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MASS FUNCTIONS OF A COMPACT MANIFOLD

ANDREAS HERMANN AND EMMANUEL HUMBERT

ABSTRACT. Let M be a compact manifold of dimension n. In this paper, we
introduce the Mass Function a > 0 +— Xfy (a) (resp. a > 0+ XM (a)) which
is defined as the supremum (resp. infimum) of the masses of all metrics on M
whose Yamabe constant is larger than a and which are flat on a ball of radius 1
and centered at a point p € M. Here, the mass of a metric flat around p is
the constant term in the expansion of the Green function of the conformal
Laplacian at p. We show that these functions are well defined and have many
properties which allow to obtain applications to the Yamabe invariant (i.e. the
supremum of Yamabe constants over the set of all metrics on M).
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1. INTRODUCTION

Let (M, g) be a closed Riemannian manifold of dimension n > 3 and denote by

n—2
Lg = Ag—f—mSQZ COO(M)—>COO(M)
the conformal Laplace operator of g, where s, is the scalar curvature of g and A,
is the Laplace-Beltrami operator with non-negative spectrum. Assume that the
metric ¢ is flat on an open neighborhood of a point p € M and that all eigenvalues
of L, are strictly positive. Then it is well-known that there exists a unique Green
function Gy of L, at p, i.e.in the sense of distributions we have L,G; = J,, the
function Gy is smooth and strictly positive on M \ {p} and as x — p we have

1
(n —2)wp_1r(x)n2

Gy(r) = +m(g,p) +o(1)

Key words and phrases. Yamabe operator; Yamabe invariant; surgery; positive mass theorem.
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where w,, 1 is the volume of the standard sphere of dimension n — 1, the function
r denotes the Riemannian distance from p and m(g,p) € R is a number called
the mass of g at p. This quantity is related to the so-called ADM mass of an
asymptotically flat Riemannian manifold. The study of the mass has led to many
interesting results in geometric analysis and General Relativity. An example is an
application to the so-called conformal Yamabe constant of (M, g) defined by

Y(M,g):= inf/ 54 dv?,
M

where the inf is taken over the set of all Riemannian metrics on M which have
unit volume and are conformal to g. Namely, in a famous article [8], Richard
Schoen used positivity of the mass m(g,p) to prove that Y (M, g) < Y(S™, gecan) if
(M, g) satisfies the assumptions above and is not conformally diffeomorphic to the
standard sphere (5™, gcan)-

In this article we consider the dependence of the mass on the Yamabe constant
Y (M, g). We define two functions a — X2 (a) and a — X (a) whose values are a
sup and an inf of masses m(g, p) respectively taken over the set of all Riemannian
metrics g with Y (M, g) > a which are flat on a ball of radius 1 centered at p € M
(see Definition BI). We prove that for small values of a the values X} (a) and
XM(a) decrease and increase respectively under surgery of codimension at least 3
(see Theorem B.1]). Finally, we give an application to the smooth Yamabe invariant
of M defined by

o(M):=supY(M,g)

where the sup is taken over the set of all Riemannian metrics on M. The question
of whether for a given smooth manifold M one has o(M) < o(S™) is open in
general. We prove that if X} (o(M)) > 0 then we have o(M) < o(S™). The
precise statement is given in Theorem

In the proofs of these theorems we use a surgery result obtained by the second
author together with Ammann and Dahl [I] and a variational characterization of
the mass m(g,p) obtained by the two authors of the present article [5].

Acknowledgement: E. Humbert is supported by the project THESPEGE (APR
TA), Région Centre-Val de Loire, France, 2018-2020.

2. NOTATION

Let M be a closed manifold of dimension n > 3. The set of Riemannian metrics
on M will be denoted by M ;. For g € My, we denote by
n—2 )
An—1)°9"
the conformal Laplace operator of g, where s, is the scalar curvature of g and A,

is the Laplace-Beltrami operator with non-negative spectrum. Moreover, we write

N = % and we denote by

Lg:=A,+ C*(M) — C*(M)

W‘uecw(m\{o}}
LN

the (conformal) Yamabe constant of g and by o(M) := sup,e p,, Y (9) the (smooth)
Yamabe invariant of M. We will write Y (g) instead of Y (M, g) since M will always
be clear from the context. We have Y(g) > 0 if and only if all eigenvalues of L,

Y(g):=Y(M,g) = inf{
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are strictly positive. In the following, we will always assume that o(M) > 0. We
define, for any a € [0,0(M)],

Zn(a) = {g € My | Y(g) > a}
Q% = {(9,p) € Zn(a) x M | BJ(1) is isometric to B} .
where B (1) stands for the ball with center p and radius 1 with respect to the met-

ric g and where B is the standard Euclidean unit ball of dimension n. Note that
these sets are not empty as soon as o(M) > 0 (see the first item of Proposition F]).

