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MASS FUNCTIONS OF A COMPACT MANIFOLD

ANDREAS HERMANN AND EMMANUEL HUMBERT

Abstract. Let M be a compact manifold of dimension n. In this paper, we
introduce the Mass Function a ≥ 0 7→ XM

+ (a) (resp. a ≥ 0 7→ XM

−

(a)) which

is defined as the supremum (resp. infimum) of the masses of all metrics on M

whose Yamabe constant is larger than a and which are flat on a ball of radius 1
and centered at a point p ∈ M . Here, the mass of a metric flat around p is
the constant term in the expansion of the Green function of the conformal
Laplacian at p. We show that these functions are well defined and have many
properties which allow to obtain applications to the Yamabe invariant (i.e. the
supremum of Yamabe constants over the set of all metrics on M).
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1. Introduction

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and denote by

Lg := ∆g +
n− 2

4(n− 1)
sg : C∞(M) → C∞(M)

the conformal Laplace operator of g, where sg is the scalar curvature of g and ∆g

is the Laplace-Beltrami operator with non-negative spectrum. Assume that the
metric g is flat on an open neighborhood of a point p ∈M and that all eigenvalues
of Lg are strictly positive. Then it is well-known that there exists a unique Green
function Gg of Lg at p, i. e. in the sense of distributions we have LgGg = δp, the
function Gg is smooth and strictly positive on M \ {p} and as x→ p we have

Gg(x) =
1

(n− 2)ωn−1r(x)n−2
+m(g, p) + o(1)

Key words and phrases. Yamabe operator; Yamabe invariant; surgery; positive mass theorem.
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where ωn−1 is the volume of the standard sphere of dimension n− 1, the function
r denotes the Riemannian distance from p and m(g, p) ∈ R is a number called
the mass of g at p. This quantity is related to the so-called ADM mass of an
asymptotically flat Riemannian manifold. The study of the mass has led to many
interesting results in geometric analysis and General Relativity. An example is an
application to the so-called conformal Yamabe constant of (M, g) defined by

Y (M, g) := inf

∫

M

sg dv
g,

where the inf is taken over the set of all Riemannian metrics on M which have
unit volume and are conformal to g. Namely, in a famous article [8], Richard
Schoen used positivity of the mass m(g, p) to prove that Y (M, g) < Y (Sn, gcan) if
(M, g) satisfies the assumptions above and is not conformally diffeomorphic to the
standard sphere (Sn, gcan).

In this article we consider the dependence of the mass on the Yamabe constant
Y (M, g). We define two functions a 7→ XM

+ (a) and a 7→ XM
− (a) whose values are a

sup and an inf of masses m(g, p) respectively taken over the set of all Riemannian
metrics g with Y (M, g) > a which are flat on a ball of radius 1 centered at p ∈ M

(see Definition 3.1). We prove that for small values of a the values XM
+ (a) and

XM
− (a) decrease and increase respectively under surgery of codimension at least 3

(see Theorem 5.1). Finally, we give an application to the smooth Yamabe invariant
of M defined by

σ(M) := supY (M, g)

where the sup is taken over the set of all Riemannian metrics on M . The question
of whether for a given smooth manifold M one has σ(M) < σ(Sn) is open in
general. We prove that if XM

+ (σ(M)) > 0 then we have σ(M) < σ(Sn). The
precise statement is given in Theorem 6.1.

In the proofs of these theorems we use a surgery result obtained by the second
author together with Ammann and Dahl [1] and a variational characterization of
the mass m(g, p) obtained by the two authors of the present article [5].

Acknowledgement: E. Humbert is supported by the project THESPEGE (APR
IA), Région Centre-Val de Loire, France, 2018-2020.

2. Notation

Let M be a closed manifold of dimension n ≥ 3. The set of Riemannian metrics
on M will be denoted by MM . For g ∈ MM , we denote by

Lg := ∆g +
n− 2

4(n− 1)
sg : C∞(M) → C∞(M)

the conformal Laplace operator of g, where sg is the scalar curvature of g and ∆g

is the Laplace-Beltrami operator with non-negative spectrum. Moreover, we write
N := 2n

n−2 and we denote by

Y (g) := Y (M, g) = inf
{

∫

M uLgu dv
g

‖u‖2LN

∣

∣

∣
u ∈ C∞(M) \ {0}

}

the (conformal) Yamabe constant of g and by σ(M) := supg∈MM
Y (g) the (smooth)

Yamabe invariant ofM . We will write Y (g) instead of Y (M, g) sinceM will always
be clear from the context. We have Y (g) > 0 if and only if all eigenvalues of Lg
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are strictly positive. In the following, we will always assume that σ(M) > 0. We
define, for any a ∈ [0, σ(M)[,

ZM (a) := {g ∈ MM | Y (g) > a}

Ωa
M :=

{

(g, p) ∈ ZM (a)×M | Bg
p(1) is isometric to B

}

.

where Bg
p(1) stands for the ball with center p and radius 1 with respect to the met-

ric g and where B is the standard Euclidean unit ball of dimension n. Note that
these sets are not empty as soon as σ(M) > 0 (see the first item of Proposition 4.1).

