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Abstract

Given a stochastic differential equation with path-dependent coef-
ficients driven by a multidimensional Wiener process, we show that
the support of the law of the solution is given by the image of the
Cameron-Martin space under the flow of the solutions of a system of
path-dependent (ordinary) differential equations. Our result extends
the Stroock-Varadhan support theorem for diffusion processes to the
case of SDEs with path-dependent coefficients. The proof is based on
the Functional Ito calculus.
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1 Overview

1.1 Support theorems for stochastic differential equa-
tions

A stochastic process may be viewed as a random variable taking values in
a space of paths; the (topological) support of this random variable then
describes the (closure of) the set of possible sample paths and provides insight
into the structure of sample paths of the process. The nature of the support
has been investigated for various classes of stochastic processes, with a focus
on stochastic differential equations, under different function space topologies.

For diffusion processes, the support under the uniform norm was first
described by Stroock and Varadhan [20,21], a result known as the ‘Stroock-
Varadhan support theorem’ An extension to unbounded coefficients was
given by Gyongy [14]. The support of more general Wiener functionals and
extensions to SDEs in Hilbert space are discussed in Aida et al [2] and [1].
These results were extended to the Holder topology by Ben Arous et al. [5]
and, using different techniques, by Millet and Sanz-Solé [16] ; Bally et al
[4] use similar methods to derive a support theorem in Hélder norms for
parabolic SPDEs. Support theorems in p-variation topology are discussed
by Ledoux et al [15] using rough path techniques. Support theorems in
Hoélder and p-variation topologies are discussed in [13]. Pakkanen [18] gives
conditions for a stochastic integral ito have full support.

In this work, we extend some of these results to stochastic differential
equations with path-dependent coefficients. Let (2, F, (F)icio.1), P) be a fil-
tered probability space on which there is a standard d-dimensional (7)o,
Brownian motion W. Consider the following stochastic differential equation

dX, = b(t, X') dt + o(t, X')dW, for t € [r,T], (1.1)

whose coefficients b : [r,T] x S — R™ and o : [r,T] x S — R™*< are non-
anticipative i.e. b(t, X),o(t, X) depend on the path X' = X (¢ A .) of the
solution up to t. Under Lipschitz conditions on the coefficients b, o, this
SDE has a unique solution X [17,19] whose sample paths lie in some Holder
space C*([0,T],R™). Our main result is a description of the support of the
solution in the Holder topology: we show that the support of the law of the
solution is given by the image of the Cameron-Martin space H' under the
flow associated with a system of functional differential equations.



1.2 Statement of main result

Let T > r > 0 and d,m € N. To keep notations simple, we denote by |- | the
absolute value function, the Euclidean norm in R¢ and R™ and the Frobenius
norm in R™*¢. Denote by

S := ([0, T],R™) (1.2)

the space of continuous R™-valued maps on [0, 7| equipped with the supre-
mum norm || - || and by C([0, 7], R™) the space of # € S that are a-Holder-
continuous on [r,T] for a € (0, 1], endowed with the ‘delayed Holder norm’

folls = el 4 sup D=0
s,t€[r,T]: s#t ’S t|
We set C3([0,T],R™) := S and || - ||o := || - || by convention. Then, under
the assumptions stated below, (1.1)) admits a unique strong solution whose
sample paths lie in Hélder space C*([0,T],R™) for all « € [0,1/2).
We denote H}([0, 7], R™) the space of absolutely continuous functions on
[r, T] whose derivative h is square-integrable with respect to the Lebesgue
measure. We equip this space with the norm

|zl = |z]| + (/TT,¢<S)|2ds>1/2_ (1.4)

Then H!([0,T],R™) C C}2([0,T],R™) and every x € H!([0,T],R™) satisfies
el o < llalis

Using the concepts of horizontal and vertical differentiability for non-
anticipative functionals [7,|12], we introduce in Section regularity as-
sumptions on the coefficient ¢ € CY2([r, T) x S, R™*?) and consider the map
p:[r,T) xS — R™ given coordinatewise by

(1.3)

d
pe(t,z) == 0yop,(t, x)o(t, x)ey, (1.5)

=1
where {ey,...,eq} is the canonical basis of R? and 9,04 : [r,T) x S — R*™

denotes the vertical derivative [6,/12] of the (k,[)-coordinate function of o for
any k€ {1,...,m}and [l € {1,...,d}. Note that p = 0,0 -0 form =d = 1.

In this context, the support of the unique strong solution to may be
characterized by studying the following path-dependent ordinary differential
equation driven by an element h € H} ([0, T],R%):

in(t) = (b— (1/2)p)(t,2t) + o(t,al) h(t) forte[r,T].  (1.6)

Our main result may be stated as follows:
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Theorem 1 (Support theorem for path-dependent SDEs).

Let & € C([0,T],R™) and o € CY2([r,T) x S,R™*%) with horizontal (resp.
vertical) derivative denoted by 0,0 (resp. 0,0). Assume o and 0,0 are
bounded and there are constants ¢,n,\ > 0 and r € [0,1) such that

b(t, )| < c(1+ [[=][%), [b(t, z) = b(t,y)| < Allz —yll,
|at0-k,l(tul')| + |ax:v0-k,l( ’ )| S C(]- + ”‘THU)v
| <

t,x
|0(Sv y) - O'(t, {L‘)| + |8wgk,l(87 y) - axo-k,l(ta {L') )‘(|S - t|1/2 + ||,ys - xtH)

forall s,t € [r,T), v,y €S, ke{l,...,m} andl € {1,...,d}. Then:

(i) There is a unique strong solution X to (1.1|) satisfying X, = &(s) for all
s € [0,r] a.s. Further, E[||X[|?.] < oo forallp>1 and o € [0,1/2).

(i) For any h € H([0,T],R?) there is a unique mild solution xj, to 50
that z1,(s) = 2(s) for all s € [0,r] and we have x;, € H([0,T],R™). In
addition, the map H!([0,T],RY) — H([0,T],R™), h + x, is Lipschitz
continuous on bounded sets.

(iii) For each a € [0,1/2), the support of the image measure Po X' in the
delayed Holder space CX([0,T],R™) is the closure of the set of all mild
solutions xy, to (1.6), where h € H([0,T],RY). That is,

supp(P o X~V) = {an [h € HL([0,T],RD} in C([0,T],R™). (1.7)

This result extends previous results [2,5,/16,20] on the support of diffusion
processes to the case of path-dependent coefficients. In the diffusion case, we
retrieve the results of [5,|16] under weaker assumptions on o.

Our proof adapts the approach used by Millet and Sanz-Solé [16] to the
path-dependent case, using the tools of Functional Ito calculus [6,/12]. We
construct Holder-continuous approximations of the solution using an adapted
linear interpolation of Brownian motion and show that this approximation
converges in probability to the solution in Holder norm. A key ingredient
is the use of functional estimates derived in [3] using the Functional Ito
calculus, combined with interpolation error estimates in Holder norm for
stochastic processes.

Outline. The remainder of the paper is devoted to the proof of Theorem
Support Theorem. Section [2| discusses the various building blocks of the
proof. Section recalls some functional calculus concepts from [6] and
establishes several results useful in our setting. Section [2.2] gives conditions
for existence and uniqueness of a (mild) solution to the path-dependent ODE
; Section [2.3|gives conditions for the existence of a unique strong solution
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to ; Section dicusses the interpolation method used to characterize
the support in Holder topologies.

Section |3| discusses Holder spaces for stochastic processes and the notion
of convergence in probability in Holder norm in more depth. Section [3.2
derives a variation on the Kolmogorov-Chentsov theorem with an estimate
for the Holder norm (Lemma and an improved version of a statement
from [16] (Proposition[14). Section [3.4]discusses adapted linear interpolation
of Brownian motion, improving some results from [16]. Section [4] uses these
ingredients to prove the existence and uniqueness of mild solutions to path-
dependent ODEs (Sec. and SDEs (Sec. . Finally, Sectioncombines
these ingredients to give a proof of the main result.

2 Preliminaries

We shall denote I; the d x d identity matrix; for a matrix A we denote by
A’ its transpose.

2.1 Non-anticipative functional calculus

Let D([0,T],R™) denote the Banach space of all R™-valued cadlag maps on
[0, T'] equipped with the supremum norm || - || and recall the following notions
from [6,8]. A functional F : [r,T] x D([0,T],R™) — R is non-anticipative if

F(t,z) = F(t, ")

for all t € [r,T] and = € D([0,T],R™), where x' is path x stopped at time t:
z'(s) = z(s A t) for each s € [0,T]. F is called boundedness-preserving if for
each n € N there is ¢, > 0 such that

[E(t x)] < cn

for every t € [r,T] and z € D([0,T],R™) satisfying ||z|| < n. In other words,
F' is ought to be bounded on bounded sets. We notice that the following
pseudometric on [r, 7] x D([0,T],R™) given by

doo((t,2), (5,9)) = |t = 5|/ + [|l2" — | (2.1)

is complete and if F'is d..-continuous, then it is non-anticipative. As observed
in [10], Lipschitz continuity with respect to d., allows for a Holder smoothness
of degree 1/2 in the time variable.



Let us recall the definitions of the horizontal and vertical derivative. A
functional F': [r,T) x D([0,T],R™) — R is called horizontally differentiable
if for each t € [r, T') and = € D([0,T],R™), the function

0,7 —t) =R, hw F(t+h,z")

is differentiable at 0. In this case, its derivative there, will be denoted by
0. F(t,x). We say that F' is vertically differentiable if for all ¢t € [r,T) and
x € D([0,T],R™), the function

R™ — R, hHF(t,CL’-ﬁ-hﬂ[t,T])

is differentiable at 0. In this case, its derivative there will be represented by
O, F(t,z). We call F partially vertically differentiable if for all k € {1, ... ,m},
t €[r,T) and x € D(]0,T],R™), the function

R—R, hw F(t,z+ hélyn)

is differentiable at 0, where {é;,...,é,} is the canonical basis of R™. In
this case, its derivative there will be denoted by 0,,F(t,z). By calculus, if
I is vertically differentiable, then it is partially vertically differentiable and
O F = 0y, F, ..., 0, F).

F is twice vertically differentiable if it is vertically differentiable and the
same holds for 9, F. In this case, we set 0., F := 0,(0,F) and

Oy F i= 05, (05, F)  for all k,l € {1,...,m}.

It follows from Schwarz’s Lemma that if F' is twice vertically differentiable
and 0., F' is do-continuous, then 0,,F is symmetric: O, 4 F = Oy, F' for
each k,l € {1,...,m}.

A functional G : [r,T) x D([0,T],R™) — R is said to be of class C"? if
it is once horizontally and twice vertically differentiable such that G itself
and the derivatives 0;,G, 0,G and 0,,G are boundedness-preserving and d-
continuous. By

CY2([r,T) x S) (2.2)
we denote the space of functionals F : [r,T) x S — R™*4 that admit an
extension G : [r,T) x D([0,T],R™) — R of class C"? where S is given
by (1.2). Then it follows from |6, Theorem 5.4.1] that

OF = 0,G, O0.,F:=09,G and 0, F :=0,,G on[r,T)xS

are independent of the choice of the extension G. Note that allows us
to use the functional It6 formula [9] in the proof of Proposition , which
gives one of the main arguments to establish . To conclude, we write
C([r,T) x S,R™*4) for the linear space of all maps F : [r,T) x S — R™*4
satisfying Fy; € C([r,T) x S) for each k € {1,...,m} and l € {1,...,d}.
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2.2 Mild solutions to path-dependent ODEs

We show in this section a unique mild solution to the ODE (|1.6), which
belongs to the delayed Cameron-Martin space H!([0,T],R™). To this end,
let us consider the general path-dependent ordinary differential equation

i(t) = F(t,2") forte|r,T), (2.3)

where F: [r,T] x S — R™ denotes a non-anticipative product measurable
map. Then for each h € H!([0,T], R%) the choice F = b—(1/2)p+ ch, where
p is given by , yields the support characterizing ODE (]1.6]).

