq. (5.34) and (5.36), we have, for some C, c > 0:747

(5.39) |δh,t,v(ξ)− 1| ≤ Ce−ch
−1/2

for ξ ∈ C, |v| < 1/2 and 0 < h ≤ 1.748

So, according to Proposition 3.5, there exists C, c > 0 such that for every t ∈ [0, T ], |v| < 1/2, x749
small enough and h small enough,750

(5.40) |gh(t, x, v)| ≥ ce−x
2/2h−Ch−1/2

.751

Step 2b: upper bound on gh. The estimate (5.36) does not extend up to the boundary. Thus, we have752

to use the less precise upper bound (5.35). To this end, we define δ̃h,t,v(ξ) = e−
√
−iξ/hv2/2δh,t,v(ξ).753

Then, according to the definition of gh (Eq. (5.33)) and δ (Eq. (5.37)),754

(5.41) gh(t, x, v) =
∫
R
χ(ξ − ξ0)e−ixξ/h−(ξ−ξ0)2/2h−

√
−iξ/h(t+v2/4)δ̃h,t,v(ξ) dξ = It+v2/4,h,δ̃(x).755
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Moreover, according to estimates (5.34) and (5.35), there exist C, c > 0 such that756

(5.42) |δ̃h,t,v(ξ)| ≤ C for ξ ∈ C, |v| < 1 and 0 < h ≤ 1.757

So, according to Proposition 3.7, there exist C, c > 0 such that for every t ∈ [0, T ], |v| < 1,758
|x| > η (where we assume without loss of generality ω = {|x| > η} × (−1, 1)) and h small enough,759

(5.43) |gh(t, x, v)| ≤ C

|x|2
e−c/h.760

Step 3: conclusion. From this point on, the proof is the same as in subsection 5.2: integrating the761
estimates (5.40) and (5.43) proves that gh is a counterexample to the observability inequality (5.2)762
in the case Ω = R× (−1, 1) and ω = ωx × (−1, 1).763

In the case Ωx = T, we again look at the periodic version of gh, that is ghper(t, x, v) =764 ∑
k∈Z gh(t, x + 2πk, v). As in subsection 4.1 (and 5.2), ghper is a solution to the Kolmogorov765

equation, and it is a counterexample to the observability inequality.766

The proof of Theorem 1.6 in the case Ωv = (−1, 1) is similar to the case Ωv = R with the767
adaptation of the previous proof. Let us just sketch it.768

We choose a′ < a and b > 0 as in subsection 5.3. We consider the functions gh of the previous769
proof (Eq. (5.33)).770

We compute the next order in the estimate (5.40). With Proposition 3.5, we can prove that771
locally uniformly in v ∈ (−1, 1), |x| small enough and t > 0,772

(5.44) gh(t, x, v) =
√

2πheixξ0/h−x2/2h−
√
ξ0+ix(t+v2/2)/

√
h+Oh(1)

(
1 +O(

√
h)
)
.773

Also, thanks to Proposition 3.7, we prove that uniformly in |x| > b, t > 0 and v ∈ (−1, 1),774

(5.45) gh(t, x, v) = O(|x|−2e−c/h).775

We choose a′ < a′′ < 1 and we define ω0, ω1 and ω2 as in equations (5.22), (5.23) and (5.24) (the776
δξ0 is the same in the cases Ωv = (−1, 1) and Ωv = R).777

With the estimate (5.44), we can prove an estimate similar to the lower bound (5.21). We can778
also prove an upper bound similar to (5.31). With the estimate (5.45), we can prove an estimate779
similar to (5.29). And with the help of Proposition 5.2 to manage the terms for |v| > a′′, we can780
prove an upper bound similar to (5.28). The rest of the proof is a copy-paste.781

Appendix A. Other equations. In this appendix, we explain how we can use the method782
of section 4 to prove the lack of null-controllability for some other equations.783

A.1. Fractional Schrödinger equations. Let 0 ≤ α < 1. If we consider ρ(ξ) = iξα (defined784
e.g. for <(ξ) ≥ 0), the hypotheses of Theorem 1.4 hold. Thus, we have:785