Let η be a smooth function onM such that η ≡ 1
(n−2)ωn−1

on Bg
p(

1
2 ) and supp(η) ⊂

Bg
p(1), where ωn−1 denotes the volume of Sn−1 with the standard metric. If (g, p) ∈

Ωa
M for some a ≥ 0 then there exists a unique Green function Gg of Lg at p and

we have for all x ∈M \ {p}:

Gg(x) = η(x)r(x)2−n +m(g, p) + α(x),

where r(x) denotes the Riemannian distance of x and p with respect to g, α is
a smooth function defined on all of M which is harmonic on Bg

p(
1
2 ) and satisfies

α(p) = 0 and m(g, p) ∈ R is a number called the mass of g at p.
We recall that m(g, p) has a variational characterization established in [5]. Namely,
the function Fη: M → R defined by

Fη(x) :=

{

∆g(ηr
2−n)(x), x 6= p

0, x = p

is smooth on M . For every u ∈ C∞(M) we define

Jg
p (u) :=

∫

M\{p}

ηr2−nFη dv
g + 2

∫

M

uFη dv
g +

∫

M

uLgu dv
g.

Then, it was proven in [5] that

−m(g, p) = inf{Jg
p (u) | u ∈ C∞(M)} (1)

and that the infimum is attained for the smooth function β defined by

β(x) := m(g, p) + α(x).

We say that a closed manifold satisfies PMT (for Positive Mass Theorem) if for
every metric g on M and for all points p ∈ M such that g is flat on an open
neighborhood of p and Y (g) > 0 we have m(g, p) ≥ 0. It is conjectured that every
closed manifold satisfies PMT. This conjecture has been proved in some special
cases (see e. g. [7], [11], [9]). A complete proof has been announced by Lohkamp [6]
and Schoen-Yau [10].

3. Upper and lower mass functions of M

Definition 3.1. The upper (resp. lower) mass function XM
+ : [0, σ(M)] → R ∪

{±∞} (resp. XM
− : [0, σ(M)] → R ∪ {±∞}) are defined by : for all a ∈ [0, σ(M)]

XM
+ (a) := lim sup

ε→0
sup

(g,p)∈Ω
max(a−ε,0)
M

m(g, p)

(resp.

XM
− (a) := lim inf

ε→0
inf

(g,p)∈Ω
max(a−ε,0)
M

m(g, p).)
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Note that the maximum in the definitions above is only to ensure that XM
− (a) and

XM
+ (a) are well defined when a = 0. If a > 0, one can just replace Ω

max(a−ε,0)
M by

Ωa−ε
M in these defintions. The goal of this paper is to establish several properties of

XM
± (a).

4. Basic properties of XM
±

Proposition 4.1. It holds that

(1) XM
+ and XM

− are well defined for all a ∈ [0, σ(M)] as soon as σ(M) > 0 ;

(2) For all a ∈ [0, σ(M)], XM
+ (a) ≥ XM

− (a) ;

(3) XM
+ is a decreasing function of a and XM

− is an increasing function of a
and they are both left continuous;

(4) For all a ∈ [0, σ(M)], 0 ≥ XM
− (a) > −∞ ;

(5) For all a > 0, XM
+ (a) < +∞ ;

(6) XM
− (0) = 0 if and only if M possesses the property PMT ;

(7) Let M,N be compact manifolds of dimension n ≥ 3 with positive Yamabe
invariant. Then, for all a > 0 we have

XM∐N
+ (a) = max(XM

+ (a), XN
+ (a)) and XM∐N

− (a) = min(XM
− (a), XN

− (a)).

Proof. (1) It suffices to show that Ωa(M) is not empty if 0 < a < σ(M). We
fix a′ ∈ (a, σ(M)). First, it is clear that there exists a metric g with Y (g) = a′.
Hence, let ξ =

∑

i dx
2
i , where (x1, · · · , x

n) is a system of normal coordinates at some
p ∈M , be a flat metric around p and let gε := (1−ηε)g+ηεξ, where ηε : M → [0, 1]
is a cut-off function equal to 1 on Bg

p(ε), equal to 0 outside Bg
p(2ε) and such that

|dηε| ≤
2
ε and |∇2ηε| ≤

2
ε2 . By Lemma A.1 we have limε→0 Y (gε) = Y (g). Now,

the metric hε =
1
ε2 gε is flat on B

hε
p (1). If ε is small enough then Y (hε) = Y (gε) > a

which implies that hε ∈ Ωa(M).

(2) and (3) are clear from the definitions.

(4) Let u be any nonzero smooth function compactly supported in the Euclidean
ball B. Let (g, p) ∈ Ωa

M for some a. From the definition of Ωa
M , we can identify

(Bp(1), g) with B so that u can be considered as a test function in the variational
characterization (1) which provides

−m(g, p) ≤ Jp
g (u).

The inequality XM
− (a) > −∞ follows by noticing that Jp

g (u) does not depend on
the choice of a ≥ 0 nor on the choice of (g, p) ∈ Ωa

M .

Let us prove now that XM
− (a) ≤ 0. It comes from the facts that if (g, p) ∈ Ωa

M then
(bg, p) ∈ Ωa

M for any b ≥ 1, and also that for any such b

m(bg, p) = b1−
n
2m(g, p).