Let 1 be a smooth function on M such that n = W

B(1), where w, 1 denotes the volume of $"~! with the standard metric. If (g, p) €
Q4 for some a > 0 then there exists a unique Green function G, of L, at p and

we have for all z € M \ {p}:
Gy(x) = n(@)r(z)*™" +m(g,p) + a(x),

where r(z) denotes the Riemannian distance of x and p with respect to g, « is
a smooth function defined on all of M which is harmonic on BY(3) and satisfies
a(p) = 0 and m(g,p) € R is a number called the mass of g at p.

We recall that m(g, p) has a variational characterization established in [5]. Namely,
the function F;;: M — R defined by

_ [ AT (@), w#£p
Fn(x) T { 0’ x=p
is smooth on M. For every u € C*° (M) we define

J3(u) ::/ nri ", dv? + 2/ ukFy, dv? —|—/ uL gu dv?.
M\{p} M M

on Bf(%) and supp(n) C

Then, it was proven in [5] that
—m(g,p) = mf{JJ(u) [ u e C=(M)} (1)
and that the infimum is attained for the smooth function S defined by

B(x) :=m(g,p) + a(x).
We say that a closed manifold satisfies PMT (for Positive Mass Theorem) if for
every metric ¢ on M and for all points p € M such that g is flat on an open
neighborhood of p and Y (g) > 0 we have m(g,p) > 0. It is conjectured that every
closed manifold satisfies PMT. This conjecture has been proved in some special
cases (see e.g. [7], [I1], [9]). A complete proof has been announced by Lohkamp [6]
and Schoen-Yau [10].

3. UPPER AND LOWER MASS FUNCTIONS OF M

Definition 3.1. The upper (resp. lower) mass function X : [0,0(M)] - RU
{£oo} (resp. XM :[0,0(M)] — RU {Fo0}) are defined by : for all a € [0, 5(M)]

X (a) == limsup sup m(g,p)
e0 (g pequax(ae0)
(resp.
XM(g) :=liminf inf m(g,p).)
e—0 max(a—e,0)

(9.p) €Y,
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Note that the maximum in the definitions above is only to ensure that X (a) and
Xfy(a) are well defined when a = 0. If a > 0, one can just replace Qﬁax(a_g’o) by

97\1\47 in these defintions. The goal of this paper is to establish several properties of
X' (a).

4. BASIC PROPERTIES OF X}

Proposition 4.1. It holds that

(1) XM and XM are well defined for all a € [0,0(M)] as soon as (M) >0 ;

(2) For all a € [0,0(M)], XM(a) > XM(a) ;

(3) Xf[ is a decreasing function of a and XM is an increasing function of a
and they are both left continuous;

(4) For all a € [0,0(M)], 0> XM(a) > —o0 ;

(5) For alla >0, XM(a) < +o0 ;

(6) XM (0) =0 if and only if M possesses the property PMT ;

(7) Let M, N be compact manifolds of dimension n > 3 with positive Yamabe
invariant. Then, for all a > 0 we have

Xf[HN(a) = max(Xf[(a), Xf(a)) and XMV (q) = min(XM (a), XN (a)).

Proof. (1) It suffices to show that Q%(M) is not empty if 0 < a < o(M). We
fix o’ € (a,0(M)). First, it is clear that there exists a metric g with Y (g) = o'
Hence, let £ = >, da?, where (z1,- -+ ,2") is a system of normal coordinates at some
p € M, be a flat metric around p and let g. := (1—n.)g+n:&, where ne : M — [0, 1]
is a cut-off function equal to 1 on Bf(e), equal to 0 outside Bj(2¢) and such that
ldn.| < 2 and |V?n| < %. By Lemma [AJ] we have lim._,0 Y (g-) = Y (g). Now,
the metric h. = Zg. is flat on BJ<(1). If ¢ is small enough then Y (h.) = Y(g:) > a
which implies that h. € Q*(M).