As for z € S the map [r, T] — R™, ¢t — F(t,2") may fail to be continuous,
one may in general not expect to derive classical solutions. So, we recall the
concept of a mild solution to , which is a path x € S satisfying

/TT |F(s,2%)|ds < oo and z(t) = z(r) + /:F(s,xs)ds

for all t € [r, T]. By definition, a mild solution z is absolutely continuous on
[r,T] and it becomes a classical solution if and only if the Borel measurable
map [r,T] - R™, s — F(s,2°) is continuous.

Let us introduce the following regularity conditions, which are satisfied
under the assumptions of Theorem [I] for the choice of F' mentioned before.

(O.i) There exists a measurable function cp : [r,T] — [0,00) satisfying
I ep(s)?ds < oo and

Pt < co)(1+ Jell + [ la(o)]as)

for all ¢ € [r,T) and = € S that is absolutely continuous on [r, T'.

(0.ii) For each n € N there is a measurable function Ag,, : [r,T] — [0, c0)
such that [7 \p,(s)%ds < oo and

|F(t,2) = F(t,y)| < Apn(®)[|z = yllas
forall t € [r,T) and x,y € H}([0,T],R™) so that ||z|| g, V ||yl z, < n.

Under the above growth condition and Lipschitz smoothness on bounded
sets, we obtain a unique mild solution that can be approximated by a Picard
iteration in the delayed Cameron-Martin norm || - ||z, given by (1.4).



Proposition 2. Let (O.]) and (O.ii) hold and & € C([0,T],R™), then the
ODFE (2.3) admits a unique mild solution yp satisfying

yr(s) = &(s) forall s €[0,r]
and it holds that yr € H!([0,T],R™). Moreover, the sequence (x,)nen, in
HM[0,T],R™), recursively defined via xo(t) := Z(r At) and

Tpi1(t) == xo(t) + /:Vt F(s,z})ds (2.4)

for alln € Ny, converges in the delayed Cameron-Martin norm |- || g, to yp.

2.3 Strong solutions for path-dependent SDEs

We turn to the derivation of a unique strong solution to (|L.1)), for which
a.e. path lies in C([0, 7], R™) for any « € [0,1/2). We consider the stochas-
tic differential equation with path-dependent coefficients

dX; = B(t,X")dt + X(t, X")dW, fort e [r,T], (2.5)

where B : [r, T]xS — R™and X : [r, T] x S — R™*? are two non-anticipative
product measurable maps.

A strong solution to (2.5)) is an (% )¢cjo,r-adapted right-continuous pro-
cess X : [0,T] x Q — R™ with a.s. continuous paths satisfying

T T
/ ]B(S,Xs)]ds—i—/ |X(s, X*)|*ds < 0o a.s. and

¢ ¢
X=X, + [ Bls, X*)ds+ [ S(s,X°)dW, forallt € [r,T) as.

Remark 3. The fact that we do not have to assume the usual conditions is
clarified in Section [3.1) and irrespective how B(s,y) and (s, y) are extended
for s € [r,T] and any right-continuous map y : [0,7] — R™ that is not
continuous, the above integrals remain unchanged up to indistinguishability.

We now state the assumptions on the coefficients, valid in the setting of
Theorem [I] for the choice B =0 and ¥ = 0.

(S.i) There are a measurable function cg : [r,T] — [0,00) and a constant
s, > 0 such that [T cp(s)?ds < oo and for all (t,z) € [r,T) x S,

|B(t, x)| < cp(t)(1+[lz]) and  [X(f,2)] < ex(1+ [|l])-



(S.ii) There are o € [0,1/2), a measurable function Ap : [r,T] — [0, 00) and
a constant Ay > 0 such that [’ Ag(s)?ds < oo and

|B(t,x) = B(t,y)| < As()]| = yllagr,
2(t2) =2 y)| < Aslle = yllao.r

forall t € [r,T) and z,y € C°([0,T],R™), where || - ||a,.r equals || - ||
if ag = 0 and otherwise is given by (1.3) when « is replaced by .

Remark 4. If condition (S.ii) holds, then it is also true if oy is replaced by

any « € (ap, 1/2). Thus, it is strongest in the case that ay = 0.

For p > 1 and a € [0,1] we let €2 ([0,T],R™) denote the space of all
(Z+)1ejo,r-adapted right-continuous processes X : [0, 7] x  — R™ satisfying
E[[| X%, ,] < oo, equipped with the intrinsic seminorm

62,0, TLR™) = [0,00), X > (E[Ix112,]) ", (2.6)

which is complete, by Proposition . Moreover, if a sequence (,X)pen in
this linear space converges with respect to the above seminorm, then it also
converges in the delayed Holder norm || - |4, in probability. Finally, we set

©oo([0,T),R™) 1= M,>162,([0, 7], R™) and let
M2 ([0, T],R™)

denote the intersection of the spaces € ([0, T],R™) over all p > 1 and a €
[0,1/2), which yields a completely pseudometrizable topological space.

Proposition 5. Assume (S.1)-(S.i) and let X e C~ ([0, T],R™). Then up to
indistinguishability there is a unique strong solution X to (2.5)) such that

X, =X, forallsel0,r] as.
we have that X € ‘é},ég_([o, T|,R™). Furthermore, the sequence (,X )nen, in
‘KT{Q*([O,T],R’”), recursively given by o X; := Xon and

rVi Vi
w1 Xe = oXo+ [ Bls,aX)ds+ [ S(s. X)W, (27)

for all n € Ny, converges in the seminorm (2.6) to X for each p > 2 and
a €1[0,1/2). In particular, limyroo P(||n X — X||ar > ¢€) =0 for all e > 0.

Remark 6. Pathwise uniqueness is shown in Lemma [30] requiring only the
following Lipschitz condition on bounded sets, which follows from (S.ii) in
the strongest case ag = 0:
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(S.iii) For each n € N there is a measurable function A, : [r,T] — [0, 00)
satisfying [7 \,(s)?ds < oo and

[B(t,x) = B(t,y)| + [%(t, 2) = X(t,y)| < Au(t)]|z = y]]

for all t € [r,T] and z,y € S with ||z| V |ly]| < n.

2.4 Characterization of the support in Holder topol-
ogy

Sections [2.2] and [2.3] provide the main arguments to prove the first two as-
sertions of Theorem [l Let us now describe how we shall characterize the
support (L.7). For n € N let T,, be a partition of [r,T] that we write in the
form

Tn = {to’n, e 7tkn,n}

for some k, € N and tg,,...,tk,n € [r,T] so that r =1tg, < -+ <tp,n=T
and we denote its mesh by |T,| = maxicqo,.. k,—1} (tit1,n — tin). We assume

that lim,jo |T,| = 0 and that the sequence of partitions is well-balanced in
the sense of [11], that is, there is ey > 1 such that

IT,| <ecr . inf  (tip1n —tin) foralln eN. (2.8)
1€

Moreover, for n € N we define an (%;),c(o,r1-adapted right-continuous process
W [0,T] x Q — R? by setting ,,W; := Wy for t € [0,¢1,,),

W, — W,

Wy =W, + (t —tin) fim bim1m (2.9)

i—1,n
Livin —tin

for t € [tin,tiv1n) with ¢ € {1,...,k, — 1} and ,Wp = Wi, .- Then
2W can be regarded as adapted linear interpolation of the d-dimensional
(Z+t)tepo,m-Brownian motion W on [r, T'| and almost each of its paths belongs
to H([0,T],RY).

Thus, let us suppose that the assumptions and the first two claims of
Theorem [1| hold. To establish supp(P o X~ 1) C {z}, |h € H([0,T],R%)} in
C(0,T),R™) for o € [0,1/2), we will justify in Section that it suffices
to check that

liTm P(|lz,w — X|lar =€) =0 forall e > 0. (2.10)

By definition of a mild solution to ({2.3]), we see for each n € N that x_ is
a strong solution to the degenerate path-dependent SDE

dnYy = (b= (1/2)p)(t,nY") + o(t, V") W,) dt for t € [r, T]

11



with initial condition ,Y” = 2" a.s. For each h € H!([0,T],R%) and n € N,
we introduce an a.s. continuous local martingale ,,Z : [0,7] x 2 — (0, c0)
by requiring that 5, 2" =1 a.s. and

¢ . 1/t . .
wnZs = eXp (/ h(s) — oWy dW, — 5/ lin(s) — nWS|2ds> (2.11)

for all t € [r,T] a.s. In fact, 5,2 is a martingale, as clarified in Lemma
Hence, P,, : # — [0,1] given by P, ,(A) := E[,,Zrla] is a probability
measure equivalent to P. By using this fact, we will show that the converse
inclusion in follows once we have proven that

liTm Prn(| X — 2pllar =€) =0 foralle > 0. (2.12)

By Girsanov’s theorem, the process ,,W : [0,7] x Q — R? defined via
oW = Wy — [ h(s) — ,Wsds is a d-dimensional (F1)tepo,r-Brownian
motion under P, and X is a strong solution to the path-dependent SDE

dnYy = (b(t, ") + o(t, V) (h(t) = W) dt + (8, 0V ") dpu Wi (2.13)

for t € [r,T] under P, with initial condition ,Y" = 2" a.s. Hence, to
prove and at the same time, we consider the following general
framework.

Namely, we let B : [r,T] x S — R™ and By : [r,T] x S — R™*? be two
non-anticipative product measurable maps and B € CY2([r,T) x S, R™*%),
Then for each n € N we introduce the path-dependent SDE

dYs = (B(t, oY) + Bu(t, Y )h(t) + B(t, oY), W) dt

(2.14)
+ (¢, Y dW; fort e [r,T),

where X : [r,T] x S — R™*? is a non-anticipative product measurable map,
as considered in Section 2.3} In addition, we introduce the path-dependent
SDE

dZ, = ((B+ R)(t, ") + Bu(t, Zh(t)) dt + (B + X)(t, Z') dW, ~ (2.15)

for t € [r,T], where we require the non-anticipative product measurable map
R:[r,T) x S — R™ given coordinatewise by

Rk(57 y) = Z axgk,l(& y)(<1/2)§ + 2)(37 y)el~ (216)
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In Theorem [§ below, we in particular show that whenever ,Y and Z are
strong solutions to (2.14]) and (2.15)), respectively, such that , Y™ = Z7 = 27
a.s. for each n € N, then

liTm P(|Y = Z|lay >¢)=0 forall e >0. (2.17)

Then the choice B = b — (1/2)p, By = 0, B = 0 and ¥ = 0 yields (2.10),
since R = (1/2)p in this case. Moreover, by choosing B = b, By = o,
B = —0 and ¥ = o instead, (2.12)) follows. Since these are the two desired
results, we consider the following regularity conditions:

(C.i) B € CY*([r,T) x S,R™?) and there are ¢,n > 0 and x € [0,1) such
that for all (¢,z) € [r,T) x S, |B(t,z)| + |Bu(t,z)| < c(1+ ||z]|"),

m d 1/2
|0, B(t, z) H—(ZZ 022 Bra(t, )| ) <ec(1+||z)|"),

m d 1/2
ta:\+<ZZ|aBkltx > +|2(t, )] <.
1

(C.ii) B is Lipschitz continuous in x € S, uniformly in¢ € [r,T), and By, B,
0, B and ¥ are Lipschitz continuous with respect to d, given by (2.1)).

(C.iii) There is a measurable function b : [r, T] — R so that [ |b(s)|?> ds < oo
and B(s,y) = X(s,y)b(s) for all (s,y) € [r,T) x S.

Remark 7. Condition (|C.iii] allows us to perform a change of measures to
get a unique strong solution to . However, when deriving (|2 in

Sections u - 2land |5 - 5.3 we merely assume that . and - hold

Theorem 8. Let (C.i)- - hold and h € H!([0,T],R?). Assume that
X € €([0,T),R™) and (, X )nen is a sequence in Gao([0, T],R™) satisfying

SEIN)E{HTLXTHQP} < oo for each p>1.

Then the following three assertions hold:

(i) For any n € N there is a unique strong solution ,,Y" to 4)) satisfying
WYT = X" a.s. Moreover, sup, ey E[||n Y{|#.] < oo for allp > 1 and
a€[0,1/2).