Corollary A.1. Let 0 ≤ α < 1. Let T > 0 and ω be a strict open subset of R. The fractional786
Schrödinger equation (∂t + i(−∆)α/2)f(t, x) = 1ωu(t, x), t ≥ 0, x ∈ R is not null-controllable on ω787
in time T .788

Since i(−∆)α/2 generates a strongly-continuous group of bounded operators on L2(T), it seems likely789
that this corollary can be extended to any riemannian manifold (and not only Rd × Td).11 But this790

11The fact that i(−∆)α/2 generates a strongly continuous group also implies that null-controllability is equivalent
to exact-controllability [15, Th. 2.41].
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is outside the scope of this article. Also, we conjecture that the threshold α < 1 is optimal. Indeed,791
it seems that if ω satisfies the Geometric Control Condition of Bardos, Lebeau and Rauch [1], then792
the methods of [24] could be used to prove exact controllability in any time if α > 1 (see [19] for the793
case α ≥ 2) and with a minimal time if α = 1 (better known as “the half-wave equation”), but this794
is again outside the scope of this article. See also [10] for a variant of the fractional Schrödinger795
equation.796

A.2. Another Kolmogorov-type equation. Our method can also be used to prove that the797
Kolmogorov-type equation (∂t − ∂2

v + v∂x)f(t, x, v) = 1ωu(t, x, v) is not null-controllable on vertical798
bands (notice that is is Eq. (1.2) where we replaced v2 by v).799

Theorem A.2. Let Ω = (0,+∞)× Ωx, and Ωx = R or T. Let ωx be a strict open subset of Ωx800
and ω = ωx × (0,+∞), and let T > 0. Then the equation801

(A.1)
(∂t + v∂x − ∂2

v)f(t, x, v) = 1ωu(t, x, v) t ∈ [0, T ], (x, v) ∈ Ω
f(t, x, 0) = 0 t ∈ [0, T ], x ∈ Ωx
f(0, x, v) = f0(x, v) (x, v) ∈ Ω

802

is not null-controllable on ω in time T .803

Sketch of the proof. We consider Ai the standard Airy function (see for instance [30, Ch. 9]).804
Let −µ0 the first zero of Ai. We denote λ0 = eiπ/3µ0. For ξ > 0, let uξ : R → C defined805
by uξ(v) = Ai(ξ1/3e−iπ/6v − µ0). Using the ODE satisfied by Ai ([30, §9.2(i)]), we see that806
(−∂2

v − iξv)uξ = ξ2/3λ0uξ. Moreover, uξ(0) = 0, and according to the asymptotic expansion satisfied807
by Ai ([30, §9.7ii]), uξ decays exponentially at∞, as well as its derivatives. So uξ is an eigenfunction808
of −∂2

v − iξv on (0,+∞) with Dirichlet boundary condition at v = 0.809
Let ξ0 > 0 and χ ∈ C∞c (−ξ0, ξ0). For h > 0 we consider the function gh : R+×R× (0,+∞)→ C810

defined by811

(A.2)
gh(t, x, v) = h

∫
R+

χ(hξ − ξ0)e−(hξ−ξ0)2/2h+ixξ−tλ0ξ
2/3
uξ(v) dξ

=
∫
R+

χ(ξ − ξ0)e−(ξ−ξ0)2/2h+ixξ/h−tλ0ξ
2/3h−2/3

uξ/h(v) dξ.
812

Since uξ is an eigenfunction of −∂2
v−iξv, gh is solution to (∂t−v∂x−∂2

v)gh = 0. Moreover, using813
the asymptotic expansion of Ai [30, §9.7(ii)], we have uniformly in v > 1, in the limit |ξ| → +∞,814
|arg(ξ)| < π/2 (for instance)815

uξ(v) = exp
(
−2

3(e−iπ/6ξ1/3v − µ0)3/2
)
ũξ(v) with ũξ(v) = Cξ−1/12v−1/4(1 +O(ξ−1/2)).816

Thus, we can rewrite Eq. (A.2) as817

(A.3) gh(t, x, v) =
∫
R+

χ(ξ − ξ0)e−(ξ−ξ0)2/2h+ixξ/h+ρt,v,h(ξ/h)ũξ/h(v) dξ818

with819

ρt,v,h(ξ) = −tλ0ξ
2/3 − 2

3(e−iπ/6ξ1/3v − µ0)3/2.820
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Thus, gh(t, x, v) can be written in the form (3.3). Moreover, if we choose K > 0, then we can821
choose ξ0 > 0 and χ ∈ C∞c (R) such that Hypothesis 3.3 holds with X = {(t, v), 0 ≤ t ≤ T, 1 ≤ v ≤ 2}.822
Then, Proposition 3.5 can be used to prove the lower-bound823

