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Abstract

Wavelet compression schemes (such as JPEG2000) lead
to very specific visual artifacts due to the quantization
of noisy wavelet coefficients. They have highly spatialy-
correlated structure that makes it difficult to be removed
with standard denoising algorithms. In this work, we pro-
pose a joint denoising and decompression method that com-
bines a data-fitting term which takes into account the quan-
tization process and an implicit prior contained in a state-
of-the-art denoising CNN.

1. Introduction

Transform coding image compression consists of apply-
ing a linear invertible transform that sparsifies the data (like
block-wise DCT for JPEG compression or a Wavelet Trans-
form in JPEG2000) followed by a quantization of the trans-
formed coefficients which are finally compressed by a loss-
less encoder. This family of compression schemes may
achieve very high compression ratios but may lose some
details in the quantization step. This lossy quantization is
also responsible for well-known artifacts that may appear in
the compressed image in the form of texture loss or Gibbs
effects near edges. Many solutions have been proposed in
the literature to remove some of these artifacts: many of
them are variational and involve the minimization of the to-
tal variation (to minimize ringing) among all images that
would lead to the observed quantized image [6, 3, 15].

However little attention has been paid in previous works
to the fact that the image to be compressed may contain
noise, and that noise may interact in subtle ways with the
compressor, producing new kinds of artifacts that we call
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outliers (see figure 1). Those artifacts cannot be removed
by the previously cited works which only aim at removing
compression artifacts but not noise or its complex interac-
tions with the compressor. However such artifacts are par-
ticularly annoying in the case of wavelet-based compres-
sors like JPEG2000 and the CCSDS recommendation [8],
which are extensively used to compress digital cinema and
high-resolution remote sensing images. More recently, joint
denoising and decompression procedures have been consid-
ered to remove both artifacts due to the compressor and its
interaction with noise. Such methods use either TV reg-
ularization or patch-based Gaussian models in combination
with relaxed versions of the quantization constraint, in order
to take the effects of noise into account [7, 12, 13]. However
the TV based approaches could only reliably remove iso-
lated outliers in relatively constant areas, and patch-based
approaches could only marginally improve the performance
of standard denoising techniques like non-local Bayes [10].

In this work we propose a novel method for joint denois-
ing and decompression. Our method uses a probabilistic
data-fitting term similar to [13] coupled with a CNN based
regularization which more closely captures natural image
statistics than previously proposed patch-based methods.
The proposed method is detailed in Section 3 after a short
modeling of our joint denoising and decompression prob-
lem in Section 2. The rest of the paper includes the numeri-
cal implementation details (Section 4) and our experimental
results (Section 5).

2. Modeling Noisy Compressed Coefficients

We assume that our image u is corrupted by additive
white Gaussian noise nu ∼ N(0, σ2I).1 The first step of
the CCSDS compression applies a wavelet transform W to
the noisy image. Hence the corresponding wavelet coeffi-

1 Even though sensors usually produce a mixture of additive and multi-
plicative noise [1, ch2], a variance stabilizing transform (which also com-
presses the dynamic range) is usually applied before compression, and the
image approximately follows our noise model after VST.
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Figure 1: Above: When the noise n(k) added to a coeffi-
cient w(k) changes its quantization interval, we get an out-
lier, and the noise may be amplified. Below: as q(k)/σ
varies, the noise is heterogeneous. So we use a better datafit
term than L2 norm.

cients are corrupted by Gaussian noise

n :=W (u+ nu)︸ ︷︷ ︸
wn

−W (u)︸ ︷︷ ︸
w

=Wnu ∼ N(0, σ2WWT ).

If the wavelet transform was orthogonal then WWT = I
and the nw would be white. Most compression algorithms
use, however, the CDF 9/7 biorthogonal wavelet trans-
form [5], but even in that case WWT ' I is a good ap-
proximation [2] since W is nearly orthogonal.