(ii) There is a unique strong solution Z to [2.15) such that Z" = X" a.s. and
we have E[||Z||2,] < oo for allp > 1 and a € [0,1/2).
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(iii) Let a € [0,1/2) and limpoe E[[|n X" — X7||?]/|Tn|?* = 0, then it follows
that
lim E{ max }|nY;m — th’n|2}/|’]rn|2a — 0. (2.18)

ntoo 7€{0,....kn

In particular, (2.17) holds, that is, (,Y )nen converges in the delayed
Hélder norm || - ||ar in probability to Z.

3 Convergence in probability in Holder norm

3.1 Holder spaces for stochastic processes

For a € [0,1] let €*([0,7],R™) denote the linear space of all R™-valued
adapted right-continuous processes X satisfying X € C([0,T],R™) a.s.,
endowed with the pseudometric

([0, T], R™) x 67([0, T, R™) = [0, 00),

(X,Y) = E[|X = Yllar Al]. (3.1)

We notice that a sequence (, X )nen in this pseudometric space converges to
some X € €2([0,T],R™) if and only if it converges to this process in the
delayed Holder norm || - ||, in probability. Put differently, (||, X — X ||as)nen
converges to zero in probability. Further, (,,X),en is Cauchy if and only if it
is Cauchy in the norm || - ||, in probability in the sense that

lim sup P(|[pX —kX|lar =€) =0 foralle>0.

kfoo pen: n>k
Next, we set €([0, T],R™) := €°([0,T],R™), which is the linear space of all
R™-valued adapted right-continuous a.s. continuous processes. Despite the
fact that we do not assume the usual conditions, (|0, T], R™) is complete,
which yields the following result.

Lemma 9. €([0, T],R™) endowed with the metric (3.1]) is complete.

Proof. Let (,,X)nen be a Cauchy sequence in €*(]0, T, R™). By 4.3.3 Lemma
in [21], there is X € %([0,7],R™) to which (,X )nen converges uniformly in
probability. For given €, > 0 there is ng € N such that

P( [ Xs = X) = (uXe = X0 g> )

sup >
s,te[r,T): s#t |S - t|a 2

N3

for all k,n € N with k An > ng. We fix [ € N and set §; := (7" —r)/l, then
there exists k; € N such that k; > ng and P(||p, X — X|| > (¢/4)6) < n/2.
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Hence,

X, — X)) — (X, — X
P( sup I( ) — (o Xi — X3)| >€> “
s.t€lrT): [s—t]25, s — ¢

for all n € N with n > ng. By the continuity of measures, (|[,X — X||ar)nen
converges in probability to zero. In particular, || X||,, < oo a.s. O

For p > 1 we recall that €,2,([0,7],R™) denotes the space of all pro-
cesses X € €([0,T],R™) satisfying E[[|X||%,] < oo, endowed with the
seminorm (2.6). A sequence (,X)en in this space is called p-fold uniformly
integrable if (||, X||a.r)nen satisfies this property in the usual sense.

Lemma 10. Any sequence (,X)nen in €,2,([0,T],R™) that is Cauchy with
respect to the seminorm (2.6|) is p-fold uniformly integrable.

Proof. Let ¢ > 0, then there is ng € N so that E[|[;, X —,X||% ] < /27 for all

.....

is p-fold integrable, we obtain that

sup ([0 X 12, 14]) " < (BY7La)M7 + £7/2

a’
neN

for all A € #. First, by choosing A = €, this gives sup, .y [l X|5,] < oc.
Secondly, by setting ¢ := /27, it follows that sup, ¢y E[[|n X5, 14] < € for
all A € Z with E[Y?1,] < 4. O

We conclude with the following convergence characterization.

Proposition 11. A sequence (,X)nen in 6,25,([0,T],R™) converges in the
seminorm (2.6) if and only if it is p-fold uniformly integrable and there is
X € €%([0, T],R™) such that

liTm P(|[nX — X||ayr =€) =0 foralle>D0.

In the latter case, we have E[||X|? ] < co and limuo E[||, X — X5,] = 0.
Moreover, €,(10,T],R™) equipped with (2.6) is complete.

Proof. By Lemmas [0 and [10} it suffices to show the if-direction of the first
claim. To this end, let (v,),en be a strictly increasing sequence in N such
that (]|, X — X||ar)nen converges to zero a.s., then

E[IX2,] < timint B[, X[%,] < sup B[LX]E,] < oo.
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by Fatou’s Lemma. Now let ¢ > 0, then there exist § > 0 and ng € N such
that sup,cy E[|[n X%, 14] < (¢/3)P for each A € F with P(A) < ¢ and
P(|[nX — X||a.r > ¢/3) <6 for all n € N with n > ng. Thus,

(E[lnx = X12.)"" < (B[lnX = X2, T gxxpo,sem]) +e/3 < e

for every such n € N, since similar reasoning as above gives E[[| X||? . 14]
< sup,ey B[|[n X |5, 14] for all A € #. This completes the proof. O

3.2 A general Kolmogorov-Chentsov estimate

In this section we revisit the proof of the Kolmogorov-Chentsov Theorem to
allow for processes that are merely right-continuous and to obtain a quanti-
tative estimate of the Holder norm. Let

k - 2q+2p(2q/(2p)—a _ 1)—2p (3.2)

a,q,p

for p > 1/2, ¢ > 0 and o € (0,¢/(2p)) and note that limatg)(ap) kaqp = 00
Then we have the following result.

Proposition 12. Let 5 be a set of R™-valued right-continuous processes
and s,t € [r,T] be such that s < t. Asume that there are co > 0, p > 1/2
and q > 0 such that

sup E[\Uu — Uv|2p} < colu — |t (3.3)
Uern

for all u,v € [s,t]. Then for each o € (0,q/(2p)) it holds that

2p
U, —U,
sup B l( sup H)
Ues#t w,vE|s,t]: uFv ’u - U’a

Proof. For given n € Ny let D,, be the n-th dyadic partition of [s,¢], whose
points are d;,, := s +1i27"(t — s), where i € {0,...,2"}. We define

< ko gpColt — s)Hq_ZO‘p.

A, ={(u,v) €Dy, XDy | |Ju—v| <27 — )},

then it is readily seen that there are 2™ tuples (u,v) € A, satisfying u < v.
For fixed U €  we set V,, 1= sup, e, |Uu — Uy, then (3.3) gives

EVZl< > E[U.- U] <27t —5)" (34)

(u,0)EAR:u<v
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We now set D := U,,cn, Dn and let u,v € D satisfy 0 < v —u < 27"(t — )
for some n € Ny. Then for each k € Ny there are unique i, jr € {1,...,2*}
such that d;, 1, < u < d,, », and

djo—1 <v<dj forv<t and dj, =1t forv=t,

respectively. Since (d;, x)ren, and (dj, x)ren, are two decreasing sequences
converging to u and v, respectively, two telescoping sums yield that
o0 oo
U,—-U, = Udm’n - Ud].n’n + Z Udik+17k+1 - Udik,k + Z Udjk+1,k+1 Udgk L
k=n k=n
We note that either i,, = j, or instead n > 1, j, > 2 and 7, = 7, — 1,

as 0 < v —u < 27"(t — s). In both cases, (di, n,dj,n) € A,. Moreover,
(dig s i,y o41) s (djy s djyo s 1) € Agy for all k& € Ny, by construction. So,

Uy = Uyl <V +2) Vi1 <2) Vi (3.5)
k=n k=n

Next, pick u,v € D such that 0 < v —u < t — s, then there is a unique
n € Ny such that 2771 (t —s) <v—u < 27"(t — s). By (3.5),

(v —u)"U, — Uy < 2"t —s)7* Y 27%Y,
k=n

because 29" < 2% for all k € Ny with & > n. Clearly, u,v € D satisfy
v—u=t-—sif and only if u = s and v = ¢. In this case, |Us — Uy|/(t — s)“
< (t — $)~*Zy. Thus, we have shown that

sup U = U <2t — )TN 2%, (3.6)

u,vE|[s,t]: uFv |’LL - U|a k=0

as D is a countable dense set in [s, t] containing ¢ and U is right-continuous.
Hence, (3.6, the triangle inequality, monotone convergence and (3.4)) yield
that

1
E sup ———— <2 — D)
( l(u,’ue[s,t]:u#fu |U - U|a Z ( [ })
< 21+aC§% (t . S)T;—oc Z 2(04—21)k
k=0

w‘,_.

The power series on the right-hand side converges absolutely to the inverse of
1 —2079/() since a < ¢/(2p). For this reason, the proposition follows. [

17



3.3 Convergence along a sequence of partitions

In this section, we state a sufficient criterion for a sequence of processes to
converge in probability in the delayed Holder norm || - ||, where a € [0, 1].
For this purpose, we require the following estimate.

Lemma 13. Let T be a partition of [r,T] of the form T = {to,... tx} for
some k € N and ty,... ty € [r,T]| such thatr =tqg < --- <ty =T. Then

jz(s) — 2 (1) |2 (u) — z(v)]

sup  —————— < 2  max sup -
s,te[r,T): s#t |S - t| Jj€{0,....k—1} wWE [t ,tj 1] uFtv |u - U|

. (1) — (1)
ije{0,k}izi |t — t;]@
for each map z : [r,T] — R™.

Proof. First, assume that 4,5 € {0,...,k — 1} are such that i < j — 1 and
s € (ti, tiy1), then

[2(s) —2(t)] _ e(s) —2(tiva)| | |2(tirn) — 2(4)]
[s—tl* T s =t i1 — 5]

)

because |s —t| > |s —t;11| V|tix1 —t;|. Now suppose that i,5 € {0,...,k—1}
satisfy i < j, s € (t;,ti11) and t € (t;,¢,41). In this case,

j2(s) —2(@)] _ |2(s) —x(tin)| | Jolti) —xt)] | |2(t) —2()]
s —tl* T s —tipal]® [tiys — t;]° |ty —tl>

since |s —t| > |s — t;11| V |tix1 — t;| V [t; — t|. Now the assertion follows. [
This yields the before mentioned criterion.

Proposition 14. Let (,U)nen be a sequence of R™-valued right-continuous
processes and assume there are p,q > 0 so that for each 5 € (0,q/(2p)) there
is cg > 0 satisfying

P( max sup Inlu = nla| > /\> < g\ (3.7)

J€{0,....kn—1} UVE [ noti41,n] |U’ - ,U|5

for alln € N and X > 0. If (|[,U"||)nen and (maxjco... .} [nUt; . |/|Tn|®)nen
converge in probability to zero, then so does the sequence (||,U||ar)nen for all

a € 1[0,q/(2p)).
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Proof. Let n € N and fix 5 € (a,q/(2p)), then it follows that

’nUt - nUt ’
Ull < max su S S Gl LN Ly Y [ max U,.
||n || - je{ov"'vk"ﬂfl} tE(tj,nvth)'Fl,n) |t - t]7n|B | n| je{ornzkn*l} |n t.71”|’

since [, U] < ([nUr =0y, |/ 1t=50]°) Tul? + |00y, | for all j € {0,... k,—1}
and ¢ € (tjn,tj+1.,). Consequently, from (3.7) we obtain that

P(l.U[l > ) < es(2/2)| T[> + P(_max .Uy, | > £/2)

7€{0,...kn}

for all € > 0, which directly entails that (||,U||)nen converges in probability
to zero. Next, for fixed n € N Lemma [13| gives us that

’nUs - nUt’ |nUu — nUv‘
sup — <2 max sup In-u n~-ul
s,te[r,T): s#t ‘8 — t’a 7€{0,....kn—1} U0E[Lj i1 ] U ’u _ Ula
|7LUti,n - TLUtj7n|

.. maX . .
1,5€{0,....kn }: 1] ’tz,n - tj,n|a

By using the facts that |u —v|?~* <|T,|°~* and |t;,, — t; | > |T,|/cr for all
i,j €{0,... k,} with ¢ # j and u,v € [tj,, tj11,0], We see that

nUs _nU —
P< sup InUs = nUi| > 5) < cg(4/e)?P|T, |2

s,t€r,T): s#t ’S - t‘a

(26, g WO 2 o)

for any € > 0. As the terms on the right-hand side converge to zero as n 1 co,
the assertion is shown. O

Remark 15. If p > 1/2 and there is ¢ > 0 such that E[|,U, — ,U,|*]
< colu — v|** for all n € N and w,v € [r,T], then Proposition (12| and
Chebyshev’s inequality assure that condition (3.7)) is satisfied.