(5) Let ta > 0 and let (g, p) ∈ Ωa
M . We have to show that m(g, p) is bounded by

a constant which depends only on a but not on (g, p). Let u ∈ C∞(M). In what
follows, C > 0 denotes a positive constant which might depend on a but not on
(g, p). By the variational characterization (1), choose u so that

−m(g, p) + 1 ≥ Jp
g (u)
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From the definition of Jp
g , one has

Jp
g (u) ≥ −C + 2

∫

M

uFη dv
g +

∫

M

uLgu dv
g.

Using that fact that Y (g) ≥ a and using Hölder inequality, one gets

Jp
g (u) ≥ −C − 2‖Fη‖L∞

(

∫

Bg
p(1)

|u|Ndvg

)
1
N

vol(Bg
p(1))

N−1
N + a

(
∫

M

|u|N , dvg
)

2
N

.

Set now

Xg =

(
∫

M

|u|Ndvg
)

1
N

,

we obtain that there exists some C′, C′′ > 0 independent of (g, p) such that

Jp
g (u) ≥ C − C′Xg + C′′X2

g . (2)

This quantity is bounded from below independently of (g, p). This show thatm(g, p)
is bounded from above by a constant independent of (g, p) ∈ Ωa

M . This implies that
for all a > 0, XM

+ (a) < +∞.

(6) Clearly the property PMT for a manifold is equivalent to XM
− (0) ≥ 0. Since

XM
− (0) ≤ 0 by item (4), the result follows.

(7) Let a ∈ (0, σ(M ∐N)] = (0,min(σ(M), σ(N))] and ε > 0. On the one hand, let
(g, p) ∈ Ωa−ε

M∐N where p ∈M . Then g decomposes as g = gM ∐gN where gM ∈ MM

and gN ∈ MN . We have a − ε < Y (g) = min(Y (gM ), Y (gN )). Since p ∈ M , this
implies that (gM , p) ∈ Ωa−ε

M . Let ρ > 0. If ε is small enough, it follows from the def-
inition ofXM

+ (a) thatm(g, p) = m(gM , p) ≤ XM
+ (a)+ρ ≤ max(XM

+ (a), XN
+ (a))+ρ.

In the same way, if p ∈ N , m(g, p) ≤ max(XM
+ (a), XN

+ (a))+ρ. From these inequal-
ities, we obtain

XM∐N
+ (a) ≤ max(XM

+ (a), XN
+ (a)) + ρ

and since ρ is arbitrary

XM∐N
+ (a) ≤ max(XM

+ (a), XN
+ (a)).

On the other hand, let (gM , p) ∈ Ωa−ε
M and let gN any metric on N with Y (gN ) ≥

a−ε. If ε is small enough, then m(gM , p) = m(gM ∐gN , p) ≤ XM∐N
+ (a)+ρ. Hence

XM
+ (a) ≤ XM∐N

+ (a) + ρ. The same holds for N and the result follows.

The proof for XM
− (a) is similar.

�

5. XM
± (a) and surgery

In this section, we first establish the following theorem, whose proof is a conse-
quence of the results in [5] and [1]

Theorem 5.1. Let M be a compact manifold of dimension n ≥ 3 and M ♯ be
obtained from M by a surgery of dimension k ≤ n− 3. Then, for all a ∈ [0, σ(M)],
one has

XM
+ (a) ≤ XM♯

+ (min(a,Λn,k)) and XM
− (a) ≥ XM♯

− (min(a,Λn,k)).

where Λn,0 = +∞ and where Λn,k > 0 depends only on n and k.
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A consequence of Theorem 5.1 is

Corollary 5.2. Let M0 be any compact non spin (resp. spin) simply connected
manifold of dimension n ≥ 5 such that σ(M0) > 0 and let a > 0. Then, for all
compact (resp. compact spin) manifolds M of the same dimension one has

0 ≥ XM
− (min(a,Λn)) ≥ XM0

− (min(a,Λn)) and

XM
+ (min(a,Λn)) ≤ XM0

+ (min(a,Λn))

where Λn = min1≤k≤n−3 Λn,k > 0.

This has the following obvious consequence:

Corollary 5.3. Let M0,M1 be two compact non spin (resp. spin) simply connected
manifolds of dimension n ≥ 5 such that σ(M0), σ(M1) > 0 and let a ∈ (0,Λn).
Then we have

XM0
± (a) = XM1

± (a).

Remark 5.4. By Corollary C in [4], if M is a compact simply connected non-
spin manifold of dimension at least 5 then σ(M) > 0. By [1], when M is simply
connected and σ(M) > 0, it holds that

σ(M) ≥ min{Λn, σ(W1), ..., σ(Wk)}

where W1, ...,Wk are generators of the oriented cobordism group in dimension n.

Remark 5.5. This corollary allows to recover a result in [5]: if M0 not spin, simply
connected of dimension n ≥ 5 satisfies PMT, then all the manifolds of the same
dimension satisfy PMT. Indeed, assume that M0 satisfies PMT then XM0

− (0) = 0

(see Proposition 4.1) and henceXM
− (0) = 0 which implies PMT. Note that Lohkamp

[6] and Schoen and Yau [10] recently announced a complete proof of the Positive
Mass Theorem (i.e. all manifolds satisfy PMT).

Another consequence is the following:

Corollary 5.6. Assume that M is simply connected, that σ(M) > 0 and that
a < Λn. Then, XM

+ (a) > 0.