|gh(t, x, v)| ≥ ce−x
2/2h−Ch−2/3

, t ∈ [0, T ], |x| small enough, v ∈ [1, 2].824

To get an upper-bound, we choose K large enough in Hypothesis 3.3 so that |ũξ(v)| ≤ C for825
some C > 0 and every ξ ∈ C and v ∈ (0,+∞). Then, with the choice X = [0, T ] × (0,+∞) in826
Hypothesis 3.3, the Proposition 3.7 can be used to prove the upper-bound827

|gh(t, x, v)| ≤ C

|x|2
e−c/h−cv

3/2
.828

As for the Kolmogorov equation (1.2), these two estimates prove that the observability inequality829
associated with the control problem (A.1) does not hold if Ωx = R. For the case Ωx = T, we830
periodize the solutions as in subsection 4.2.831

We refer to subsection 1.3.4 for references related to the equation (1.2). It seems Theorem A.2832
could be extended to the case Ω = Ωx×(a, b), as it is only a perturbation of the case Ω = Ωx×(0,+∞).833

A.3. Improved Boussinesq equation. Finally, we mention another equation whose null-834
controllability can be treated with our method.835

Proposition A.3. Let Ω = R or T. Let ω be a strict open subset of Ω and let T > 0. The836
equation837

(A.4) (∂2
t − ∂2

x − ∂2
x∂

2
t )f(t, x) = 1ωu(t, x), t ∈ [0, T ], x ∈ Ω838

is not null-controllable on ω in time T .839

This equation has been studied by Cerpa and Crépeau [14], where it is called «improved840
Boussinesq equation». They prove that, when posed on Ω = (0, 1), it is not null-controllable with841
boundary control at x = 1. They also prove that if Ω = T, it is is null-controllable with moving842
internal control on ω + ct12 if the speed c is large enough. But while their results suggest the843
improved Boussinesq equation is not null-controllable with (non-moving) internal control, they do844
not prove it. Here, we provide a proof of this fact.845

Sketch of the proof. Let ξ0 > 0 and χ ∈ C∞c to be chosen later. For ξ ∈ R we define λξ =846
ξ2(1 + ξ2)−1. For h > 0, we consider847

gh(t, x) = h

∫
R
χ(hξ − ξ0)e−(hξ−ξ0)2/2h+ixξ−it

√
λξ dξ.848

Elementary computations prove that gh is solution of (∂2
t − ∂2

x − ∂2
x∂

2
t )gh(t, x) = 0 (it is related to849

the fact that this equation can be rewritten as (∂2
t − (I − ∂2

x)−1∂2
x)gh(t, x) = 0, and to the spectral850

analysis of this operator, see [14]).851
With the notation of Eq. (3.3), gh(t, x) = It,h,1(x) with ρ independant of (t, h) defined by852

ρ(ξ) = it
√
λξ. We can choose K > 0, ξ0 > 0, and χ ∈ C∞c such that Hypothesis 3.3 holds with853

X = [0, T ].854
Then, with Proposition 3.5 and Proposition 3.7, we prove that (gh)h>0 is a counterexample to855

the observability inequality associated to the control problem (A.4) in the case Ω = R. In the case856
Ω = T, we periodize gh as in subsection 4.2.857

12In other words, the right-hand side is 1ω(x− ct)u(t, x) instead of 1ω(x)u(t, x).
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Appendix B. Precise estimation of the eigenfunctions. To prove Proposition 5.3, we858
will need the following theorem, which is a special case13 of Theorem 18 in [22].859

Theorem B.1. Let S be the space of holomorphic function on the domain Ω = {<(z) >860
1} with sub-exponential growth at infinity, i.e. γ ∈ S if and only if for all ε > 0, pε(γ) =861
sup<(z)>1 |γ(z)e−ε|z|| < +∞. We endow S with the seminorms family (pε)ε>0.862