3.4 Adapted linear interpolation of Brownian motion

We study the sequence (,W),en of adapted linear interpolations of W given
by and for which a.e. path lies in H}([0,7],R?). To this end, we
introduce the following notation. For given n € N and t € [r,T), let
i€{0,...,k, — 1} be such that ¢t € [t;, ti+1.,), then we set

tn = t(i—l)VO,na tn = ti,n and En = ti-l—l,n- (38)
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That is, t,, is the predecessor of t,, with respect to T,,, unless i = 0, and ¢,
is the successor of ¢,. We also set T',, :=ty,_,,, T, :==T and T, :=T. In
addition, we use the following abbreviations:

Ati,n = (tz,n - ti—l,n) and AWti,n = Wti,n - VVti_l’" (39)

for each i € {1,...,k, — 1}. After these preparations, let us begin with a
general integral representation.

Lemma 16. Let n € N and s,t € [r,T] be such that s < t. Then each
R™*4_yalued progressively measurable square-integrable process Y satisfies

/ Y, d,W, = ——5 / Y, dW, a.s.,
s " Ati+1,n ti—1,n

whenever i € {1,... k, — 1} is such that s,t € [t;n,tit1.,], and

t t — S ti,n
[ Ve, dawu = S0 [Ty, aw,
s tivin Jticim

ti—1n t— t]n tjn
+ / Y, dW, + - / Y, dW, a.s.,
tin Atj+1,n ti—1,n
ifi,j €{1,... . ky =1} satisfy i < j, s € [tin, lit1,n] and L € [tjn,tj110]. In
particular, for all j € {1,... k,} we have

tin ti—1n
[ Y W= [ Yo W s

Proof. As ,W, = 0 for each u € [r,t;,], the second claim follows from the
first, by choosing s =t;, and t =¢;,, for j € {1,...,k,}.

To check the first claim, suppose initially that s,t € [t;,, tit1.n] for some
ie{l,....k, — 1}, then

t—s t—s
}/%i—l,nAWti,n =

ti,n
/ Y, dW, as.

t
/s - Ati—i—l,n ti—1,n

ANZERY

Now assume instead that there are i,5 € {1,...,k, — 1} such that ¢ < j,
s € [tin,tit1n) and ¢ € [tjn,tj41,,]. Then the a.s. decomposition

j—1

t tit1,n tht1,n t
[ Y W= [Ty daWa s Y Yo, dWat [ Yy daW,
s - s - h=i+1 th,n B tjn B
and the case considered above imply the asserted representation. O
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Let us recall that for each p > 1 there is a constant w, > 0 depending
only on p such that for every R™*?-valued progressively measurable process

Y it holds that
<w,, K/ |Y\2du> ] (M)

for all s,t € [r,T] with s < t. In fact, w, = 2°p*/(p — 1/2)P and the
dimensions m and d do not alter w,. We derive a corresponding result for
the sequence (,W),en of adapted linear interpolations of .

E[ sup

vE[s,t]

Proposition 17. For each p > 1 there is a constant W, > 0 such that every
R™*?_yalued progressively measurable process Y satisfies
2p
E [ sup

vE[s,t]

/de

< 1, max E[|Y;,, 7|t - sy (3.10)

JE{0,. kn} tj n€ls,, L]

for each n € N and s,t € [r,T| with s < t.

Proof. First, if t < ty,, then [[Y, d,W, = 0 for each v € [s,] a.s. For
s <ti,andt > 1, we have
/ Y, dW,= [ Y, dW, forallve [t 1] as.
s - t1,n - ’
Thus, let us use Lemma [16] and assume that s, € [t;,,t41.,] for some
ief{l,... k,— 1}, then (M) yields that
2p‘|

2p 2
t—s)P
]:<>El
(
where cr is the constant appearing in (2.8). Next, suppose that there are

Yy, duWoy
/ Atﬂ_l’n)zp
i,j € {1,...,k, — 1} such that i < j, s € [tin, tit1,n] and t € [tjn, tjt1n0]-

ti,n
/ Y, dw,

ti—1,n

E[ sup

vE(s,t]

< wpGE||Y, 7]t - s),

Then
tivin — S /t"v"
max — u
vE[s,t] Ativin [Jtiiin "
th,n t— tjn tjn
max. Y, dW,|+ - tn / Y, dW,| as.
hG{Z-{-l,.‘.,j—l} Atj+1,n i—1,n

This is due to Lemma , which asserts that the process [s,t] x Q@ — R™,
(v,w) = [J Y, (w)d,W,(w) is piecewise linear. Hence, we obtain that

2p
E / Y, dV,| | < E[lv, 1|t — sy
lvi?s%] =Y he{i%??fj—l} [| th’n‘ } ( S)
for 0, := 3%~ tw,d;, which yields the claim. O
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Lemma 18. For each p,q > 1 there exists a constant w,, > 0 satisfying

E[(/t ]an|qdu>p

for all s,t € [r,T] with s <t andn € N.

< Ay o| T ~®/2(t — 5)P (3.11)

Proof. Clearly, if t <t ,, then IN |an|qdu =0. For s <t1, and t > t;,, we
have

t . t .
/ ]an|qdu:/ W7 du.
S tl,n

So, let now s,t € [tin,tit1,] for some i € {1,...,k, — 1} and Z be an
Ré-valued random vector such that Z ~ N(0,1,), then

t . p . \ap/2
B ([ Wibndran) | = Bfizie] S5 s < e - oy,

where W, , := E[|Z|?]c¢f’ and cr is the constant in (2.8). Next, let instead
i,j€{l,...,k, — 1} be such that i < j, s € [tin, tiv1n] and t € [, tj41.0)-

Then
t P\ U/p J At 1\ Up
(< (L) )< (e[ (L ) ]
s h—i sVtp n

< w;(;’|'1[‘n|_Q/2(t —3),

by what we have just shown. Therefore, the claim holds. O]

3.5 Auxiliary convergence results

Lemma 19. Let (,U)nen be a sequence of non-negative measurable processes
for which there are p > 1 and ¢, > 0 such that E[,U¥*] < ¢,|T,|* for each
s € [r,T) and n € N. Then there is ¢y > 0 satisfying

T . 2
EK/ nUS\nWS\ds>

Proof. Let ¢ > 1 be such that 1/p+1/¢ = 1, then Lemma [18| gives a constant
Wq,2 > 0 that is independent of n such that

(o)

< |T,| for alln € N.

< Wy o| T T = 1)1
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Thus, we define ¢;1 := o /q(T —7r)and ¢ := czl)/p(T —1)cy, then it follows
from Cauchy—Schwarz s and Holder’s inequalities that

B[ U|nW|ds> <(#|([ U?ds)b e T < T,

Lemma 20. Let n € N and for every right-continuous map x : [0, T] — R™
set L,(z)(t) == x(r At) for allt € [0,t1,),

O

$(tz,n) — x(ti—l,n)

L (2)(t) := 2(tic1n) + (t = tin) Atitin

fort € [tin, tit, n) wz’thi € {1 —1} and L ( )(T) = 2(tk,—1.n). Then

,,,,,

| L (z) — || <2 max sup |:L‘t(8) — x(ti—1)von)|

jE{O ..... knfl}:tj,ngt Se[tj,nvtj-l»l,n}
for each t € [t1,,T).

Proof. Fix s € [t1,,t] and let i € {1,...,k, — 1} be so that s € [t; ., tit1.4)s
then |L,(x)(s)| < |x(tic1n)| V |2(tin)], since L, is linear on [t; ,, tis1,]. In
addition, we immediately obtain that

Lo (x)(s) = x(s)| < |2(s) = 2(tioan)| + [2(tin) = (tiz1n)]

<2 sup |2'(v) —x(tii.)]

VE[ti n,tit1,n)
and the assertions follow. O

Lemma 21. Let (,U),en denote a sequence of R™-valued right-continuous
processes for which there are co > 0, p > 1/2 and q > 0 such that

E[aUs = nUi[*?] < cols —t['*
for alln € N and s,t € [r,T]. Then for every a € [0,q/(2p)),

liTm E[HnU - Ln(nU)||2p}/|Tn‘2ap = 0.
Proof. Fix 8 € (a,q/(2p)). From Lemma [20] we obtain that

nUs - nU
U — Lo(U)] < 29T, [0 sup U= nli
s,te[r,T]: s#t ‘3 - t’ﬁ
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for every n € N. Consequently, Proposition [I2] implies that the constant
cg 1= 22HPPLg co(T — 1)t H9-2PP satisfies

E[lnU = La(GU)[”] < | To[*™ forall n € N,

where kg, is given by (3.2) when « is replaced by 3. Now the claim follows,
since a < f3. O

Lemma 22. Let G : [r,T] x S — R™ be du-Lipschitz continuous, (,U)nen
be a sequence in € ([0,T],R™) and ¢y > 0 be such that |G(t,z)| < co(1+||z|)
and

E[[lLUN?] + E[llU* = U] /s — | < co(1 + E[.U"]1%])

for alln € N, s;t € [r,T| with s # t and x € S. Then there is ¢; > 0
satisfying for each n € N,
21

tjn As
Sy " _1
/T G (8, nU )< 5 > ds

< a|T.|(1+ E[.07]7)).

E[ max
j€{0,....kn}

Proof. We assume that E[||,U"||?] < oo, as otherwise there is nothing to
show. By decomposing the integral, we can rewrite that
t",n AS t'*l,n
/ 7 Gl =) " ds = / T G5, nU) ds
T T

Sn

for each j € {1,...,k,}. Thus, let A > 0 be a Lipschitz constant for G, then
7

< c11|Thl (1 + E[HnUTHZD

ti—1,n
/ 7 G5mnU) — Gs,, nU) ds

JE{L,kn}

with ¢ 1 := 2 (T — r)?(1 + ¢o). In addition, we estimate that

2
El max
Je{1,....kn}

[* Glspat) s

tji-1,n

< C2,2|Tn|2(]- + E|:HTLUTH2:|)7
where cy9 1= 2¢2(1 4 ¢g). So, the constant ¢; := 2(c1 1 + ¢12(T — 1)) yields
the claim. O

Proposition 23. Let G : [r,T] x S — R™*¢ be d-Lipschitz continuous and
(nU)nen be a sequence in €([0,T],R™). Suppose there are ¢y > 0 and p > 1
such that |G(t,x)| < co(1+ ||z]|) and
E[|lnU* = uU")1”]

|s — t|P -

E[[.U]*] + o

24



for each n € N, s;t € [r,T| such that s # t and x € S. Then for every
a€[0,1/2—1/(2p)),

2

] 0

Proof. We fix n € N and once again decompose the integral to get that

tin
liTm |']I‘n|_2°‘E[ ~ max / G (8, nU) d(, W5 — W)
ntoo j r

tj»” tj—l,n
/ G(8p, nU) d, Wy :/ G(8p, nU™) dW;  a.s.
for all j € {1,...,k,}. Let A > 0 denote a Lipschitz constant for G, then
21
T
<2002 [ (50— 5,) + E[lhU = U= 2] ds < 1| T, |

r

ti—1,n
[ GlonnU™) = Glsy, U dW,

§€{0,....kn }

with ¢; = 2w A2(T —r)(1+¢/?), where wy is the constant satisfying for
p = 1. Next, we let ,M € €(]0,T],R™) be a square-integrable martingale
satisfying

t
th :/ G(§nan§n)dWs

for all ¢ € [, T] a.s., then , M, — My, = [, G(s,,nU) dW; as. for
each j € {1,...,k,}. Furthermore,

Bl[nM, — o M|*] < 27w, (t— 5)P(1+ B[|l.U)*]) < ot — 5)7

for all s,¢t € [r,T] with s < t, where ¢y 1= 2% lw,ci? (1 + ¢o). Thus, let
B € (a,1/2—1/(2p)), then it follows from Proposition [12| that

2p
nMs - nM B

since p > 1, by assumption. Finally, we set cg 1= (kg ,_1,c2)/P(T — r)1=2,

then
2

E[ max < Cﬁ’Tn‘ZHa

je{l 7777 kn}

tjyn
/ G(s,, nU) dW,
t

j—1,n

by Holder’s inequality, and the assertion follows. O]
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4 Path-dependent ODEs and SDEs: proofs

In this section, we give the proof for

e the existence and uniqueness of mild solutions to path-dependent ODEs
in Section 2.2 and

e the existence and uniqueness of strong solutions to path-dependent
SDEs in Section 2.3

4.1 Proof of Proposition

We first derive a global estimate for any mild solution. This allows us to
use ([O.ii), the Lipschitz condition on bounded sets, to derive existence and
uniqueness results.