Each wavelet coefficient is then quantized by setting to 0
its m(k) least significant bits:

Q(wn(k)) := sign(wn(k))

⌊
|wn(k)|
2m(k)

⌋
2m(k)

The values of m(k) are chosen by the compression algo-
rithm to optimize the rate/distortion trade-off, and can be
recovered from the compressed image. From these values
we can recover the quantization intervals Q−1(wn(k)) =
[a(k), b(k)]2, as well as their centers Q−1(wn(k)). The
standard decoder yields

uqn :=W−1wqn =W−1Q−1Q︸ ︷︷ ︸
Q

(w + n).

As illustrated in Figure 2, wqn may be corrupted by out-
liers due to the interaction between n and the codec Q. To
understand why this occurs consider the situation depicted
in Figure 1. If there was no noise we would obtain the
quantized coefficients wq := Q(w). When the noise level
σ � q(k) is relatively small, the noisy quantized coeffi-
cient wqn := Q(w + n) is most often equal to wq , and

2 of length q(k) = 2m(k) except for the case Q(wn(k)) = 0 where
the quantization interval is of length q(k) = 2m(k)+1.

the quantizer has a denoising effect. However, occasionally
the noise may be large enough to change the quantization
interval. In that case quantization may amplify the noise
|nq| = |wqn − wq| > |wn − w| = |n|, and we get a visible
(wavelet shaped) artifact that we call an outlier. Outliers
are particularly annoying when they are isolated. When the
noise level σ & q(k) is similar to or larger than the quanti-
zation level then outliers occur everywhere and they appear
indistinguishable from white noise.

In the next section we propose a Bayesian approach
to estimate the original image u from its noisy, quantized
observation. The datafit term will be formulated in the
wavelets domain; this is the natural choice since quantiza-
tion is performed on this domain.

3. Proposed restoration method
3.1. Motivation via MAP estimation

The Maximum A Posteriori (MAP) estimation of the non-
degraded image u knowing its degraded version uqn is
stated as

û = argmax
u

p(u|uqn) = argmax
u

p(uqn|u)p(u) (1)

= argmin
u
− log(p(uqn|u))− log(p(u)), (2)

where û is the MAP estimator of u. Finding û amounts to
solve the optimization problem

û = argmin
u
D(u) + λR(u), (3)

where D(u) is a data-fitting term that depends on the for-
ward operator and the noise model, R is the regularization
(− log(prior)) to be used in the restoration, and λ > 0 is the
strength of the regularization.

3.2. Data fitting

Let w = Wu the coefficients of the original (unknown)
image, and wqn = Wuqn the wavelet coefficients of the
corrupted image. As stated before, the quantization in-
tervals of each of these coefficients can be retrieved as
[a(k), b(k)] = Q−1(wqn(k)) = Q

−1
(wqn(k)). Using this

notation, and given that the noise in the wavelet domain
is N(0, σ2I) (Section 2), the conditional probability of the
corrupted coefficients given the original ones is

p(wqn|w = ω) =
∏
k

p(wqn(k)|w(k) = ω(k)) (4)

=
∏
k

p(Q(ω(k) + n(k)) = wqn(k)) (5)

=
∏
k

p(ω(k) + n(k) ∈ [a(k), b(k)]) (6)

=
∏
k

p

(
n(k)

σ
∈
[
a(k)− ω(k)

σ
,
b(k)− ω(k)

σ

])
.

(7)



In the following we consider the log-likelihood function

D(ω) = − log p(wqn|w = ω) (8)

= −
∑
k

log

(
φ

(
b(k)− ω(k)

σ

)
− φ

(
a(k)− ω(k)

σ

))
,

(9)

where φ is the normal cumulative distribution function.
This data term in the wavelet domain carefully takes into ac-
count the quantization process of the coefficients. Although
this term is not quadratic as in most inverse problems, at
least it is convex and we have an analytic expression for its
gradient and its Hessian matrix [17].