(2) and (3) are clear from the definitions.

(4) Let u be any nonzero smooth function compactly supported in the Euclidean
ball B. Let (g,p) € Qf, for some a. From the definition of Qf,, we can identify
(Bp(1),g) with B so that u can be considered as a test function in the variational
characterization () which provides

-m(g,p) < JI(u).

The inequality X (a) > —oco follows by noticing that JP(u) does not depend on
the choice of a > 0 nor on the choice of (g,p) € Q%,.

Let us prove now that X*(a) < 0. It comes from the facts that if (g, p) € Q%, then
(bg,p) € Qf, for any b > 1, and also that for any such b

m(bg, p) = b'"2m(g,p).

(5) Let ta > 0 and let (g,p) € 2%,. We have to show that m(g,p) is bounded by
a constant which depends only on a but not on (g,p). Let u € C*°(M). In what
follows, C' > 0 denotes a positive constant which might depend on a but not on
(g9,p). By the variational characterization (I, choose u so that

—m(g,p) +1 > JJ(u)
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From the definition of J¥, one has

J¥(u) > —C+2/ andUg—i—/ uLgudv?.
M M

Using that fact that Y (g) > a and using Holder inequality, one gets

S

JP(u) = ~C —2||F | (/ |u|Ndvg> vol(Bgu))%M(/ |u|N,dv9)
‘ B3 (1) M

Set now
~
X, = </ |u|Ndv9> ,
M

we obtain that there exists some C’, C”" > 0 independent of (g, p) such that
JP(u) > C—C'Xy+C"X]. (2)
This quantity is bounded from below independently of (g, p). This show that m(g, p)

is bounded from above by a constant independent of (g, p) € 2%,. This implies that
for all @ > 0, X} (a) < +oc.

N

(6) Clearly the property PMT for a manifold is equivalent to X (0) > 0. Since
XM(0) <0 by item (4), the result follows.

(7) Let a € (0,0(MIIN)] = (0,min(c(M),o(N))] and € > 0. On the one hand, let
(9,p) € Q51N where p € M. Then g decomposes as g = gar L gn where gy € Moy
and gy € Mpy. We have a — e < Y(g) = min(Y (gar),Y (gn)). Since p € M, this
implies that (gar,p) € Q% °. Let p > 0. If ¢ is small enough, it follows from the def-
inition of X} (a) that m(g,p) = m(gar,p) < X} (a)+p < max(XY (a), XV (a))+p.
In the same way, if p € N, m(g,p) < max(X} (a), XY (a))+ p. From these inequal-
ities, we obtain
XM () < max(XY (a), X (@) +
and since p is arbitrary
XN (q) < max(XM(a), XY (a)).

On the other hand, let (gas,p) € Q3 ° and let gy any metric on N with Y (gn) >
a—e. If £ is small enough, then m(gar,p) = m(gn Ugn,p) < XN (a)+ p. Hence
XM (a) < XN (q) + p. The same holds for N and the result follows.

The proof for XM (a) is similar.

5. X} (a) AND SURGERY

In this section, we first establish the following theorem, whose proof is a conse-
quence of the results in [5] and [I]

Theorem 5.1. Let M be a compact manifold of dimension n > 3 and M?* be
obtained from M by a surgery of dimension k < n—3. Then, for all a € [0,0(M)],
one has

XM(a) < Xfyﬁ (min(a, A ) and XM (a) > XM (min(a, A )).

where Ay, o = +00 and where A, > 0 depends only on n and k.
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A consequence of Theorem [B.1]is

Corollary 5.2. Let My be any compact non spin (resp. spin) simply connected
manifold of dimension n > 5 such that o(My) > 0 and let a > 0. Then, for all
compact (resp. compact spin) manifolds M of the same dimension one has

0> XM (min(a, A,)) > X (min(a, A,)) and
XM (min(a, A,)) < XM (min(a, A,))
where Ay, = minj<g<p_3 A > 0.
This has the following obvious consequence:

Corollary 5.3. Let My, My be two compact non spin (resp. spin) simply connected
manifolds of dimension n > 5 such that o(My),o(My) > 0 and let a € (0,A,,).
Then we have

Xi"(a) = X1 (a).