Lemma 24. Under (0O.i)), there is cy > 0 depending only on T —r such that
any mild solution x to the ODE (2.3)) satisfies for allt € [r,T],

t t
[y < cner B (s [fentoras).

Proof. By estimating ||zt|| + [* |#(s)| ds for given ¢ € [r, T), it follows readily
from Gronwall’s inequality that

t t t
e —1—/ |z(s)|ds < ). cF(S)dS(HﬂH + 2/ cr(s) ds).

Moreover, for ¢; := 2*(T —r + 1) we have

2
t s
oy <20+ o [ ente2 (1 0+ [ etwlan) s @2

Thus, we set ¢y = 2¢e2cy, then from 2 [' cp(s)ds < 1+ (T — 1) [fcp(s)?ds
we infer that

t 2 ¢ t
(uxtu+ / rab(s)\ds) < cxpecn fLer ds(uxruu / cF<s>2ds).

The claim follows from (4.2)), the fundamental theorem of calculus for Riemann-
Stieltjes integrals and the transitivity of absolutely continuous measures. [

We now show uniqueness of mild solutions, which implies uniqueness for
classical solutions.
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Lemma 25. Assume that (0.i) and (0O.iil) hold, then any two mild solutions
x and y to the ODE (2.3)) that satisfy " = y" must coincide.

Proof. By Lemma[24] there is n € N such that |||z, V ||yllz, < n. Thus,

t
o' =y, < 2T = +1) [ Ab()lle® = vl ds
for all t € [r,T]. Gronwall’s inequality implies that z = y. O]

Proof of Proposition[3. As the uniqueness claim follows from Lemma we
directly turn to the existence assertion. To this end, let J# be the set of
all z € H([0,T],R™) satisfying x(s) = 2(s) for every s € [0,r] and the
estimate , where ¢y is chosen largely enough so that

cy > 28T —r+1)% (4.3)

By Lemma , amap x € S is a mild solution to the ODE ([2.3) such that
x(s) = &(s) for all s € [0,r] if and only if z € . and it is a fixed-point of
the operator W : 2 — H!([0,T],R™) given by

U(y)(t) := zo(t) + /TTW F(s,y®)ds.

We remark that condition (4.3 assures that ¥ maps ¢ into itself. Indeed,
this follows by inserting (4.1]) into the inequality

t
19 (@) N7, < carllwoll” + CH/T cr(s) (L + [|l2°[1%,.) ds,

valid for all x € 5 and t € [r,T]. As zq € S and x, = ¥(x, 1) for each

n € N, by definition (2.4), we now know that (x,)nen, is a sequence in J7.
Next, let us choose | € N satisfying ||z||g, < [ for all x € J# and set
c1:=2(T —r+1). Then we obtain that

t
le(@) = e ) I, < er [ Arls)lle” =yl ds

for each z,y € J and t € [r,T], which in particular shows that ¥ must be
|| - || mr.»-Lipschitz continuous. Moreover, it follows inductively that

2 ( g "
oo = 2t < 2 (e [ Amaas)

for every n € Ny, where we have set § := ||V (zo) — 20|z, Hence, the triangle
inequality gives us that

n=1 /9 1/2 T i/2
||'Tn - ZEk”H,r <9 Z (2') <C1 / )\FJ(S)Q dS)
i=k : r
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for all k,n € Ny with £ < n. Now the ratio test yields that the series
>2,(1/d1)Y/22%/2 converges absolutely for all z > 0. Hence, we have shown
that limypeo SUP,en: psi [|Zn — Tkl = 0.

As J is closed with respect to the complete norm || - || g, there exists a
unique map yp € # such that lim,y |2, —yr| g = 0. Lipschitz continuity
of ¥ implies limyto0 ||Zn4+1 — VY (yr)| g = 0. For this reason, yp = ¥(yr) and
the proposition is proven. O

4.2 Proof of Proposition

Lemma 26. Let X be an R"™-valued adapted right-continuous process and
B C R™ be closed, then

7:=inf{t € [0,T]|{X,]|s € [0,t]} N B # 0}

is a stopping time satisfying T = inf{t € [0,T]| X; € B} on {X € S}.

Proof. First, we check that {7 < t} = {{Xs|s € [0,t]} N B # 0} for fixed
t € [0,T]. To this end, it suffices to show that if ¢t < T and w € Q satisfies
7(w) = ¢, then {X,(w)|s € [0,t]} N B # 0.

In this case, for each n € N there are s, € [0,t+ (T'—t)/n) and y, € B
satisfying |y, — X, (w)| < 1/n. So, we choose a strictly increasing sequence
(Vn)nen in N such that (s, )nen converges to some s € [0,¢], then it follows
that X,(w) = lim,1ee X5, (w) € B, which yields the intermediate claim.

Next, we set B,, := {z € B||z| < n} for all n € N and use the notation
dist(z,C) = inf ec |z — y| for all z € R™ and C' C R™. Let t € [0,7] and D
be a countable dense set in [0, ¢] containing ¢, then

{r<t}=1 {gengdist(Xs, B,) =0}={J () U{dist(X,, B,) < 1/k} € F,

neNkeN seD

by the above representation of {7 < t}. Finally, if w € 2 satisfies X (w) € S,

then { X (w)|s € [0,t]} is compact and in particular closed. For this reason,
7(w) < inf{t € [0, T] | X;(w) € B} would violate the definition of 7(w). O

Example 27. Let X € ¢([0,7],R™) and n € N, then the above lemma
gives a stopping time 7,, > r such that 7,, = inf{t € [0,T] | |X¢| > n} Vr as.
This ensures that

[ XA < [ X7V as.

for all ¢t € [r,T], since we have that | X*""™| < n a.s. on {||X"|| < n} and
T, = r a.s. on {||X"|| > n}.
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In this section, whenever p > 1 and condition ({S.i)) is satisfied, we set

p

T 2
my = (/ ca(s)? ds) + e wy,

where w, is the constant appearing in (M]).

Lemma 28. Under (S.), for each p > 2 and a € (0,1/2 — 1/p) there is
Cap > 0 depending only on o, p and T'— r such that any strong solution X

to satisfies

E([IXI7,] < caper™ D (BIXTP] +myt—1))  (44)
for allt € [r,T].
Proof. Assume that E[|| X"||*’] < oo and let n € N. Then Example [27 yields
a stopping time 7, > r such that ||[X™| < [|X"|| V n a.s. First,

tATh
XA | < (X7 +/T 1B(s, X*)| ds + sup as,

vE[r,t]

VATn
/ S(u, XU dW,

for fixed t € [r, T]. Thus, from Jensen’s and Cauchy-Schwarz’s inequality we
obtain that

t
E[HXt/\TnHQp} < 32p_1E[HXrH2p} +62p—1mp(t—7”)p_l/ 1 _i_E[HXs/\rnHZp} ds.
Moreover, a similar computation shows that
t
BIIX; = X7 < 42 Uy o — upt [ 14 B[] ds

for all u,v € [r,t] with u < v. Therefore, Proposition [12] yields that

X — X[\
Al i) |
w,vE[rt]: uFv |U - U|

t
< K282 tmy(t — )2 [ B X ds,
where the constant k, ,_o, is given by (3.2) for ¢ = p — 2. Thus,
t
B[IXP I, ] feap < BIXTIP] +my [ 1+ B[IX ] ds

for cop := 1227711 + ky p2,) (T — r + 1)P~1. By Gronwall’s inequality and
Fatou’s lemma,

EIX",] < lig%g?fE[HX”\Tn

2 ]| < cage ™ D (B||X7)% [ 4my (t-1)),
which is the claim. ]
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Remark 29. If p > 1 and o € (0,1/2) are such that a < 1/2 — 1/p fails,
then, under (S.), we still have that E[||X'||22] < (E[|| X"||29])?/¢ < oo for
any ¢ > p such that o < 1/2 — 1/q, by Holder’s inequality.

Lemma 30. Under (S.iii), pathwise uniqueness holds for ([2.5)).

Proof. Let X and X be two weak solutions to defined on a common
filtered probability space (€2,.%, (ﬁt)te[O,T]; P) on which there is a standard
d-dimensional (.%)c[o.r1-Brownian motion W such that X" = X" a.s.

We fix n € N, then it follows from Example [27] that there is a stopping
time 7, > r such that 7, = inf{t € [0,T]||X;| > nor|X;| > n}Vr as.

Clearly,

_ tATh id
||Xt/\7—n . Xt/\Tn“ S /r |B(S,XS) — B(S,Xs)l ds

VATn, ~ ~
+ sup / Y(u, X*) — X(u, X*)dW,| a.s.
velrt] | /T
for given t € [r,T]. We set ¢; := ((T' — r) + wy), where w; is the constant

in for p =1, then
~ - t ~ ~
E[”Xt/\m . Xt/\rn”Q} < Cl/ )\n(S)QE[HXs/\Tn . XS/\T"||2] ds.

So, X™ = X a.s., by Gronwall’s inequality. As 7, < 7,41 a.s. for ~all ne N
and sup,,cy 7, = 00 a.s., we get that X; = lim,jc X/ = limypog X" =X
a.s. for all t € [r, T]. Right-continuity implies that X = X a.s. O

Proof of Proposition[5. We define J# be the set of all X € %,.([0,7],R™)
satisfying X, = X, for all s € [0,7] a.s. and the estimate for any p > 2
and a € (0,1/2 — 1/p), where the constant ¢, is chosen largely enough so
that

Cap = 127771 + kapoop) (T — 1+ 1P (4.5)
By Lemma [28| and Remark , we have that 2 C €/27([0,T],R™) and a
process X € €([0,7],R™) is a solution to satisfying X, = X, for all
s € [0,r] a.s. if and only if X € 5 and it is a fixed point of the operator
U — €(]0,T],R™) specified by requiring that

rVit rVit
WY =oXet [ Bls,Y)ds+ [ S(s,Y*)dW,,

for all ¢ € [0,7] a.s. We stress the fact that, due to Proposition and
condition (4.5)), for every X € 7, p > 2 and a € (0,1/2 — 1/p) it follows
that

t
B0 1%,] < capBlloX 1] + capmy [ 1+ E[lX7)*] ds
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for all ¢ € [r,T]. Thus, ¥(#) C A follows from plugging into the
above inequality. Since (X € J and ,X = U(, 1X) as. for all n € N,
by (2.7), we have shown that (,X)nen, is & sequence in JZ.

Next, choose p > 2 and o € (0,1/2) such that ay < o < 1/2 — 1/p,
where «q is the constant in the Lipschitz condition (S.ii). Further, we set
I, .= ()1 Ap(s)2ds)? + A w,, then

E[w(x) — wy) 7] < 2y - o [ B[ - v ] ds

for all given X,Y € 5 and t € [r,T]. After applying Proposition and
using ||z)|ag,r < (T'— 1+ 1)*%||2||q, for all z € C*([0,T],R™), we get

E[Jwx) — 0 2,] < eagly [ B[IX - Y0 ds

with €4 := 471 (1 + kap_2,)(T — r + 1)**~1. Hence, Gronwall’s inequality
entails that there is at most a unique solution X to satisfying X, = X,
for all s € [0,7] a.s.