Remark 5.7. Again, if the proof of the Positive Mass Theorem by Lohkamp in
[6] or by Schoen and Yau announced in [10] is confirmed then, for all M and all
a < σ(M), XM

+ (a) > 0.

5.1. Proof of Theorem 5.1. Let g ∈ Ωa
M . In [5], we constructed a sequence of

metrics gk onM ♯ such that limkm(gk, p) = m(g, p). In the construction, the metric
gk can be made isometric to g in Bg

p(1) (as soon as Bg
p(1) is topologically trivial).

Moreover, we used exactly the same metrics as in the main result of [1] where it
was proved that

lim
k
Y (gk) ≥ min(Λn,k, Y (g))

where Λn,0 = +∞ and Λn,k > 0 depends only on n and k. This proves that for all

ε > 0 we have gk ∈ Ω
min(a,Λn,k)−ε

M♯ as soon as k is large enough. Theorem 5.1 easily
follows.
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5.2. Proof of Corollary 5.2. (1) Let M0 be a compact non-spin (resp. spin)
simply connected manifold with σ(M0) > 0 and M any compact (resp. compact
spin) manifold of the same dimension. By Proposition 4.1,

X
M∐(−M)
+ (a) = XM

+ (a),

where (−M) isM equipped with the opposite orientation. Theorem 5.1 then shows
that

XM
+ (a) = X

M∐(−M)
+ (a) ≤ X

M♯(−M)
+ (min(a,Λn,k)) (3)

where ♯ denotes the connected sum. Here, we used that the connected sum is a
surgery of dimension 0.

(2) The manifolds M♯(−M) and M0♯(−M0) are oriented (resp. spin) cobordant
since they are both oriented (resp. spin) cobordant to Sn. Since M0♯(−M0) is
simply connected and not spin (resp. spin), it is obtained from M♯(−M) by a
finite sequence of surgeries of dimension k ≤ n − 3 (see the proofs of Theorem B
and Theorem C in the article [4] by Gromov-Lawson). Theorem 5.1 then implies
that

X
M♯(−M)
+ (min(a,Λn,k)) ≤ X

M0♯(−M0)
+ (min(a,Λn,k)). (4)

Inequality (3) remains true when M is replaced by M0. As a consequence, we get
from Proposition 4.1 that

X
M0♯(−M0)
+ (a) = max(X

M0♯(−M0)
+ (a), XM0

+ (a)) = X
M0♯(−M0)∐M0

+ (a).

Using Theorem 5.1, we obtain

X
M0♯(−M0)
+ (min(a,Λn,k)) ≤ X

M0♯(−M0)♯M0

+ (min(a,Λn,k))

Now, M0♯(−M0)♯M0 is oriented (resp. spin) cobordant to M0 and M0 is simply
connected and not spin (resp. spin): by the same argument as above,M0 is obtained
from M by a finite sequence of surgeries of dimension k ≤ n− 3. This proves that

X
M0♯(−M0)
+ (min(a,Λn,k)) ≤ X

M0♯(−M0)♯M0

+ (min(a,Λn,k)) ≤ XM0
+ (min(a,Λn,k)).

Together with Inequalities (3) and (4), we obtain the desired inequality

XM
+ (min(a,Λn,k)) ≤ XM0

+ (min(a,Λn,k)).

(3) The argument for XM
− (a) is similar.

6. Application to the Yamabe invariant

Theorem 6.1.

1. For any compact manifold M with σ(M) > 0, one has XM
+ (0) = +∞.

2. For every n ≥ 3 there exists a constant dn > 0 such that for all compact
manifolds M of dimension n with σ(M) > 0 and for all a ∈ (0, σ(M)) we have

XM
+ (a) ≤ dn

(σ(Sn)− a)1/n

a
.
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Corollary 6.2. Let dn be the constant in part 1 of Theorem 6.1 and suppose that
M is a compact manifold of dimension n with σ(M) > 0 such that

dn

σ(Sn)
< lim sup

ε→0

XM
+ (σ(M)− ε)

ε1/n
.

Then we have σ(M) < σ(Sn).

Note that the hypothesis of Corollary 6.2 is satisfied if XM
+ (σ(M)) > 0 since

the function a 7→ XM
+ (a) is continuous from the left. This fact leads to a natural

question: is this possible that XM
+ (σ(M)) > 0 ? The answer is given by

Proposition 6.3. It holds that

XRP 3

+ (σ(RP 3)) > 0 and XSn

+ (σ(Sn)) = 0.

Proof of Proposition 6.3. The fact that XSn

+ (σ(Sn)) = 0 is an immediate con-
sequence of Corollary 6.2. Beside, it was proven by Bray and Neves [3] that
σ(RP 3) < σ(S3) is attained by the standard metric. Since the standard metric
of RP 3 is locally conformally flat, one can choose a metric g in its conformal class
such that Bg

p(1) is flat where p ∈ RP 3 is fixed. Then, since RP 3 satisfies PMT ,
one has

XRP 3

+ (σ(RP 3)) ≥ m(g, p) > 0.