Let γ in S and let Hγ be the operator on polynomials with a double root at zero, defined by:863

Hγ

(∑
n>1

anz
n

)
=
∑
n>1

γ(n)anzn.864

Let E be an bounded subset of C, star shaped with respect to 0. Let U be a neighborhood of Ē. Then865
there exists C > 0 such that for all polynomials f with a double root at 0:866

(B.1) |Hγ(f)|L∞(E) ≤ C|f |L∞(U).867

Moreover, the constant C above can be chosen continuously in γ ∈ S.868

Note that according to the estimate of the previous Theorem B.1, and assuming U is star-shaped869
with respect to 0, the operators Hγ extend by density to every holomorphic function14 on U (with a870
double zero at 0). So, we will apply this estimate (B.1) on entire functions (with a double zero at 0).871

Proof of Proposition 5.3. The proof is made by writing ũξ̃(v) as the power series ũξ̃(v) =872 ∑
ũξ̃,2nv

2n, and showing that the coefficients ũξ̃,n of this power series are of the form ũξ̃,2n =873

ρ̃ξ̃γξ̃(n)ξ̃n/n! for n ≥ 1, with ρ̃ξ̃ defined at the beginning of subsection 5.4, so that with the notation874
of Theorem B.1:875

(B.2) ũξ̃(v) = 1 + ρ̃ξ̃Hγξ̃
(eξ̃v

2
− 1)(v)876

Then, Theorem B.1 will allow us to conclude.877
Let us write ũξ̃(v) =

∑+∞
n=0 ũξ̃,nv

n. Since ũξ̃ satisfies the Cauchy problem −ũ′′
ξ̃

+2ξ̃vũ′
ξ̃
− ρ̃ξ̃ũξ̃ = 0878

with initial conditions15 ũξ̃(0) = 1, ũ′
ξ̃
(0) = 0, we have ũξ̃,0 = 1, ũξ̃,2n+1 = 0 and879

(B.3) ũξ̃,n+2 =
2nξ̃ − ρ̃ξ̃

(n+ 1)(n+ 2) ũξ̃,n880

so, by induction, for n ≥ 1881

(B.4) ũξ̃,2n = −
ρ̃ξ̃
2

(4ξ̃)n−1(n− 1)!
(2n)!

n−1∏
k=1

(
1−

ρ̃ξ̃

4ξ̃k

)
.882

So, by defining883

(B.5) γξ̃(n) = − 1
8ξ̃n
× 4n(n!)2

(2n)! ×
n−1∏
k=1

(
1−

ρ̃ξ̃

4ξ̃k

)
884

13In the reference, the Theorem is stated with an open (bounded star-shaped) domain U instead of a arbitrary
(bounded star-shaped) subset E of C, but we can set U = Eδ, and apply the Theorem as stated in the reference to
get |Hγ(f)|L∞(E) ≤ Cδ|f |L∞(E2δ).

14According to Runge’s theorem [31, Theorem 13.9], the polynomials are dense in the space of holomorphic
functions on U with the topology of the convergence on every compact.

15Here we use the fact that ũξ̃ is even when ξ̃ is real positive, which is well-known from Sturm-Liouville’s theory.
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we have ũξ̃,2n = ρ̃ξ̃γξ̃(n)ξ̃n/n!. So, ũξ̃(v) = 1 + ρ̃ξ̃
∑
n≥1 γξ̃(n) 1

n! (v
2ξ̃)n. Assuming that γξ̃ is in S,885

this is exactly the equation (B.2) we were claiming.886
Well, let us actually prove that γξ̃ is in the space S defined in Theorem B.1, i.e. that we can887

extend n 7→ γξ̃(n) to a holomorphic function on Ω = {<(z) > 1} with subexponential growth. This is888

obvious for the term −1/(8ξ̃n). The term 4n(n!)2/(2n)! can be extended to Ω with Euler’s Gamma889
function, and Stirling’s approximation gives us the subexponential growth (actually an equivalent in890 √
πz). The product term is a tiny bit more tricky to extend to non-integer values. We define it with891

the following formula, which is inspired by [29], and where we have set α = −ρ̃ξ̃/4ξ̃:892