We also infer from the above inequality that ¥ is Lipschitz continuous
with respect to the seminorm (2.6]), where p is replaced by 2p. In addition,

2p

5 - n n
Bl X! = n X2 ] <~ (Caply)"(E = 1)

for each n € Ny, by induction with ¢ := (E[||¥(,X) — ¢X||22,])*/*). Hence,
the triangle inequality gives

1

(E[an—kxuzﬂ)”<6z( ) o ply) 5 (T — 1)

for each k,n € Ny with £ < n. The ratio test implies that the series
20, (1/3!)Y/ P g/ (2) converges absolutely for each z > 0. So,

hTm sup E[|| X — X% } 0.

O neN:n>k

Due to Proposition [II], because . is closed with respect to the complete
seminorm (2.6)), where p is replaced by 2p, there exists a process X €
that is unique up to indistinguishability such that

lim E[|l.X - X|*,] =o0. (4.6)
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Lipschitz continuity of ¥ implies that lim, 1o E[|ln41X — V(X )HipT] = 0. For
this reason, X = ¥U(X) a.s. Finally, assume p > 1 and «a € (0,1/2) are such
that ap < v < 1/2 — 1/p fails. If a < v, then

BlllnX = XI5 ] < (T =7+ 1) B[]l X - X|

ao,r}

for all n € N, which implies (4.6). For o > 1/2 — 1/p we take ¢ > p so that
a < 1/2—1/q and use that E[[[,X — X|[|Z,] < (E[||.X — X||24,])?/¢ for all
n € N. As this also gives (4.6]), the proof is complete. O

5 Proof of main result

5.1 Decomposition into remainder terms

Proposition 31. Let (C.i) hold, h € H([0,T],R%) and B be du-Lipschitz
continuous. Then for each p > 1 there is ¢, > 0 such that any n € N and
any strong solution ,Y to (2.14)) satisfy

E[lnY1P?] + B[lnY* = oY I17]/ls =t < (1+ E[JlY"I7])  (5.1)
for all s,t € [r,T] with s # t.
Proof. We let [ € N and use Example 27| to define a stopping time 7;,, > r
such that ||, Y| <||,Y"| VI a.s. Further, we estimate that

tATIn .
[ S S / | | B(u, nY")| + [Br (u, nY) ()| du

+ sup

vE|s,t]

VAT n .
/ B, YY), W du

UNT|
—I—sup/ lZ(u,nY“)qu a.s.

vE[s,t]

for fixed s,t € [r,T] with s < ¢t. Thus, the triangle inequality and the
inequalities of Cauchy-Schwarz and Jensen yield that

(E [”nYS/\Tl’n . nYtATlm ||2p} ) i

t 2p
< (cuate =7t [0 B[y 2] 652)

2p %
+ <E[ sup ]) ,
vE[s,t]

VAT n .
/ " B, Y)W du
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where we have set ¢,1 = (6¢)*((T — 7)? + ([T |h(u)[? du)? + w,) and w, is
the constant appearing in .

Since k < 1, we can pick v € (1,571), then Lemma provides a constant
¢p2 > 0 such that holds when ¢ and p are replaced by 2 and p/(1—~k),
respectively. This yields that

2p
du) ]

(0

< (2N /2(t — 5)P! ( / "=, du> T P (¢ — 5P

(B, nY™) = Bty nY™) )W,

t t . p
Ny E[nnyw . nywnn%( / |nwv|2dv) ] du

S

< cpa(t — s)P /t 14+ |']I‘n|—p<E[||nyu/\n,n _ nygn/\ﬂ’nH%Dw du.

by the inequalities of Cauchy-Schwarz, Jensen and Holder , where A > 0
denotes a Lipschitz constant for B and ¢, 3 := 2’ \?(T —T)pc;’?’”. Note here
that the choice of ¢, 2 entails that

" . ﬁ 1—vk
(EU ‘”W“‘Zd“> D < o2 "|Tal (= ).

Next, let ¢, 4 > 0 be a constant satisfying (3.11)) when ¢ and p are replaced
by 2 and p/((y — 1)k), respectively. Then Cauchy-Schwarz’s, Jensen’s and
Holder’s inequality imply that

UNT] . . %
El(/ " \B(v,nY”)nWU|dv> 1
p P u -1 P P
=37 [ 10T I - )

Uy

2p

< (2¢)7+

2p P u 2p u . 'VLK‘
+oE - u)E [ E[nnywnv( / |nww|2dw) ]dv

< Gl Tl (1 4+ (B [y 7]) )

for any given u € [s, T, where we have set c,5 := (4c))/ (7”)01(37471)/ 7, since
by the choice of ¢, 4 we can utilize that

y—1

u . (“/fl)N v y=1 » »
(8| [ Winpar) 7)) T s adm R -,

—n
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Thus, by the virtue of (5.2), we may set ¢, := (6¢)Z)/ 0% (T — r)r/)
+ (! (@) du)?/ O™ + ¢py0,01), then

YK

(E[Ily e — e e |52 < TP (14 B[l Y 0 %7])

with ¢, 7 1= 2%(2P¢, 6 + ¢}'5), since 2” < (1 +z)? <1+ for all z > 0 and
B € [0,1]. Thus, we have established that

(0

(B, nY™) = Blug, nY™) )W du> ]

t
< e, g(t — 5)P! / 1+ B[l Y] du,

where ¢, 5 = ¢,3(1 + ¢,7). Next, Proposition (17 gives a constant @, > 0
satisfying (3.10)), which directly yields that

d

Hence, from ([5.2)) we in total obtain that

2p

tAT .
/ l Bty n Y ) Wy du| | < b,c®(t — s)P.

t
E[Hnys/\nm _nYtATl’nH%} < Cp,g(t i S)pfl/ 1+E[HRYUATZ’”||2P} du

with ¢, 9 1= 47 1(c, 1+ ¢, 8 +W,c??). Thus, Gronwall’s inequality and Fatou’s
lemma entail that

E[lnY!I*7] < liminf B[,y ] < ea(1+ B[y 7]*])

with ¢, 10 1= €27 Feo (M=) Thus, by setting ¢, := (1 + ¢p0)(1 + ¢p10), the
claim follows from an application of Fatou’s lemma. n

Corollary 32. Let (C.i) hold and h € H([0,T],R?). Then for each p > 1
there is ¢, > 0 such that any strong solution Z to (2.15)) satisfies

E[|1Z|*] + E[ll2° = Z!11] /|s — tI" < e, (1+ E[l|12"]*?]) (5.3)
for all s, t € [r,T] with s # t.

Proof. Because the map R defined via (2.16) is bounded, we may apply
Proposition [31]in the case that B is replaced by B + R, B is replaced by 0
and Y is replaced by B + X. From this the claim follows immediately. O]

34



Proposition 33. Let (C.i) and (C.i) be valid and h € H!([0,T],R?). Then
there is ¢ > 0 such that for any n € N and any strong solutions ,Y and Z

to (2.14) and (2.15)), respectively,

2 T2 |2
Bl max [y, = Zo,, Pl /er < [Tl (1+ B[JlnY 7P + 1 27)1))

+ E[lY" = 272 + E[llnY — LaGY)IP] + E[I1Z = Lu(2))7]

- tj’ni 2
+ EF| max / B(s,, n Y2 ) d(, Wy — W,) ]

_je{o ..... kn} | Jr

tj,n S J— . 2

+ F| max / (B(s, WY?) — B(gmnyﬁn))nWS — R(8,,,,Y*)ds ]

| 7€{0,-kn} | Jr

Proof. We define an increasing function ¢, : [r,T] — R, by

on(t) == E{ max WYy, — th’n|2}

GE{0,kn )ty <t

and seek to apply Gronwall’s inequality. For this purpose, we write the
difference of ,,Y and Z in the form

t .
Y~ 7, = / B(s.Y*) = B(s,2°) + (Br(s.Y*) — By(s, 2°) )iu(s) ds
t
Yy — Zy 4T +/ S(s,,Y*) — S(s, 2°) dW,

for all t € [r,T] a.s., where the process ,I' € €([0,7],R™) is chosen such
that

t_ . t__
L= [ Bls,aY )W, = R(s, 2°)ds — [ B(s, 2%)aw,

for each t € [r,T] a.s. Hence, let A > 0 denote a Lipschitz constant for
B(s,-), By, B, ¥ and R for every s € [r,T], then we obtain that

. 1/2
o2 < (ens [ 80+ Glo) +6) 4 o) )

+ B3+ ()

(5.4)

for all t € [r, T], where we have set ¢;; 1= 15)\(T —r+ [ |i(s)|? ds+w, ) and
B, := E[||,Y" — Z"||?] and the functions v, u, nn : [r, T] — [0, 00), which are
readily seen to be measurable, are defined via
— 2
() =B| o omax Ly,

Guls) = E[|[Y* = Y| +|2° = Z=|?| and
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M) i= B[[|[Y* = Lo(aY)* |* + (|22 = Lo(Z) |

In deriving (5.4)), we have used that E[||L,(,Y )3 — L,(Z)5]]?] < B8, V ¢n(s)
for all s € [r, T, which follows from Lemma [20] since L,, is linear.

The next step of the proof is to estimate the function ~,. For this purpose,
let us choose two processes ,A, ,© € €([0,T],R™) such that

t n ES) .
AW 2/ (B(S,nYS) — B(§mnY§"))nWS o R<§nany§")d8

and ,0; = [' B(s,,nY?*)d(,W, — W,) for each t € [r,T] a.s. Then ,I' can
be rewritten in the following way:

t _
nrt = nAt + n@t + / B(§n> nY§n) - B(S? Zs) dWS
t
+/ R(s,,nY%) — R(s, Z°) ds

for all t € [r,T] a.s. Thus, we set ¢;5 := 10A\*(T — r + w;), then it follows
readily that

'Vn(t)l/z < 5n(t)1/2 + 0, (t)l/z
" 12 (5.5)
- (ena "Bt (58204 G0+ l6) 4 o) )

for all t € [r,T], where the increasing functions 0,60, : [r,T] — [0,00) are
given by

ou(t):=E| _max A Pl 6u():=E] _max 0, ]

]6{0 77777 kn}:tj,ngt ]6{0 77777 kn}:tj,nSt

Proposition [31| and Lemma (32| give constants [, m; > 0 satisfying (5.1))
and (5.3) for p = 1 when ¢, is replaced by l; and my, respectively. Thus,

putting (5.4) and (5.5)) together, we find that
on(t) < e Tl (14 B[ Y7112 +112711%]) + 4(Ba + 0a(t) + 0n(1))
tn
+ci3 B+ 1n(8) + ©n(s) ds

for given t € [r,T], where we have first set ¢;3 := 8(¢11 + ¢12) and then
c14:=2c13(T —7)(1 + 13 +my). Consequently,

n(t) < cr(|Tl (14 E[[lnY"I2 + 1Z2711]) + Ba + 8a(t) + 0n(t) + 1 (1))

for ¢; := e“3('=)(¢; 4+4), by Gronwall’s inequality. This gives the claim. [
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A look at Lemma [21] and Proposition [23] shows us that only the last
remainder in the estimation of Proposition [33|requires further analysis, before
we can prove (2.18). So, for each h € H}([0,T],R?) and n € N, we define a
map @y, : [r,T] x S x C([0,T],RY) — R™ by

(5,4 10) = Brr(50,9) (h(s) = h(s,)) + S50, y) (w(s) — w(s,)
+ Bs,, y)(s = 5,) (La(w)(s) = Ln(w)(s,)),

where, just as in Lemma , for each right-continuous map w : [0, 7] — R¢
we have set L, (w)(t) := w(r At) for t € [0,t1,),

U)(tz,n) — w(tifl,n)

f,n(w)(t) = w(ticin) + (8 —tin) Atiiin

for t € [tip, tiyin) with i € {1,... &k, — 1} and L,(w)(T) := w(tp, ,n). If
now ,Y and Z are strong solutions to (2.14) and (2.15), respectively, then

the following decomposition can be used to deal with the remainder:
(Bs,nY") = By, nY*) )Wy = R(s,,0Y ™)
= (E(S, an) - B(§nanY§ ) 0 B( n;nysn)<ny; - angn))nWs

+ 0 B(8p, nY2) (0Ys — nYs, — nn(s, Y, W), W,
+8 B( mnY n)q)h,n<3>nY87WS) W R( mnY n)

(5.6)

for any s € [r,T). In fact, in the next two sections, we will deal with the
three terms on the right-hand side to ensure that (2.18]) follows.

