On pathwise quadratic variation for càdlàg functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

On pathwise quadratic variation for càdlàg functions

Résumé

We revisit Föllmer's concept of quadratic variation of a càdlàg function along a sequence of time partitions and discuss its relation with the Skorokhod topology. We show that in order to obtain a robust notion of pathwise quadratic variation applicable to sample paths of càdlàg processes , one must reformulate the definition of pathwise quadratic variation as a limit in Skorokhod topology of discrete approximations along the partition. The definition then simplifies and one obtains the Lebesgue decomposition of the pathwise quadratic variation as a result, rather than requiring it as an extra condition.
Fichier principal
Vignette du fichier
QV.pdf (385.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01818930 , version 1 (19-06-2018)
hal-01818930 , version 2 (21-06-2018)
hal-01818930 , version 3 (07-11-2018)

Identifiants

  • HAL Id : hal-01818930 , version 1

Citer

Rama Cont, Henry Chiu. On pathwise quadratic variation for càdlàg functions. 2018. ⟨hal-01818930v1⟩
128 Consultations
496 Téléchargements

Partager

More