On the support of solutions of stochastic differential equations with path-dependent coefficients - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

On the support of solutions of stochastic differential equations with path-dependent coefficients

Résumé

Given a stochastic differential equation with path-dependent coefficients driven by a multidimensional Wiener process, we show that the topological support in Holder norm of the law of the solution is given by the image of the Cameron-Martin space under the flow of the solutions of a system of path-dependent (ordinary) differential equations. Our result extends the Stroock-Varadhan support theorem for diffusion processes to the case of SDEs with path-dependent coefficients. The proof is based on the Functional Ito calculus and interpolation estimates in Holder norm.
Fichier principal
Vignette du fichier
SupportTheorem.pdf (538.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01820593 , version 1 (21-06-2018)
hal-01820593 , version 2 (23-06-2018)

Identifiants

  • HAL Id : hal-01820593 , version 2

Citer

Rama Cont, Alexander Kalinin. On the support of solutions of stochastic differential equations with path-dependent coefficients. 2018. ⟨hal-01820593v2⟩
369 Consultations
832 Téléchargements

Partager

More