5.2 Convergence of the first two remainders

To deal with the first remainder term in (5.6), we will use the following
estimation in combination with Lemma 19

Proposition 34. Assume (C.i) and let G € CY*([r,T) x S). Further, let B
and 0,G be d.-Lipschitz continuous and suppose there are co,n > 0 so that

0:G (L, )] + [0ra G (E, )] < co(1 4 [l]|")

for all (t,x) € [r,T) x S. Then for each p > 1 there is ¢, > 0 such that for
any n € N and any strong solution ,,Y to (2.14)) it holds that

sup_ E[|G(5.0¥) = Gl n¥™) = 0,Gs0 V) (s = 5[]
s€[r,T)

< &[T (1 + B[l Y7P]).
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Pmof Let s € [r,T) and ,A € €([0,T],R™) be given by A, = 0 for
€ [0,T\[sn, s] and ,A, = 0,G'(u,,Y") — 0.G'(8,,,,Y ) for u € [ , 5.
Then the functional It6 formula [9] yields that

G( 7an) - G(Snan ) a G( n7n )(TLY; - anﬁn)
—/ 0,G (1, nY") du+/ WAL (0, Y AW,

+/ w N (B, oY) + By (u, YY) + B(u, Y "), W, ) du (5:7)

+ = /tr (0peG(u, Y X (1, n Y ) 2 (1, YY) ) du — as.

We set 77 := 1V 2, then Proposition [31|gives a constant Iz, > 0 such that ([5.1))
holds when ¢, and p are replaced by 5, and 7p, respectively. So,

d

for ¢, 1= (4cp)?(1 + Iz,)"7, by Holder’s inequality. Next, let Ag > 0 denote
a Lipschitz constant for 0,G, then we obtain that

/S auG(u7 nyu) du 21;] < Cp,1|Tn‘2p<1 + E[HnYTHzﬁpD

(E[\HAUW’D% < my TP (1+ B[ Y7 7]) " (5:8)

for all u € [s,,,s] with m,, := 2% XP(1 + I5,)"/7. Thus, for the second term
in . 5.7) Cauchy-Schwarz’s inequality gives

s 2p
E[/ WA B(u, YY) du ]

< (20)%P(s — 5,)7! /: (E{|nAu|4pD1/2(1 N (E[||nYuH4pD1/z) "

< ol T (1 + B[l Y"|"])

with ¢, 1= 2%¢?(T — r)Pm,(1 + ll/ +"). Similarly, it follows from (5.8) that

gl
for c,s = 2% ([1 [h(u)]? du)Pm,(1 + ll/"). Lemma (18 yields wg,2 > 0
satisfying (3.11) when p and ¢ are replaced by 2p and 2, respectively. Then

:

2
] < eyl T2 (14 B[y |77])

[ By, Y i(u) du

E H / A B, Y)W du
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< (s —sn)p—l/: (E[L.AJ])" <EK/ |nWU|2dv>2pD1/2 du

< GpalTu” (14 E[|lY"IP™]),
by Cauchy-Schwarz’s inequality, where we have set c¢,4 := (20)2pmpw§;?2.
Another estimation shows us that

d

for ¢, 5 := 2Pc*w,my, where w, is the constant satisfying (M). We move on
to the last term arising in (5.7)). Here, we readily compute that

:

< ol Tl (1 + E[[l.Y777])

2
jé%ﬂﬁ%+EWWW@

/ AL (YY) AW,

Sn

s H; / (0 Gt Y ) S, V), YY) du

with ¢, 6 := (2c0)*c*(1+15,)"". Thus, by setting ¢, := 6% ~L(c,1++ - -+cpp),
we obtain the asserted estimate. O

We come to the second remainder term arising in (5.6). As before, we
will derive an estimation that is necessary to apply Lemma [19]

Lemma 35. Let (C.i) and (C.ii) hold and h € H([0,T],R%). Then for each
p > 1 there is ¢, > 0 such that for any n € N and any strong solution ,Y

to (2.14) we have

sup [[nYs = nYa, = ®pn(s, Y, W)?| < | Tul (14 E[Y"]*])

s€[r,T]

1/2

Proof. We apply Proposition [31] to get a constant Iy, > 0 such that (5.1]) is
satisfied when ¢, and p are replaced by Iy, and 2p, respectively. Let us pick
s € [r,T], then

E [
for ¢, 1 := (4¢)?(1 + l;z/f). Let A > 0 denote a Lipschitz constant for By, B
and X, then Cauchy-Schwarz’s inequality allows us to estimate that

d )

2p

< el (1 + E[Ly77))

/s B(u,,Y")du

=n

/s (BH(u, WYY — B[{(ﬁn,ny%))h(U) du

Sn
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T . p
<z [P ) (s - s+ B[y -y )
2p r||4p 1/2
< ol T (14 E[[Y"[[*])
with ¢,0 1= (AN ([T |h(u)|? du)P(1 + 1y,)"/?. We recall the constant sy,

constructed in Lemma [18| such that (3.11)) is valid when p and ¢ are replaced
by 2p and 2, respectively. Then
2p‘|

d
2 1/2 ([ i 2 :
<N(s = 5, | ((s = )2+ [ly* =y )" ( [ LWl do

< el TP (1 + E[llY717])

| (BlaaY™) = Bl a¥*)) W, du

S

-n

by Cauchy-Schwarz’s inequality, where ¢, 3 := 2°P A% (1 +1y,)"/ 2w2£ 5. Finally,
let also recall the constant w, appearing in , then

d

for c,.4 := (4N)2Pw,(1 + lyp) 2. So, the definition ¢, := 427" (c,1 + -+ + cp4)
concludes the proof. O

/ S, ") — 5(s,, nY ) AW, V2

Sn

2
| < m o+ Bl

5.3 Convergence of the third remainder

As preparation, we require the following application of Doob’s L?-martingale
inequality.

Lemma 36. For eachl € {1,...,d} and n € N, let (1,U)icq1,... 60y De

-----
.....

.........

vectors such that
Ell Ul 1+ ElinVil' <o and E[,Vi| %, ,,]=0 a.s.
forallie{1,... k,}. Then
]

Jj—io d
Zanzln
=1
<4 Z Z E[ll7nUiE[l1,nV;lzmv;/"gztif,ln]lz,nUiI]

kn—io d
i=1 1 ,la=1

for all iy €{0,...,k, —1} and n € N.
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Proof. Let us set ,,Y; :== Zle 1nUi1n Vi foreach i € {1,...,k, —ip}, then ,Y;
is %, ,-measurable, E[|,Y;|*] < oo and E[,Y;|.%,_,,] = 0 a.s. Hence, the
discrete-time process ,S : {ig, ..., k,} X Q@ — R defined via

J—io
nSj = nlfz
1

(2

is a square-integrable martingale with respect to (L%] . . )icfio,...kn}- For this
reason, Doob’s .#?-martingale inequality implies that

J—io d 2
E max nYiln z =L max nSQ <A4F nSQ
[jE{io ..... kn} 'LZI lzll ! ‘| |:]€ i0yerkin } ]i| [ k ]

Moreover, let i,7 € {1,...,k, —ip} be such that i < j, then we observe that
E[h,n%lmn‘/j/lytjq,n] - ﬂ{i}(j)E[ll,nV;lmnvﬂyt ] a.s. and

i—1,n

E[ Y;nY Z E ll nUE[h nV lo, nV |th 1n]l2,nU/‘]-

J
l1,l2=1

In particular, ,¥; and ,,Y; are uncorrelated for ¢ < j. By Bienaymé’s identity,
E[,S2 ] = i E[,Y;?], which yields the claim. O

Proposition 37. Let (C.i) and (C.i) hold and h € H([0,T],R?). Then
there is c¢; > 0 such that for any n € N and any strong solution ,Y to (2.14))
it follows that

|

Proof. Due to Proposition [31, we may apply Lemma [22] which provides a
constant ¢; o > 0 that is independent of n such that

/ a B nvn )(I)hn( 7an,Ws> W R( n;nY )dS

max
jE{O ----- kn}

< alT|(1+ B[l Y"]])-

2

/7« T R, Vo) (0n(s) — 1) ds

< ero|Tol (1+ E[|lY7]7]).

where d,(s) := As,/AS, for all s € [r,T]. We recall the definition of R
in - to write the k-th coordinate of 9,B(s,, nY %) ®p (s, n Y, W*),, W,
— R(8p,,nY2)0,(s) in the form

Za Brei(sn:nY*) (Prn(s, Y *, W) WD = ((1/2)B + 2) (5, 1Y )0 (5)er )
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for all k € {1,...,m} and s € [r,T). Moreover, we decompose that
(5, Y, W), WO — (1/2)B 4 2) (8, nY %) 0, (5)e;
= Bu (80 nY*) (A(30) = h(5,)) WY
+ B(8p, nY2) (W, — W )W
+ (80 Y %) (AW, WO = 6, (5)e) (5.9)
+ Br (8,0 Y ) (h(s) = h(50))a W
+ Bl Y5 (e = uWe )Ja W = (1/2)0,(5)er)
+ B (8, nYE) (W — Wy, )W,

(TL?’I’L

where [ € {1,...,d}. We begin with the first term in this decomposition and
use Lemma [I6] to obtain that

/:j (02 BraBr) (8, n Y ) (h(5,) — h(s,))n W ds

s

= [ @ BuBu) (50 V) (B(5) — hls) WO as

for each j € {1,... k,}, k€ {1,...,m} and [ € {1,...,d}. Proposition
gives [; > 0 such that ([5.1]) is satisfied for p = 1 when the appearing constant
¢, is replaced by [;. Hence, condition ((C.ii]) gives

/Jn Z 8 BleH nanY )(h(Sn) - h’(§n))”W5(l) dS

kot k21

< 2chw, /t (14 B[y 2] b — hlsol ds
< e |Tol (1+ E[lY"I]),

where w; satisfies for p=1and ¢1 1= 2c*w, (14+0,)(T —7) [T |h(s)|* ds.
Similarly, another application of Lemma [16| gives us that

/ (On By ZB)( SpynY ) (Wi, — nWﬁn)nWs(l) ds
ti—1,n .
- / (05 B1iB) (5m, Y ) AW, dWD  as.

forall j € {1,... k,}, k€ {l,...,m} and | € {1,...,d}. Thus, we define
12 := c*wid(T — ), then we can estimate that
7

/ Z a Ble nanY n)(nWSn - nWﬁn)nWs(l) dS

FE{0,skn} 1
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< 4 tknfl,nE|: 9
< c*uy AW, | } ds < ¢12|T,|.

Let us move on to the third expression in (5.9)). First of all, we define an
R-valued %,  -measurable random vector by

Vi = AW, AW — At e (5.10)

for every I € {1,...,d} and ¢ € {1,...,k,}, then ;,,V; is independent of
Fi,_..,, and satisfies E[|;,,V;|'] < oo and E[,V;] = 0. Moreover, a case
distinction shows that

EllnVitonVi] = Ly (1) (Atin)La + (At ) Ty, (5.11)

for all I;,l, € {1,...,d} and i € {1,...,k,}, where I,;, € R?¢ denotes
the matrix whose (l,1)-entry is 1 and whose all other entries are zero. We
compute that

[ @B (50 Y ) (AW, TV — b ()er) s
-1
— Z(aka,l2)<ti—1,n7 nYti_l’n)l,n‘/;l

i=1
for all j € {1,...,k,}, k € {1,...,m} and [ € {1,...,d}, since J,(s) = 0
for each s € [r,t;,]. Consequently, Lemma (36| and the representation ([5.11))
imply that

7

/ ZaBME S nY2) (AW, WO = 6,(s)er) ds

----- b i
kn—1 m d L
S 8 Z (Ati,n)2 Z ZEH(aa:Bk,lz)(ti—l,mnyti_l’n)|2] S c1,3|']Fn|
=1 k=11=1

for ¢1 3 := 8¢*(T —r), since we can use that 2T,y < (1/2)(zf, +y} ) for all
z,y € R by Young’s inequality. To deal with the fourth term in (5.9)), let
us note that

/T (0x BB ) (8, nY2)(h(s) — h(sn))nWS(l) ds

- AW(l) tit1,n
Z a Bk lBH z 1,nanYti_l’n>ﬂ/ " h(S) - h(tl,n) ds (512)
= Atit1p Jtin

:/ (0 BleH ) (855 Y )AWS(ZL)4<S” ; ) dh(s)
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for each j € {1,...,k,}, k € {1,...,m} and [ € {1,...,d}, as integration
by parts yields that [ h(s) — h(t;,) ds = [t tivr, — sdh(s) for all
ie€{0,...,k,—1}. So,

21

d
l:l

T
< 204/ |h(s)[? ds/ <1+E[||nY§n||2DAsn ds
< 1| Tal (1 4+ E[[Y7]?))