Remark 5.4. By Corollary C in [, if M is a compact simply connected non-
spin manifold of dimension at least 5 then o(M) > 0. By [1], when M is simply
connected and o(M) > 0, it holds that

o(M) > min{A,,c(W1),...,c(Wg)}
where W7, ..., W}, are generators of the oriented cobordism group in dimension n.

Remark 5.5. This corollary allows to recover a result in [5]: if My not spin, simply
connected of dimension n > 5 satisfies PMT, then all the manifolds of the same
dimension satisfy PMT. Indeed, assume that M satisfies PMT then X 0)=0
(see PropositionT]) and hence X (0) = 0 which implies PMT. Note that Lohkamp
[6] and Schoen and Yau [I0] recently announced a complete proof of the Positive
Mass Theorem (i.e. all manifolds satisfy PMT).

Another consequence is the following:

Corollary 5.6. Assume that M is simply connected, that o(M) > 0 and that
a <A,. Then, X} (a) > 0.

Remark 5.7. Again, if the proof of the Positive Mass Theorem by Lohkamp in
[6] or by Schoen and Yau announced in [I0] is confirmed then, for all M and all
a<o(M), X¥(a)>0.

5.1. Proof of Theorem 5.1l Let g € Q%,. In [5], we constructed a sequence of
metrics gx on M* such that limy, m(gy, p) = m(g, p). In the construction, the metric
gr. can be made isometric to g in BJ(1) (as soon as Bj(1) is topologically trivial).
Moreover, we used exactly the same metrics as in the main result of [I] where it
was proved that

lim ¥ (gx) = min(Anx, Y (9))

where A, o = 400 and A, ; > 0 depends only on n and k. This proves that for all
min(a,Ap )—

Iy © as soon as k is large enough. Theorem [5.1] easily

e > 0 we have g €
follows.
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5.2. Proof of Corollary (1) Let My be a compact non-spin (resp. spin)
simply connected manifold with o(My) > 0 and M any compact (resp. compact
spin) manifold of the same dimension. By Proposition [41]

XM (@) = X (a),

where (—M) is M equipped with the opposite orientation. Theorem .1l then shows
that

MII(—M M#(—M) .
XM(a) = x MM () < XM (min(a, A, 1)) (3)
where f denotes the connected sum. Here, we used that the connected sum is a

surgery of dimension 0.

(2) The manifolds M#(—M) and My#(—My) are oriented (resp. spin) cobordant
since they are both oriented (resp. spin) cobordant to S™. Since Myf(—My) is
simply connected and not spin (resp. spin), it is obtained from M#(—M) by a
finite sequence of surgeries of dimension k& < n — 3 (see the proofs of Theorem B
and Theorem C in the article [4] by Gromov-Lawson). Theorem [51] then implies
that

XM (min(a, A, p)) < XYOHMO) (min(a, Ay, ). (4)

Inequality @) remains true when M is replaced by My. As a consequence, we get
from Proposition 1] that

Xyoﬁ(—Mo)(a) _ maX(XJ]\r/IOﬁ(_MO)(a),Xyo (a)) = XJ]\F/IOM_MO)HMO(@).
Using Theorem Bl we obtain
X MorEMO) (min(a, A, ) < XORCMOIMO (1nin (g, A, 1)

Now, Myt(—Mp)tMy is oriented (resp. spin) cobordant to My and My is simply
connected and not spin (resp. spin): by the same argument as above, My is obtained
from M by a finite sequence of surgeries of dimension £ < n — 3. This proves that

X MoEEMO) (1pin(a, Ay k) < XOHCMOEMO (i (g, A 1)) < XM (min(a, Ay k).
Together with Inequalities (B) and (), we obtain the desired inequality
X_y(min(a, Ani)) < Xj‘_do (min(a, Ay ))-

(3) The argument for X (a) is similar.

6. APPLICATION TO THE YAMABE INVARIANT

Theorem 6.1.
1. For any compact manifold M with o(M) > 0, one has X (0) = +oo.

2. For every n > 3 there exists a constant d,, > 0 such that for all compact
manifolds M of dimension n with (M) > 0 and for all a € (0,0(M)) we have
(o(S") —a)t/m

Xfy(a)gdn "
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Corollary 6.2. Let d,, be the constant in part 1 of Theorem[6.1 and suppose that
M is a compact manifold of dimension n with (M) > 0 such that

X{(o(M) —¢)
n 1i + '
o(5m < ERP T e

Then we have o(M) < o(S™).