�

Proof of Corollary 6.2. Assume that σ(M) = σ(Sn). Using Theorem 6.1 we get

dn

σ(Sn)
< lim sup

ε→0

dn ε
1/n

(σ(Sn)− ε)ε1/n
= lim sup

ε→0

dn

σ(Sn)− ε

which is a contradiction. �

Proof of Theorem 6.1. For the first statement, let p ∈ M and gm ∈ Ω0
M be a

sequence of metrics converging in C2 to some metric g∞ such that Y (g∞) = 0.
To see the existence of such a sequence, it suffices to construct g∞. For this, just
consider any metric (g, p) ∈ Ωa

M for some a > 0. It is standard that one can
modify g locally outside Bg

p(1) to get a metric h such that Y (h) < 0. Then, set
gt = tg + (1− t)h for t ∈ [0, 1]. Let

t∞ := max{t ∈ [0, 1] | Y (gt) ≤ 0}.

We can then set g∞ := gt∞ and gm := gt∞+ 1
m
. It was then proven in [5] and in [2]

that limmm(gm, p) = +∞ which proves that XM
+ (0) = +∞.

The second statement is much harder to prove. Let a ∈ (0, σ(M)) and let
(gε)ε∈(0,a) be a sequence of Riemannian metrics on M such that for all ε we have

gε ∈ Ωa−ε
M and

Aε := m(gε, p) ≥ XM
+ (a) + ε.

For every ε let βε be the smooth function on M such that −Aε = Jg
p (βε). We put

Xε :=
(

∫

M

|βε|
N dvgε

)
1
N

.
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By Hölder’s inequality and by the definition of Y (gε) we have

−Aε = Jgε
p (βε) =

∫

M\{p}

ηr2−nFη dv
gε + 2

∫

M

βFη dv
gε +

∫

M

βLgβ dv
gε

≥

∫

M\{p}

ηr2−nFη dv
gε − 2

(

∫

M

|Fη|
N

N−1 dvgε
)

N−1
N

Xε + (a− ε)X2
ε .

We put

Cn :=

∫

M\{p}

ηr2−nFη dv
g, Dn := 2

(

∫

M

|Fη|
N

N−1 dvg
)

N−1
N

.

The numbers Cn, Dn are independent of (M, g) since g is flat on the supports of η
and Fη. We get

−Aε ≥ Cn −DnXε + (a− ε)X2
ε .

We have Cn ≥ 0 since for M = Sn with the standard metric gcan we have

0 = −m(gcan, p) ≤ Jgcan
p (0) = Cn.

We also have Cn + Aε ≥ 0 for all ε since

−Aε = m(gε, p) ≤ Jgε
p (0) = Cn.

The quadratic function f(x) := Aε +Cn −Dnx+ (a− ε)x2 satisfies f(Xε) ≤ 0 and
attains its minimum value at x0 = − Dn

2(a−ε) . We get

0 ≥ f(x0) = Aε + Cn −
D2

n

4(a− ε)

and thus

XM
+ (a) + ε ≤ Aε ≤

D2
n

4(a− ε)
− Cn ≤

D2
n

4(a− ε)
.

As ε→ 0 we obtain

XM
+ (a) ≤

D2
n

4a
(5)

Moreover, since f(Xε) ≤ 0, the number Xε is less than or equal to the largest root
of the equation f(x) = 0. Using that Aε + Cn ≥ 0 we get

Xε ≤
Dn +

√

D2
n − 4(Aε + Cn)(a− ε)

2(a− ε)
≤

Dn

a− ε
.

Recall that the function βε is harmonic on Bgε
p (12 ). Thus for all x ∈ Bgε

p (13 ) we
have

βε(x) =
6n

vol(B)

∫

Bgε
x ( 1

6 )

βε(y) dv
gε ,
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where B denotes the Euclidean unit ball, since Bgε
x (16 ) ⊂ Bgε

p (12 ). Using Hölder’s

inequality we get for all x ∈ Bgε
p (13 ):

|βε(x)| ≤
6n

vol(B)
vol
(

Bgε
x

(1

6

))
N−1
N
(

∫

Bgε
x ( 1

6 )

|βε|
N
)

1
N

≤ 6
n
N vol(B)−

1
N Xε

≤ 6
n
N vol(B)−

1
N

Dn

a− ε

=:
Bn

a− ε
. (6)

For every ε we define ρε > 0 such that

ρn−2
ε = δn

|Aε|

(Bn + |Aε|)2
(7)

where δn > 0 can be chosen such that for all ε the number ρε is as small as we

want since the function x 7→ |x|
(Bn+|x|)2 is bounded. We choose δn such that ρε <

1
6

for all ε. Then for every ε we choose hε ∈ C∞(M) such that 0 ≤ hε ≤ 1, hε ≡ 1 on
Bgε

p (ρε), hε ≡ 0 on M \ Bgε
p (2ρε) and |dhε| ≤

2
ρε
. Moreover, for every ε we write

the Green function Gε of Lgε as

Gε(x) = η(x)r(x)2−n +Aε + αε(x)

where αε ∈ C∞(M) is harmonic on Bgε
p (12 ) and satisfies αε(p) = 0.

Step 1. For ε close enough to 0 we have

∫

M

|d(hεαε)|
2dvgε ≤

(n− 2)ωn−1

4
|Aε|.