E[ max / Z (0 BrsBir) (5ms nY 50 ) (h(5) — h(50))a WO ds

]6{0 7777 }k. 1

2] ds

with ¢4 == 2¢*(1 4+ L)(T — 7) [ |h(s)|? ds, by Cauchy-Schwarz’s inequality
and the facts that AW(” AW(d are not only pairwise independent but
also independent of .7, for every s € [r,T1.

Next, to handle the fifth expression in ([5.9)), we proceed similarly as with
the third expression. We define ;, U, := (,W, — nWsn)nWS(l) — (1/2)6,(s)e
for all s € [r,T] and note that

j—1

tjn 1 = -5 )
/ (8 Bk lB)< Sns nYSTL)l,nUs ds = 5 Z(aka,lB)(ti—l,nu nYtz_l’n>l,n‘/:i
" i=1
for every j € {1 kot ke {l,...,m} and [ € {1,...,d}, where ;,V; is
defined via and we have used that ft g — tinds = (1/2)(Atipn)?
for all i € {1 k: ). Consequently,

tin 2
E| max / 8, BiB) (8, Y5 )0, ds
l]e{o 7777 k’ﬂ}k 1 T Z kl >l ‘|
kn—1 m d
<2 (Atin)? YD El(82BraB)(ticimy Y P] < 15Ty
=1 k=1 1=1

for ¢ 5 := 2¢*(T — r). We turn to the last term in (5.9) and proceed just as

in (5.12)) to get that

/ (0. BisE) (8, Y ) (W, — W, ) WO ds

= [ 0B sy 2w =D, s
T Sn

for each j € {1,... k. }, k€ {1,...,m} and [ € {1,...,d}, as 1td’s formula
gives jf:l" W,—=W,, , ds = ftt:” tiyin—sdWsas. foralli € {0,... k,—1}.
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Therefore,
21

2
:| dS S CLG’Tn|

/ Z@BME 8, Vo) (W, — W, ) WO ds

Fn} 21
d

< wlz/ 122000 B s o) AWE)

with ¢16 := c*wi(T — ). As before, we have used that AWM ... AW
are pairwise independent and independent of .7, for all s € [r,T]. Hence,
by setting ¢, := 7(c10+ - -+ + c16), the assertion follows. O]

5.4 Proofs of Theorems [8 and [1]

Proof of Theorem[§. (i) Applying Girsanov’s theorem shows that existence
and uniqueness follow from Proposition |5 I when B = B + Byh. Further,
Propositions [31] and [I2] imply the second claim.

(ii) This assertion is an immediate application of Proposition [5| when
B = B+ R+ Byh and ¥ is replaced by B + X.

(iii) By Propositions and and Lemma , to establish , it
suffices to show that there is ¢; > 0 such that

2

E[ max < ¢|T,|

5€{0,kn}

[ (Bl ¥ -Bs,.v* >> Wo—Rlsa, aY*) ds

for all n € N. To this end, we utilize the decomposition (5.6). First of all,
Proposition [34] allows us to apply Lemma , which yields ¢;; > 0 so that

T _ _ , 2
| ([ 1B(s.0") = Blsws V>0, ). = Y, L 05 ) |
Scl,llTn|

for all n € N. Secondly, since 9, B is bounded, a combination of Lemma
with Lemma [I9] gives c15 > 0 such that

2
EK/ 10:B (Y ") (Ve — Y, @h,n(s,nys,ws»unm\ds) < ¢11|T|

for all n € N. Thirdly, using again the boundedness of 9B, it follows from
Proposition [37)and Lemma [I9] that there is ¢;3 > 0 such that
7

a B( Sns "st)q)h;n(‘g? TLYS7 WS)nWs_R(ﬁna nYﬁn) ds

r

E[ max
7€{0,....kn }
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< ¢y 5|T,|

for each n € N. Hence, by setting ¢; := 3(c11 + ¢12 + ¢13), we obtain the
desired estimate. For this reason, (2.18]) holds.

To justify the Second assertion, we set ,U :=,Y — Z € €}/ 2’( [0, T],R™)
in probablhty to zero, by (2.18)) and Cheby’éﬁev s mequahty Let p > 1 be
such that 2a < 1 — 1/p, then Proposition and corollary give ¢, > 0
satisfying

B[lnU* = oU|] < cyls — 1"
for all n € N and s,t € [r,T]. As Remark (15| entails that condition (3.7)) is

satisfied for ¢ = p — 1, Proposition [14] implies that (||,,U || )nen converges in
probability to zero, which establishes (2.17)). ]

Finally, to prove Theorem [1| we require the following basic result on the
support of image probability measures.

Lemma 38. Let (Q Z, P) be a probability space, (E, [)) be a metric space,
D CE andY : Q — E be measurable such that P oY~ is inner reqular.

(i) Let (Yy)nen be a sequence of E-valued maps on that converges to'Y in
probability. If Y, € D a.s. for alln € N, then supp(PoY ™) C D.

(ii) Suppose that for each y € D there is a sequence (P, n)nen of probability
measures on (Q,.F) such that P,, < P for alln € N and

inf B, (7(Y,0) > €) < 1 (5.13)

for each € > 0. Then D C supp(PoY ™).

Proof. (i) Let y € supp(P oY) and k € N. Since (Y,)nen converges
to Y in probability, there exists n; € N such that P(5(Y,,Y) > 1/(2k))
< P(p(Y,y) < 1/(2k)) for all n € N with n > n;. Hence,

- 1 1 1

P(p(Yay) 2 7) < PV Y) > o) + P(p(Y.y) 2 o) <1
for any such n € N. So, there is w; € Q) such that Y = Y, (wg) € D and
P(yr,y) < 1/k. As k € N has been arbitrarily chosen, the resulting sequence
(yr )ken converges to y, which gives the claim.

(ii) By way of contradiction, suppose that there are y € D and & > 0 such

that P(p(Y,y) > ¢) = 1. Let (yn)nen be a sequence in D that converges to
and choose n. € N such that p(y,.,y) < /2. Then from

P(p(Y,y) =€) < P(p(Y,yn.) > £/2) + P(p(yn.. y) = £/2)
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and P,,_, < P it follows that P, ,(5(Y,yn.) > ¢/2) = 1 for each n € N.

This, however, is a contradiction to ((5.13]). O

Lemma 39. Let h € H}([0,T],R?) and n € N, then the a.s. continuous local
martingale 2 given by (2.11)) is a martingale.

Proof. We recall that ftt:l" h(s) dWy is independent of .7, and normally
distributed with zero mean and variance given by [/ |h(s)[2 ds, which

yields that

i,mn

titin . . 1 rti+in . .
Elexp(/ T (s) — W) dWs—i/ ' |h(s)—nWs|2ds> 3@1
tin tin
titin . 1 rti+in . 9
= E|exp /tm (h(s) —x)dW, — 2/“’" |h(s) — z|*ds aw,, =1
T Atin

a.s. foreachi € {1,...,k,—1}, since AW},  is also independent of .7, , and
we have fttzzl‘” S dW, = (AW} [Atig10) AW, .. Hence, B[, Zr] = 1

follows by induction, from which we infer the claim. O

Proof of Theorem[d] (i) By Lemma [30] pathwise uniqueness holds for (L.1)
and Proposition [5| provides a unique strong solution X such that X, = Z(s)
for all s € [0,7] a.s. and X € ¢/27([0,T],R™). For this reason, (i) holds.

(ii) Let h € H'([0,T],R%) and set F}, := b — (1/2)p + oh. We first check
that Fj, satisfies conditions and . Since o and d,0 are bounded,
there is ¢; > 0 such that |o| V |p| < ¢;. Then

[Fat,2)] < c(1+ a]®) + er(L+ ®)]) < ea(1+ R+ [l2]])

for all (t,z) € [r,T) x S with ¢y := 3max{c, c;}. Moreover, since o and 0,0
are d..-Lipschitz continuous, so is the map p. Thus, let A\; > 0 be a Lipschitz
constant for p, then

|Fut,2) = Fu(t, )| < (O + ML+ [ROD) 1z = yll < Ae(1+ ()] ]lz —y]

forallt € [r,T) and z,y € S with Ay := 2max{\, \;}. Hence, an application
of Proposition [2| to the map F), yields the first assertion and we may set

Th = YF,-
Regarding the second, let us also choose I € H}!([0,T],R%). We define
c3 := 22(T —r + 1), then the above estimation shows that

t
It = ol < e [ 1Fu(s,a) = Fils, )| ds
T
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t . . .
< C3/r 2X5(1 + [A(s) )2, — 27 [1” + cllh(s) — I(s)|* ds

for given ¢ € [r,T]. For this reason, ||z, — z||7, < cae Il || — 1%, with
cy := (3 + 2)3) ez exp(2M3c3(T — 1)), by Gronwall’s inequality. As ¢, merely
depends on T'— r, ¢; and Ay, the second claim follows.

(iii) Let N, be the P-null set of all w € Q2 so that X (w) ¢ C*([0,T],R™),
then (Ng,.# N NS, P znne ) is readily seen to be a probability space and the
image probability measure

#(C([0,T],R™) = [0,1], B+~ P({X € B}nN¢) (5.14)

is inner regular, where Z(C%(]0,T],R™)) is the Borel o-field with respect to
the complete norm || - ||,,. Note that the support of consists of all
x € C*([0,T],R™) satistying P({||X — z|la,r > e} N NE) > 0 for all € > 0,
that is, it is the support of P o X~ ! in C([0, T],R™).

For n € N we define Y, : NS — C2([0,T],R™) by Y,(w) = &, ww),
then Y, € {z, |h € HX([0,T],R%)}. So, Lemma [38| entails that the support
of is included in the closure of {z; |h € H([0,T],R%)} with respect

to || - ||a,r once we have shown that

liTm P{||Y, — X|layr >} NNS) =0 forall e >0.

This, however, already follows from Theorem [§ by the choice B = b—(1/2)p,
By =0, B =0 and ¥ = 0. To obtain the converse inclusion in ([1.7)), let
h € H([0,T],R?) and for each n € N define P, : # — [0,1] by

Ph,n(A) = E[h,nZTI]-A]a

where the a.s. continuous local martingale ,,,Z : [0,7] x © — (0, 00) given
by nnZ" =1 a.s. and (2.11) is shown in Lemma [39| to be a martingale. So,
Py is a probability measure satisfying Py, ~ P and by Lemma [38] if

iggph,n({HX — ZTpllar > €} NNS) <1 for each € > 0, (5.15)
then the closure of {z; |l € H!([0,T],R%)} with respect to || - ||o is included

in the support of (5.14). Now Girsanov’s theorem implies that for each n € N
the process 5, W : [0,T] x Q — R? defined by

rVt . .
W, = W, —/ h(s) — oW, ds

is a d-dimensional (ﬁt)te[O,T}—Brownian motion under P, and X is a strong
solution to under P, ,. Hence, an application of Theorem [ in the
case that B =10, By = 0, B = —0 and ¥ = o gives . As this readily
implies , the proof is complete. 0
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