Note that the hypothesis of Corollary is satisfied if X/ (o(M)) > 0 since
the function a — X}/ (a) is continuous from the left. This fact leads to a natural
question: is this possible that X! (o(M)) > 0 ? The answer is given by

Proposition 6.3. It holds that
XEPY(6(RP?) >0 and X3 ((S™)) = 0.

Proof of Proposition 63 The fact that X7 (0(S™)) = 0 is an immediate con-
sequence of Corollary Beside, it was proven by Bray and Neves [3] that
o(RP3) < 0(S?) is attained by the standard metric. Since the standard metric
of RP? is locally conformally flat, one can choose a metric ¢ in its conformal class
such that BY(1) is flat where p € RP? is fixed. Then, since RP? satisfies PMT,
one has

X5 (o(RP?) > m(g,p) > 0.

O

Proof of Corollary[6Z2 Assume that o(M) = o(S™). Using Theorem [6.1] we get

dn < lims dpet/m lim s dp
imsup —————— = limsup ——
o(5m) S oY (S —e)etm T Y (S — ¢
which is a contradiction. O

Proof of Theorem[6. For the first statement, let p € M and g, € Q% be a
sequence of metrics converging in C? to some metric g, such that Y (gso) = 0.
To see the existence of such a sequence, it suffices to construct g.,. For this, just
consider any metric (g,p) € Qf, for some a > 0. It is standard that one can
modify g locally outside Bj(1) to get a metric h such that Y (h) < 0. Then, set
gt =tg+ (1 —t)h for t € [0,1]. Let

too :=max{t € [0,1] | Y(g:) < 0}.

We can then set goo := gt and gy, := g; 4 1. It was then proven in [5] and in [2]
that lim,, m (g, p) = +0o which proves that X (0) = +oc.

The second statement is much harder to prove. Let a € (0,0(M)) and let
(9e)ze(0,a) be a sequence of Riemannian metrics on M such that for all € we have

ge € Qf/° and
A= m(gsvp> > Xy(a) +e.
For every ¢ let 3. be the smooth function on M such that —A. = JJ(8.). We put

X, = (/M 18-V dv‘k)%.
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By Hélder’s inequality and by the definition of Y'(g.) we have
—Ae = J;‘?E (Be) =

>

/ nr? " E, dv9e + 2 / BF, dv?s + / BL,B dv¥
M\{p} M M

N-—1
M\{p} M

We put

Cn .

N

N1
/ N F, dvd, D, = 2(/ |7 )
M\{p} M
The numbers C,,, D,, are independent of (M, g) since g is flat on the supports of 7
and F,. We get
_As > Cn - DnXE + (a - E)Xg
We have C,, > 0 since for M = S™ with the standard metric gc.n we have

0= _m(gcanup) < chan (0)

=C,.
We also have C,, + A. > 0 for all ¢ since

—A: = m(ge,p) < JJ(0) = Cp.

Dy,

~atay We get

The quadratic function f(z) := A. + C,, — Dz + (a — €)x? satisfies f(X.) <0 and
attains its minimum value at g =

D?
> p— _ 471‘
0> f(zo) = A+ C,, a—o)
and thus

D? D?
M <A <—2__(C, < n__
Xr@tesde s g~ O S g

As £ — 0 we obtain

5
~ 4da (5)
Moreover, since f(X.) <0, the number X, is less than or equal to the largest root
of the equation f(z) =0. Using that A. + C,, > 0 we get

X. < D, + /D2 —4(A. + Cp)(a —¢)
- 2(a—¢)

T a—c¢
Recall that the function f is harmonic on By (5). Thus for all z € B (3) we
have

6"
0= g Ly, O
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where B denotes the Euclidean unit ball, since BY=(%) C Bgi(%). Using Hélder’s
inequality we get for all z € BY=(3):

i< ol ()7 ()’
< 6% vol(B)~~ X,

a—¢

For every € we define p. > 0 such that

B |Ac|
pe = 0n (B, + |A])? @

where d,, > 0 can be chosen such that for all € the number p. is as small as we

want since the function x — % is bounded. We choose d,, such that p. < %

for all e. Then for every € we choose h. € C*° (M) such that 0 < h. <1, h. =1 on
Bg=(pe), he =0 on M\ Bf=(2pc) and |dh.| < p%. Moreover, for every € we write
the Green function G, of L, as