Since αε is harmonic on the support of dhε, we can use Identity (3) in [5] and
Hölder inequality to write

∫

M

|d(hεαε)|
2dvgε =

∫

Cε

|dhε|
2α2

εdv
gε ≤

(
∫

Cε

|dhε|
ndvgε

)
2
n
(
∫

Cε

|αε|
Ndvgε

)
2
N

where Cε := Bgε
p (2ρε) \ B

gε
p (ρε) is the support of dhε. Observe that the definition

of hε and the fact that the volume of the support of dhε is bounded by Cρnε with
C independent of ε imply that there exists α0 > 0 which is independent of ε such
that

(
∫

Cε

|dhε|
ndvgε

)
2
n

≤ α0.

Hence, for all ε small enough,

∫

M

|d(hεαε)|
2dvgε ≤ α0

(
∫

Cε

|αε|
Ndvgε

)
2
N

. (8)
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Now, with αε = βε−Aε and using the equations (6) and (7) we get for ε close to 0:
(

∫

Cε

|αε|
N dvgε

)
1
N

≤
(

∫

Cε

|βε|
N dvgε

)
1
N

+ |Aε|vol(Cε)
1
N

≤
( Bn

a− ε
+ |Aε|

)

vol(Cε)
1
N

=
( Bn

a− ε
+ |Aε|

)

(2n − 1)
1
N ρ

n−2
2

ε vol(B)
1
N

≤
( Bn

a− ε
+ |Aε|

)

(2n − 1)
1
N δ

n−2
2

n

√

|Aε|

Bn + |Aε|
vol(B)

1
N

≤ En

√

|Aε|

where En > 0 is independent of ε. By choosing δn in equation (7) smaller we may

assume that E2
nα0 ≤ (n−2)ωn−1

4 . Therefore the assertion of Step 1 follows from the
equation (8).

For every ε we define

βε := ζn|Aε|
1
2 ρ

n
2
ε (9)

where ζn > 0 will be fixed later. We have for all ε:

βε = ζn|Aε|
1
2 ρ

n−2
2

ε ρε = ζnδ
1
2
n

|Aε|

Bn + |Aε|
ρε ≤ ζnδ

1
2
n ρε. (10)

We define uε ∈ C∞(M) by

uε(r) =

(

βε

β2
ε + r2

)
n−2
2

and ψε ∈ C∞(M) by

ψε =

∣

∣

∣

∣

∣

∣

uε if r ≤ ρε
ℓε(Gε − hεαε) if ρε ≤ r ≤ 2ρε

ℓεGε if r ≥ 2ρε

where ℓε = uε(ρε)(
1

(n−2)ωn−1
ρ2−n
ε +Aε)

−1 so that ψε is continuous.

Step 2. Conclusion.

We set

Eε =

∫

M

(

|dψε|
2 +

n− 2

4(n− 1)
sgε |ψε|

2
)

dvgε

and

Dε =

(
∫

M

|ψε|
N dvgε

)
2
N

so that

Qε(ψε) =
Eε

Dε
. (11)

We write
Eε = E1 + E2

where

E1 =

∫

Bε

(

|dψε|
2 +

n− 2

4(n− 1)
sgε |ψε|

2
)

dvgε
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and

E2 =

∫

M\Bε

(

|dψε|
2 +

n− 2

4(n− 1)
sgε |ψε|

2
)

dvgε

where Bε := Bgε
p (ρε) which is isometric to the Euclidean ball of radius ρε. On Bε,

it holds that

∆gεuε = n(n− 2)uN−1
ε

and we get from multiplying this equation by uε and integrating by parts that
∫

Bε

|duε|
2dvgε −

∫

∂Bε

uε
∂uε

∂r
dagε = n(n− 2)

∫

Bε

|uε|
Ndvgε . (12)

One also has

σ(Sn) =

∫

Rn |duε|
2dx

(∫

Rn |uε|Ndx
)

2
N

= n(n− 2)

(
∫

Rn

|uε|
Ndx

)
2
n

which leads to
(
∫

Bε

|uε|
Ndx

)
2
n

≤
σ(Sn)

n(n− 2)

Plugging this estimate into equation (12), we obtain

E1 ≤ σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

+

∫

∂Bε

uε
∂uε

∂r
dagε . (13)

Now, we evaluate E2. For this, we integrate by parts:

E2 =

∫

M\Bε

ψεLgεψε dvgε + E3

where E3 is a boundary term which will be computed below. Since LgεGε = 0 on
M \Bε, we obtain

E2 = ℓ2ε

∫

B′

ε\Bε

Lgε(−hεαε)(Gε − hεαε)dvgε + E3

where B′ := Bgε
p (2ρε). Note that since αε is harmonic and hε is constant on Bε,

one has on Bε,

Lgε(−hεαε) = ∆gε(−hεαε) = 0.

Hence, by definition of the Green function Gε, one has:
∫

B′

ε\Bε

Lgε(−hεαε)Gεdv
gε =

∫

M

Lgε(−hεαε)Gεdv
gε = −αε(p) = 0.

We also have
∫

B′

ε\Bε

Lgε(hεαε)(hεαε)dv
gε =

∫

M

Lgε(hεαε)(hεαε) =

∫

M

|d(hεαε)|
2dvgε .

Since, by Step 1 we have
∫

M

|d(hεαε)|
2dvgε ≤

(n− 2)ωn−1

4
|Aε| =: γε (14)

we obtain:

E2 ≤ ℓ2εγε + E3.
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So let us evaluate E3:

E3 = −ℓ2ε

∫

∂Bε

(Gε − hεαε)
∂(Gε − hεαε)

∂r

= −ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)(

−
1

ωn−1
ρ1−n
ε

)

vol(∂Bε)

= ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)

.

