A Triplet Ranking-Based Neural Network for Speaker Diarization and Linking
Résumé
This paper investigates a novel neural scoring method, based on conventional i-vectors, to perform speaker diarization and linking of large collections of recordings. Using triplet loss for training, the network projects i-vectors in a space that better separates speakers in terms of cosine similarity. Experiments are run on two French TV collections built from REPERE [1] and ETAPE [2] campaigns corpora, the system being trained on French Radio data. Results indicate that the proposed approach outperforms conventional cosine and Probabilistic Linear Discriminant Analysis scoring methods on both within-and cross-recording diarization tasks, with a Diarization Error Rate reduction of 14% in average.
Domaines
Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...