Mass functions of a compact manifold - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Mass functions of a compact manifold

Résumé

Let $M$ be a compact manifold of dimension $n$. In this paper, we introduce the {\em Mass Function} $a \geq 0 \mapsto \xp{M}{a}$ (resp. $a \geq 0 \mapsto \xm{M}{a}$) which is defined as the supremum (resp. infimum) of the masses of all metrics on $M$ whose Yamabe constant is larger than $a$ and which are flat on a ball of radius~$1$ and centered at a point $p \in M$. Here, the mass of a metric flat around~$p$ is the constant term in the expansion of the Green function of the conformal Laplacian at~$p$. We show that these functions are well defined and have many properties which allow to obtain applications to the Yamabe invariant (i.e. the supremum of Yamabe constants over the set of all metrics on $M$).
Fichier principal
Vignette du fichier
mass_topological.pdf (223.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01818684 , version 1 (19-06-2018)

Identifiants

Citer

Andreas Hermann, Emmanuel Humbert. Mass functions of a compact manifold. 2018. ⟨hal-01818684⟩
159 Consultations
106 Téléchargements

Altmetric

Partager

More