Combining this with (13)

E1 + E2 ≤ σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

+

∫

∂Bε

uε
∂uε

∂r
dagε + ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)

+ ℓ2εγε. (15)

It remains to compute

E4 :=

∫

∂Bε

uε
∂uε

∂r
dagε .

Using the fact that on ∂Bε we have

uε = ℓε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)

and that
∂uε

∂r
= −(n− 2)

ρε

β2
ε + ρ2ε

uε

we obtain

E4 = −(n− 2)ωn−1
ρnε

β2
ε + ρ2ε

ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)2

which together with the definition (9) of βε leads to
∫

∂Bε

uε
∂uε

∂r
dagε + ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)

= ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)(

1−
ρnε

β2
ε + ρ2ε

(ρ2−n
ε + (n− 2)ωn−1Aε)

)

= ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)β2
ε − ρnε (n− 2)ωn−1Aε

β2
ε + ρ2ε

= ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)(ζ2n|Aε| − (n− 2)ωn−1Aε)ρ
n
ε

ζ2n|Aε|ρnε + ρ2ε

= ℓ2ε

( 1

(n− 2)ωn−1
+Aερ

n−2
ε

)ζ2n|Aε| − (n− 2)ωn−1Aε

ζ2n|Aε|ρ
n−2
ε + 1

By assumption we have

Aε ≥ XM
+ (a) + ε.

If XM
+ (a) ≤ 0, then the assertion 1 of Theorem 6.1 holds trivially. Thus we may

assume that Aε > 0 for all ε. We put

ζn :=

√

(n− 2)ωn−1

2
.
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If ρε is small enough, we obtain

∫

∂Bε

uε
∂uε

∂r
dagε + ℓ2ε

( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)

≤ ℓ2ε
1

(n− 2)ωn−1

(

−
(n− 2)ωn−1Aε

2

)

.

Inserting this into equation (15) and using the definition (14) of γε we get

E1 + E2 ≤ σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

− ℓ2ε
1

(n− 2)ωn−1

(

−
(n− 2)ωn−1Aε

2
+

(n− 2)ωn−1Aε

4

)

= σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

−
ℓ2εAε

4
.

Moreover, if ρε is small enough, we obtain

ℓ2ε =
( βε

β2
ε + ρ2ε

)n−2( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)−2

=
(ζn|Aε|

1/2ρ
n/2
ε

ζ2nAερnε + ρ2ε

)n−2( 1

(n− 2)ωn−1
ρ2−n
ε +Aε

)−2

=
( ζn|Aε|

1/2ρ
n/2
ε

ζ2nAερ
n−2
ε + 1

)n−2

ρ4−2n
ε

( 1

(n− 2)ωn−1
+Aερ

n−2
ε

)−2

ρ2n−4
ε

≥
(ζn|Aε|

1/2

2

)n−2

ρ
n(n−2)

2
ε

(n− 2)2ω2
n−1

4
.

From this and the definition (7) of ρε it follows that

E1 + E2 ≤ σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

− 4−n
(

(n− 2)ωn−1

)
n+2
2 |Aε|

n
2 ρ

n(n−2)
2

ε

= σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

− 4−n
(

(n− 2)ωn−1

)
n+2
2 δ

n
2
n

|Aε|
n

(Bn + |Aε|)n

=: σ(Sn)

(
∫

Bε

|ψε|
Ndvgε

)
2
N

− E′
n

|Aε|
n

(Bn + |Aε|)n
.

We have

Dε ≥

(
∫

Bε

|ψε|
N dvgε

)
2
N

and therefore

Qε(ψε) =
E1 + E2

Dε
≤ σ(Sn)− E′

n

|Aε|
n

(Bn + |Aε|)n

(
∫

Bε

|ψε|
N dvgε

)− 2
N
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Moreover, using the substitution r = βεs we get
∫

Bε

|ψε|
N dvgε = ωn−1

∫ ρε

0

( βε

β2
ε + r2

)n

rn−1 dr

= ωn−1

∫ ρε/βε

0

( 1

1 + s2

)n

sn−1 ds

≤ ωn−1

∫ ∞

0

( 1

1 + s2

)n

sn−1 ds

=: Fn.

It follows that

Qε(ψε) ≤ σ(Sn)−
E′

n

F
2/N
n

|Aε|
n

(Bn + |Aε|)n

and therefore with Gn := (E′
nF

−2/N
n )1/n we get

a− ε < Y (gε) ≤ σ(Sn)− (Gn)
n |Aε|

n

(Bn + |Aε|)n
.

We take the limit ε→ 0 and we get

a ≤ σ(Sn)− (Gn)
n XM

+ (a)n

(Bn +XM
+ (a))n

= σ(Sn)− (Gn)
n 1

( Bn

XM
+ (a)

+ 1)n

It follows that
Bn

XM
+ (a)

+ 1 ≥
Gn

(σ(Sn)− a)1/n

We put αn := σ(Sn)− (Gn)
n

2n and we distinguish two cases.
a) If a ≥ αn we get

Bn

XM
+ (a)

≥
1

2

Gn

(σ(Sn)− a)1/n

and since a < σ(Sn) we get

XM
+ (a) ≤

2Bn

Gn
(σ(Sn)− a)1/n ≤

2Bn

Gn

σ(Sn)

a
(σ(Sn)− a)1/n

b) If a ≤ αn we have
σ(Sn)− a ≥ σ(Sn)− αn

and therefore using equation (5)

XM
+ (a) ≤

D2
n

4a
≤

D2
n(σ(S

n)− a)1/n

4(σ(Sn)− αn)1/na
=
D2

n(σ(S
n)− a)1/n

2Gna
.