3.3. Minimization with ADMM

Finally, problem (3) can be written as

min
w,u

D(w) + λR(u) s.a. W−1w = u

where W−1 is the inverse wavelet transform (synthesis).
The ADMM algorithm [4] becomes (subscripts indicate the
iteration number):
wk+1 = argmin

w
D(w) +

ρ

2
‖W−1w − uk +

1

ρ
yk‖2

uk+1 = argmin
u

λR(u) +
ρ

2
‖W−1wk+1 − u+

1

ρ
yk‖2

yk+1 = yk + ρ(W−1wk+1 − uk+1).
(10)

3.4. Regularizing by denoising

The second subproblem can be rewritten as

uk+1 = argmin
x

1

2(λ/ρ)

∥∥∥∥(W−1wk+1 +
1

ρ
yk)− u

∥∥∥∥2+R(u).
In terms of MAP estimation, this step can be seen as a Gaus-
sian denoising of W−1wk+1 + 1

ρyk with noise variance
σ2
G = λ/ρ. The solution can be computed using a good de-

noiser G as the proximal operator of an implicit prior R(u)
[11]:

uk+1 = G(W−1wk+1 +
1

ρ
yk, σ2

G = λ/ρ).

4. Numerical implementation
For the first subproblem in (10), let v = −uk + 1

ρyk,
then define F (w) := D(w) + ρ

2‖W
−1w + v‖2. The first

and second derivatives of F (w) are given by

∇F (w) = ∇D(w) + ρW−T (W−1w + v)

∇2F (w) = ∇2D(w) + ρW−TW−1.

As pointed out before, for the CDF9/7 the term WTW can
be fairly approximated by the identity matrix I , yielding

∇2F (w) ' ∇2D(w) + ρ I.

Now, sinceD(w) is separable in terms of the elementsw(k)
of w, it follows that∇2D(w) is a diagonal matrix. It is also
positive definite, since function D(w) is strictly convex3. It
follows that∇2F (w) is a diagonal, positive definite matrix,
and therefore the minimization of F (w) can be computed
very efficiently using a Newton method:

w0 =W−1uk

wj+1 = wj − αj(∇2F (wj))−1∇F (wj)
= wj − αj(∇2D(wj) + ρ I)−1

(∇D(wj) + ρWT (Wwj + v)).

Finally, the second subproblem in (10) can be computed by
means of a Gaussian denoiser, as described in Section 3.4.
We choose G to be the residual network of Zhang et al. [16],
which is state of the art in Gaussian denoising.

5. Results and Conclusions
Figure 2 presents the results on the Lena image. This

example clearly shows one of the major problems derived
from the compression of noisy images: the presence of
wavelet outlier coefficients introduces visual artifacts (com-
pare the second and third images on top). It is clear that a
Gaussian denoiser like [16] cannot completely remove all
the artifacts, which are still present in the scene.

We can distinguish two different regimes: in regions
where q � σ almost all coefficients contain wavelet out-
liers induced artifacts and the degradation is very close to
white noise. In this situation, which corresponds to the ex-
periment presented here, the performances of [16] and our
method are similar. However, when q � σ artifacts become
more isolated events, and the degradation deviates signifi-
cantly from white Gaussian noise. In this case, not shown
here, [16] cannot get its full potential, but our method per-
forms particularly well.

In Table 1 we present the quantitative analysis of the
method by comparing the PSNR, SSIM [14] and NLP [9]
obtained for the proposed method against WNLB and [16].

Even though [16] exhibits slightly better objective qual-
ity measures, a visual inspection of the results in Figure 2
reveals that the proposed method removes more outliers
while preserving more image detail. Previous state of the
art method WNLB is clearly far behind both in terms of vi-
sual quality and objective measures.

3It can be shown that when σ � q, or when the w(k) are far from
its interval bounds, the inversion of∇2D(w) is ill-conditioned. However,
the matrix to be inverted is∇2F (w), a regularized version of∇2D(w).



Figure 2: Top: original (St.Michel), zoomed region, compressed with noise (σ = 4, BPP = 2). Below: results from WNLB,
denoiser [16] only, and our method. Dynamic range on zoomed image was saturated for better visualization.

Image PSNR SSIM NLP
Corrupted 35.92 0.8320 5.28
WNLB 36.67 0.8537 30.70
[16] 39.59 0.9169 6.39
Ours 39.52 0.9241 2.95

Table 1: Results. For PSNR and SSIM, higher is better. For
NLP, lower is better.
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