Ge(x) = n(@)r(z)* ™" + As + ac(x)
where a. € C°°(M) is harmonic on B¢+ (3) and satisfies ac(p) = 0.
Step 1. For e close enough to O we have

n—2)Wn_
/M (d(hea)|2dv® < % AL,

Since a, is harmonic on the support of dh., we can use Identity (3) in [5] and
Holder inequality to write

2
/ ld(hean) 2dvs = / |dh€|2a§dvgss( / |dh€|"dvgs> (/
M Cs CE c

where C. := BJ=(2p:) \ BJ(p) is the support of dh.. Observe that the definition
of h. and the fact that the volume of the support of dh. is bounded by Cpl" with
C independent of € imply that there exists cg > 0 which is independent of € such

that
2
(/ |dh8|"dvgs) < .
C.

Hence, for all £ small enough,

[ ldtheaopa: < a (/C |a€|Ndvgg) . ®)

€

|aa|Ndvgs)

=

EC
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Now, with a. = 8. — A: and using the equations (@) and (7)) we get for € close to 0:

(/C |a€|Ndvgf>% < (/C |B€|Ndvgs)% A vol(CL) ¥

< (2 v jad)vol(co)*

a— &
- (aB_na + |A€|> (2" - 1)%9‘:;2‘701(3)%

Bn 1 n=2 |A5| 1
< n_1\)nv§, 2 YL = N
< G2z M) @ - DR GV l®)

< Env/IA:|

where F,, > 0 is independent of €. By choosing 0,, in equation ([l smaller we may
assume that E?lao < (=2)wn-1  Therefore the assertion of Step 1 follows from the
equation (g]).

For every € we define

Be = <n|As|%pg 9)
where (, > 0 will be fixed later. We have for all :
n—2 1 A 1
Be = <n|As|%p€ 2 pe = Cn(sv% B71|+7€||Aa|ps < Cn(sﬁ Pe- (10)
We define u. € C*°(M) by
n—2
Be ) 7
uc(r) = <B€2 ¥ 2
and ¢, € C>°(M) by
Ug if r < pe
1/)5 = ga(Ga - haaa) if pe <1 < 2p,
-G, if r > 2pe

where £, = u. (pa)(mpg_" + A.)~! so that 1. is continuous.

Step 2. Conclusion.

We set )
n—
E. = (d 2 2)d e
o= [l s e o
and
2
N
Da = (/ |"/18|Ndvgs>
M
so that
E
Qs(¢s) = D_Z (11)
We write
E.=FE{+ Fy
where

_ 2, N—2 2 7,,9:
Br= [ (100 + gyl o
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and
2

_ 2 n- 2\ 7 ge
O W o T

where B, := BJ*(p.) which is isometric to the Euclidean ball of radius p.. On B,
it holds that

Ay ue =n(n —2)ud?
and we get from multiplying this equation by u. and integrating by parts that

/ (due [2dv®* —/ u%“ff da% = n(n — 2)/ e |V o (12)
o

B. B. r B

One also has

du.|2d B
o(S") = M = n(n—2) </ |u5|Nd3:)
(f N |u€|Nd$)N n

(fwre) <500

Plugging this estimate into equation (I2)), we obtain

E, <o(S™) (/ |z/Ja|Ndvgs> ) —|—/ Ue %ua da’. (13)
o

B. B. r

which leads to

Now, we evaluate Fs. For this, we integrate by parts:
By = / e L. tbz dv,, + Fs
M\ Be

where Es is a boundary term which will be computed below. Since L, G. = 0 on
M \ B, we obtain

Ey = (? Lg.(=heoe)(Ge — heae)dvg, + E3
Bé\BE

where B’ := Bj-(2p.). Note that since a. is harmonic and h. is constant on B.,
one has on B,

Ly (—hea:) = Ay (—heae) = 0.

Hence, by definition of the Green function G, one has:
/ Ly (—hea:)Gedv¥: :/ Ly (—hea:)Gedv9s = —a.(p) = 0.
B!\ B. M
We also have
/ Ly (heoe)(heag)dv?s = / Ly (heoe)(heae) = / |d(heo)|?dvde.
B/\B-. M M

Since, by Step [l we have

/M |d(heae)|Pdv?s < M#Mal =% (14)

we obtain:
Ey < 29 + E.