This shows the second statement. �

Appendix A. A lemma on the Yamabe constant

Let M be a compact manifold of dimension n ≥ 3. For any Riemannian metric
g on M we denote by

Lg := ∆g +
n− 2

4(n− 1)
sg

the Yamabe operator of g and by

Qg : C∞(M) → C∞(M), Qg(u) :=

∫

M uLgu dv
g

(
∫

M
|u|N )2/N
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the Yamabe functional of g where N := 2n
n−2 . We denote by

Y (g) := inf{Qg(u) | u ∈ C∞(M), u 6= 0}

the Yamabe constant of (M, g). In this Appendix, we prove the following Lemma
which is used several times in the paper.

Lemma A.1. Let (M, g) be a compact Riemannian manifold with Y (g) > 0. Let
p ∈M , let ε > 0 and let h be a Riemannian metric defined on Bg

p(2ε). We assume
that g and h coincide at p. Let χε ∈ C∞(M), 0 ≤ χε ≤ 1 be a cut-off function
equal to 1 on Bg

p(ε), equal to 0 outside Bg
p(2ε) and which satisfies |dχε|g ≤ C

ε and

|∇2χε| ≤
C
ε2 . Define

gε := χεh+ (1 − χε)g.

Then we have limε→0 Y (gε) = Y (g).

Proof. Note that by Taylor expansion we have on Bg
p(2ε)

|g − h|g ≤ Cε and thus |g − gε|g ≤ Cε

for some C independent of ε. Thus for all u ∈ C∞(M) we have
∣

∣

∣

∣

∫

M

u dvgε −

∫

M

u dvg
∣

∣

∣

∣

≤ Cε

∫

Bg
p(2ε)

|u| dvg,

∣

∣|du|2gε − |du|2g
∣

∣ =
∣

∣(gijε − gij)∂iu∂ju
∣

∣ ≤ Cε|du|2g

and using that |∇2χε| |g − h|g ≤ C
ε we get

|sgε − sg| ≤
C

ε
and |sgε | ≤

C

ε
.

Let (uε)ε>0 be a sequence of smooth functions on M such that
∫

M
|uε|

N dvg and
Qg(uε) are bounded independently of ε. We prove that

lim
ε→0

(Qgε(uε)−Qg(uε)) = 0. (16)

By the triangle inequality we have
∣

∣

∣

∣

∫

M

sgεu
2
ε dv

gε −

∫

M

sgu
2
ε dv

g

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

M

sgεu
2
ε dv

gε −

∫

M

sgεu
2
ε dv

g

∣

∣

∣

∣

+

∫

M

|sgε − sg||uε|
2 dvg

By the Hölder inequality we get

∫

M

|sgε −sg||uε|
2dvg ≤

C

ε
vol(Bg

p(2ε))
2
n

(
∫

M

|uε|
Ndvg

)
2
N

≤ Cε

(
∫

M

|uε|
Ndvg

)
2
N

,

and
∣

∣

∣

∣

∫

M

sgεu
2
ε dv

gε −

∫

M

sgεu
2
ε dv

g

∣

∣

∣

∣

≤ Cε

∫

Bg
p(2ε)

|sgε ||uε|
2 dvg

≤ Cvol(Bg
p(2ε))

2
n

(
∫

M

|uε|
Ndvg

)
2
N

≤ Cε2
(
∫

M

|uε|
Ndvg

)
2
N

.
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Moreover, we get
∣

∣

∣

∣

∫

M

|duε|
2
gε dv

gε −

∫

M

|duε|
2
g dv

g

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

M

|duε|
2
gε dv

gε −

∫

M

|duε|
2
gε dv

g

∣

∣

∣

∣

+

∫

M

∣

∣|duε|
2
gε − |duε|

2
g

∣

∣ dvg

≤ Cε

∫

M

|duε|
2
g dv

g

= Cε

(
∫

M

uεLguε dv
g −

∫

M

sg|uε|
2 dvg

)

≤ Cε

(

∫

M

uεLguε dv
g + C

(
∫

M

|uε|
N dvg

)
2
N

)

.

The equation (16) follows easily from these estimates. Now let (uε)ε be a sequence
in C∞(M) such that

∫

M
|uε|

N dvg = 1 and

Qgε(uε) = Y (gε) + ε

for all ε. Using (16) we get

Y (g) ≤ lim inf
ε→0

Qg(uε) = lim inf
ε→0

Qgε(uε) = lim inf
ε→0

Y (gε).

On the other hand let u ∈ C∞(M) such that
∫

M |u|N dvg = 1 and

Qg(u) = Y (g) + δ

where δ > 0. Using (16) we get

lim sup
ε→0

Y (gε) ≤ lim sup
ε→0

Qgε(u) = lim sup
ε→0

Qg(u) = Y (g) + δ.

As δ → 0 we get lim supε→0 Y (gε) ≤ Y (g). �
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