Joint denoising and decompression using CNN regularization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Joint denoising and decompression using CNN regularization

Résumé

Wavelet compression schemes (such as JPEG2000) lead to very specific visual artifacts due to the quantization of noisy wavelet coefficients. They have highly spatialy-correlated structure that makes it difficult to be removed with standard denoising algorithms. In this work, we propose a joint denoising and decompression method that combines a data-fitting term which takes into account the quantization process and an implicit prior contained in a stateof-the-art denoising CNN.
Fichier principal
Vignette du fichier
main (2).pdf (1.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01825573 , version 1 (22-08-2019)

Identifiants

  • HAL Id : hal-01825573 , version 1

Citer

Mario González, Javier Preciozzi, Pablo Musé, Andrés Almansa. Joint denoising and decompression using CNN regularization. CVPR Workshop and Challenge on Learned Image Compression (CVPR 2018), IEEE/CVF, Jun 2018, Salt Lake City, UT, United States. ⟨hal-01825573⟩
97 Consultations
63 Téléchargements

Partager

More