(B.6) δξ̃(z) =
+∞∏
k=1

1 + α
k

1 + α
k+z−1

.893

This product converges if |α| < 1/2 and <(z) > 1. And if n is integer, δξ̃(n) is a telescopic894

product, and we have δξ̃(n) =
∏n−1
k=1

(
1 + α

k

)
. Moreover, δξ̃ is holomorphic on Ω. We also claim that895

there exists c, C > 0 such that if |α| < 1/2 and <(z) > 1, |δξ̃(z)| ≤ C|z|c. The proof of this claim is896
just a few basic computations, and we postpone it after the end of the proof at hand.897

Since α = ρ̃ξ̃/4ξ̃, according to Theorem 5.1, |α| < 1/2 as soon as |arg(ξ̃)| < θ and |ξ̃| is898

large enough, say |ξ̃| > M (depending on θ). Then, according to the claim, the term δξ̃(z) has899
subexponential growth in Ω, and since it is holomorphic, it is in S. Moreover, this estimate also900
proves that (δξ̃)|α|<1/2 is a bounded family of S.901

So (γξ̃) is a bounded family of S for |arg(ξ̃)| < θ and |ξ̃| > M . So, according to Theorem B.1902
and the following remark, for any neighborhood U of [−1 + ε, 1− ε] that is star-shaped with respect903
to 0, there exists C > 0 such that for all |ξ̃| > M with |arg(ξ̃)| < θ and for every v ∈ (−1 + ε, 1− ε):904

(B.7)
∣∣∣Hγξ̃

(eξ̃v
2
− 1)(v)

∣∣∣ ≤ C(1 + |eξ̃v
2
|L∞(U))905

and if we choose U to be small enough, we have |Hγξ̃
(eξ̃v2 − 1)(v)| ≤ C ′|e(1−δ)ξ̃|. Finally, thanks to906

equation (B.2) and Theorem 5.1, we have907

(B.8) |ũξ̃(v)− 1| ≤ Cδ|ξ̃|3/2|e−δξ̃|.908

Proof of the claim that |δξ̃(z)| ≤ C|z|c. We first write909

(B.9) δξ̃(z) = exp
(+∞∑
k=1

ln
(

1 + α

k

)
− ln

(
1 + α

k + z − 1

))
.910

Let us also remind that we assume |α| < 1/2 and <(z) > 1, so that for k ∈ N∗ |α/k| < 1/2 and911
|α/(k + z − 1)| < 1/2. We denote k0 = b|z|c, and we separate the sum into two parts:912

S≤k0 =
k0∑
k=1

ln
(

1 + α

k

)
− ln

(
1 + α

k + z − 1

)
S>k0 =

+∞∑
k=k0+1

ln
(

1 + α

k

)
− ln

(
1 + α

k + z − 1

)
913

About the part of a sum for k ≤ k0, we have thanks to the triangle inequality and the fact that914
for |x| < 1/2, |ln(1 + x)| ≤ c|x|:915

(B.10) |S≤k0 | ≤ 2c|α|
k0∑
k=1

1
k
≤ 2c|α|(ln(k0) + C ′) ≤ 2c|α|(ln(|z|) + C ′),916
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where we used the relation between the harmonic sum and the logarithm and the fact that k0 = b|z|c.917

About the rest of the sum, we have by writing ln(1 + b)− ln(1 + a) =
∫ b
a

dx
1+x ,918

(B.11) |S>k0 | ≤
+∞∑

k=k0+1

∣∣∣∣∣
∫ α/(k+z−1)

α/k

dx
1 + x

∣∣∣∣∣ ≤
+∞∑

k=k0+1
2
∣∣∣∣αk − α

k + z − 1

∣∣∣∣ ≤ 2|α(z − 1)|
+∞∑

k=k0+1

1
k2 ,919

where we used the fact that for x ∈ [αk ,
α

k+z−1 ], | 1
1+x | ≤ 2. By comparing this sum with an integral,920

(B.12) |S>k0 | ≤ 2|α(z − 1)|
∫ +∞

k0

dx
x2 ≤ 2|α| |z − 1|

k0
≤ C ′′|α|,921

where we again used that k0 = b|z|c. Summing the two inequalities (B.10) and (B.12), and plugging922
this into equation (B.9) proves the claim.923
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