Infinite families of inequivalent real circle actions on affine four-space
Sur des familles infinies d’actions non équivalentes du cercle réel sur l’espace affine de dimension 4
Résumé
The main result of this article is to construct infinite families of non-equivalent equivariant real forms of linear C*-actions on affine four-space. We consider the real form of $\mathbb{C}^*$ whose fixed point is a circle. In [F-MJ] one example of a non-linearizable circle action was constructed. Here, this result is generalized by developing a new approach which allows us to compare different real forms. The constructions of these forms are based on the structure of equivariant $\mathrm{O}_2(\mathbb{C})$-vector bundles.
Le résultat principal de cet article est de construire des familles infinies de formes réelles équivariantes, non équivalentes entre elles, d’actions linéaires de $\mathbb{C}^*$ sur l’espace affine de dimension 4. L’article [F-MJ] construisait un exemple d’action du cercle non linéarisable. Ici nous généralisons ce résultat en développant une nouvelle approche qui nous permet de comparer les différentes formes réelles. Les constructions de ces formes réelles s’appuient sur la structure de $\mathrm{O}_2(\mathbb{C})$-fibrés vectoriels équivariants.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...