MASS FUNCTIONS OF A COMPACT MANIFOLD 13

So let us evaluate Fjs:
E; = _gg/ (Ge — haaa)M
OB. 87‘
1 1
_ _p2 2—n AE _ 1—n 1 Bs
65((71— 2)wp— 1p6 + )( wn_lpa )VO (9Bc)
1
_p2(f_ -  2-mn
=L ( (n—2)wp—1 Pt AE)'
Combining this with (T3]
%
Ei1 + Ey <o(S") (/ |¢5|Ndvg5)
B.

Oue 2 1 2— 2
€ : T oy . " As = 1
+}éBE” — +€s(01_2ﬁwllps +A)+ By (15)

E, = / Uge Oue da’=.
OB, (97‘

Using the fact that on 0B, we have

It remains to compute

1
=/ (7 2—n A )
Ue € (’I’L — 2)wn_1p€ + A.

and that

Ou, Pe

=—(n—-2

or =~ Apry e

we obtain

Pe 2 1 2—n 2
Ey=—n—2)wp— l ( + A )
4 (n = 2)wn—1 B2+ p2 “\(n—2)wy_1 Pe c

which together with the definition (@) of 5. leads to

ou 1
€ ge 2 2—n
/,93 “Or da’* + £ ((n 2)wp— 1 +A)

1
> 2—n _
_gs((n—2)wn 1 +A8)(1 [32+p€(p5 +(n 2)wn_lAa))
1 ﬁ p n— )wnflAs
7 €
= (G +AJ R
1 (ClA = (n = 2)wp—14:)p?
=2 "4 AL
((n_2)wn 1 ) <n|A |ps +ps
_e2( ! )CﬁlA el = n—2)wn 1A
A2 CIAdE 2+ 1

By assumption we have
A > XM(a) +e.

If X _Ii‘r/[ (a) < 0, then the assertion 1 of Theorem holds trivially. Thus we may
assume that A. > 0 for all e. We put

(n —2)wp—1 .

Cn = 5
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If pc is small enough, we obtain

ou, 1
E—Ed ge 2 2—n As
/aBEu ar ¢ +€8((n - 2)4;.)”_1/)6 + )

1 (n —2)wp-14;
<2 - .
st (n—2)wn—1 ( 2 )

Inserting this into equation (I5)) and using the definition (I4) of 7. we get

By + Es < o(S™) (/ |1/)5|Ndv‘75) .

€

(n—2)wn-1 2 4

Noo2A,
=o(S™) (/ |w€|Ndv95) - 54 .

Moreover, if p. is small enough, we obtain

t= (ﬁzﬁ—i P2 >n72 ( (n— 21)wn,1 P AE) h
1/2 n/2 _
. lAsLa +p5) 2((n—21)wn71p§_n+A€) 2

(
(GolAeD e "/2) -
(5

B €2 1 ( B (n —2)wp_14A: . (n— 2)wn_1A€)

1
4—2n n—2 2n—4
o A
<2Asps Pe ((n - 2)‘*}71*1 T Aepe P
¢n IA [1/2\n2 neem (n - 2)%w7
) i
From this and the definition (@) of p. it follows that

Y

€

N N 3 nt2 n nn=2)
B + By < o(S™) / WeNdve ) — 47" ((n = 2wn_1) * A Ep: ®

€

2z

— o(S™) (/ |w5|Ndv‘75> (G A et

. (5™ (/ IwalNdv"s)ﬁ - E %

A"
(Bn + A"

Sz

We have

D, > (/ IwalNdv%)

and therefore

_E1+E2 n ’ |A |n N ge _%
Qulw) = P52 < o(8") — Bl (o)
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Moreover, using the substitution r = S.s we get

N .9 r Be " o1
|1he| ™ dv?e = wyq ) (W) " dr
Ps/:@s 1 n 1
:wn_l/o (1+52) s ds

oo 1 n
< n— n—ld
= 1/0 (1—}—52) s s

= F,.

It follows that
£, |A:["

F/N (Bn + A"
and therefore with G, 1= (E/,F, >/ )1/ we get

Qa(wf;‘) < U(Sn) -

a—e<Y(g) < o(5") = (Gn)" % '

We take the limit € — 0 and we get

M a)”
a<o(S")— (Gn)n% =o(5") - (Gn)nﬁ
n Xf’ a

It follows that
B, G

1>
XV@ " ) —a
We put «,, := o (S™) — (C;+)n and we distinguish two cases.
a) If a > «,, we get

Bn > l Gn
X¥(a) ~ 2(a(S") —a)t/n
and since a < o(S™) we get
2B 2B, o(S")
M < Z7n ny _ \1/n < ZZn ny _ \1/n
X0) < Z2o(57) - ) < 222 T8 (o gy )

b) If a < av, we have
o(S")—a>o(S") —an
and therefore using equation (&)

Dy _ Di(o(S") —a)'/" _ Di(o(S") —a)'/

M < T
Xi(a) < da ~ 4(a(S™) — ap)t/ma 2Grha

This shows the second statement. O

APPENDIX A. A LEMMA ON THE YAMABE CONSTANT

Let M be a compact manifold of dimension n > 3. For any Riemannian metric
g on M we denote by
n—2

Ly =A,+——
g g+4(n—1)

Sg

the Yamabe operator of g and by

G xano oo, g = Bt
M
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the Yamabe functional of g where N := % We denote by

Y(g) i= nf{Qy(u) | u € C=(M), u £ 0}
the Yamabe constant of (M, ¢g). In this Appendix, we prove the following Lemma

which is used several times in the paper.

Lemma A.1. Let (M,g) be a compact Riemannian manifold with Y (g) > 0. Let
p€ M, lete >0 and let h be a Riemannian metric defined on Bj(2¢). We assume
that g and h coincide at p. Let x. € C°(M), 0 < xe < 1 be a cut-off function
equal to 1 on B(e), equal to 0 outside BJ(2¢) and which satisfies |dx:|q < g and
IV2xe| < &. Define

ge = Xeh + (1 = Xe)g-
Then we have lim._,0 Y (ge) = Y (g).

Proof. Note that by Taylor expansion we have on BJ(2¢)
lg —hlg < Ce and thus |g—gc|s <Ce

for some C' independent of . Thus for all u € C*°(M) we have

‘/ udvgs—/ udv? §C’5/ |u] dv?,
M M BY(2¢)

||dul?, — |dul?| = |(g¥ — g"7)Oudju| < Ce|dul?

and using that |[V2x.||g — k|, < € we get

€

o [Q

C
|Sga - Sg| <— and |5g | <
€

Let (uc)eso be a sequence of smooth functions on M such that [, [uc|" dv? and
Qg4(ue) are bounded independently of €. We prove that

Tim (Qy. (1) — @y 1)) = 0. (16)

By the triangle inequality we have

2 70,9 2 1,9

}/ Sg.uz dv’e —/ squz dv
M M

2 7,9 2 7,9

< ’/ Sg. Uz dvoe —/ Sg.uz dv
M M

By the Holder inequality we get

C
/ |59, — 8| |ue?dv? < —Vol Bj(2¢)) (/ lus|N dv? )

and
‘/ Sg.UZ dvqs—/ Sg. Uz 2 dv9
< Cvol(By(2¢)) g (/ e dvg>

b [ o = syllucf do?
M
SC’E(/ |u5|Ndvg) ,
M

< OE/ |sg€||u5|2dvg
Bj(2¢)

%
< Ce? (/ |u€|Ndvg>
M

2
BN

EC
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Moreover, we get

‘/ |dua|§s dv9e —/ |du8|§dvg
M M

< ‘/ |du5|35 dv9: —/ |du5|§€ dv?
M M

ng/ |duc |2 dv?
" ‘

=Ce (/ Ue Lgue dv? —/ sg|u5|2dv9)
M M
%
< Ce / UeLyue dv? + C (/ |u€|Ndvg>
M M

The equation (I0) follows easily from these estimates. Now let (ue). be a sequence
in C°°(M) such that [}, [uc|"V dv? =1 and

Q. (ue) =Y(ge) +€

—|—/ Hdusﬁa — |dus|§| dv?
M

for all e. Using (I0) we get
Y (g) <liminf Qg(u.) = liminf @, (u.) = liminf Y (g.).
e—0 e—0 e—0
On the other hand let u € C°°(M) such that [, |u[" dv? =1 and

Qg(u) =Y(g9)+6
where § > 0. Using ([I8) we get
limsup Y (g.) < limsup Qg, (u) = limsup Qq(u) =Y (g) + 4.
e—0

e—0 e—0

As § — 0 we get limsup,_,, Y (g:) < Y(g). O
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