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Abstract
This paper investigates a novel neural scoring method,

based on conventional i-vectors, to perform speaker diarization
and linking of large collections of recordings. Using triplet loss
for training, the network projects i-vectors in a space that better
separates speakers in terms of cosine similarity. Experiments
are run on two French TV collections built from REPERE [1]
and ETAPE [2] campaigns corpora, the system being trained
on French Radio data. Results indicate that the proposed ap-
proach outperforms conventional cosine and Probabilistic Lin-
ear Discriminant Analysis scoring methods on both within- and
cross-recording diarization tasks, with a Diarization Error Rate
reduction of 14% in average.
Index Terms: speaker diarization, neural network, triplet loss

1. Introduction
The increasing volume of audio and video data daily pro-
duced by social or traditional media, conferences, meetings or
MOOCs requires powerful tools to automatically index topics,
languages or speakers. In that context, the task of speaker di-
arization and linking aims at uniquely label speakers across a
collection of recordings, without a priori knowledge about the
speakers.

In the literature, variable terminologies are used to describe
the task (Speaker Linking in [3][4][5][6], Cross-Show Speaker
Diarization for [7][8][9]), but recently, the term Speaker Di-
arization and Linking is preferred [10][11]. Each recording is
usually processed separately (within-recording diarization) be-
fore estimated speaker segments are linked across the collec-
tion (cross-recording speaker linking). In this paper, we use the
terms diarization for within-recording diarization, and linking
for cross-recording linking.

Speaker Diarization and Linking is about differentiating
speakers. State-of-the-art approaches combine the i-vector
paradigm [12] to represent speech segments, and within- and
between-speaker variability compensation to discriminate them
in terms of speaker. Within- and between-speaker variabilities
are estimated over a speaker labeled dataset, which must in-
clude multiple examples of a same speaker in various acoustic
conditions. I-vectors can be compared using similarity scores
(cosine, with or without speaker variability compensation like
Within Class Covariance Normalization (WCCN [12])) or like-
lihood ratios (through Probabilistic Linear Discriminant Analy-
sis (PLDA [13])).

In this paper, we propose a novel scoring method for di-
arization and linking, by replacing cosine or PLDA with a
neural-based approach. Some neural-based i-vector scoring
methods for speaker verification were introduced by [14] and
proved to be competitive with PLDA. Our proposal is inspired
by [15] and [16], who proposed face/speaker neural embeddings
optimized for face/speaker recognition and clustering, using the
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Figure 1: Overview of the diarization framework.

triplet loss [17] for training. The main difference of our pro-
posal is that we decide to directly work with i-vectors as an in-
put, instead of raw image/acoustic features. This explains why
we see the proposed method as an alternative to conventional
scoring method for i-vectors, such as in [14].

Subsequent sections are organized as follows: first, we de-
scribe the diarization framework and present the proposed neu-
ral network used for scoring. Then we describe the data used
for the experiments and conclude with a discussion about the
performances of the proposed system and the possible improve-
ments.

2. Diarization Framework
Figure 1 presents the diarization framework, developed using
the SIDEKIT toolkit [18]. First, each recording of the collec-
tion is independently processed. The frontend homogeneously
segments the audio in terms of speakers, using Gaussian Diver-
gence [19] and Bayesian Information Criterion (BIC) [20], so
that an accurate i-vector can be extracted over each segment.
All extracted i-vectors are then clustered, using a neural based
similarity measure and a clustering method, with a clustering
threshold λI . At the end of the diarization step, each within-
recording cluster is represented by the average of its i-vectors.

Once all recordings have been processed, cross-recording
linking between those averaged i-vectors is applied at the scale
of the collection, using the same type of scoring and clustering,
with a clustering threshold λX .

The 200-dimension i-vector representation used in the fol-
lowing is estimated over a GMM/UBM of 256 Gaussians with



diagonal covariance, computed on the train corpus. The pro-
posed similarity scoring is compared with cosine or PLDA of
rank 100. Those dimensions were chosen after an exhaus-
tive search. To cluster the i-vectors, two methods are com-
pared: Complete-linkage Hierarchical Agglomerative Cluster-
ing (HAC) or Connected Components (CC) Clustering.

3. Triplet Ranking Framework
Contrary to the speaker diarization and linking framework of
[21] where PLDA is used to compute similarities between i-
vectors, we decide to replace PLDA by a Neural Network ap-
proach. The method is inspired by that of [15] and [16], where
the triplet loss [17] is used to train a neural network embedding,
which aims at separating faces or speakers. Instead of training
a network on raw features (e.g. MFCCs), we propose to use the
i-vector representation.

We propose to non-linearly project the i-vectors on a unit
sphere that better separates speaker classes in terms of cosine
similarity, using a simple feed-forward network f trained for
that purpose. The similarity between two i-vectors (φ1, φ2) cor-
responds to the cosine similarity between the two embeddings
(f(φ1), f(φ2)). To achieve better separability in the projection
space, we adopt the triplet loss paradigm. We will call this vari-
ability compensation method for cosine scoring Triplet Ranking
(TR) scoring.

From a training set of i-vectors representing different
speakers, triplets (φa, φp, φn) are sampled so that φa (called
anchor) and φp (called positive) represent the same speaker and
φn (called negative) a different speaker. Triplet loss aims at
better separating the speaker classes in the embedding space
by maximizing the anchor-positive similarity, while minimiz-
ing the anchor-negative similarity. For the set of all possible N
triplets T = (φi

a, φ
i
p, φ

i
n)

i∈[1..N ]
, the loss is defined as
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α is a margin aiming at forcing a better separation between the
classes. Ideally we want that for any triplet i, ∆i + α < 0.
To optimize training, it is faster to only select triplets that con-
tribute to the loss. In the original paper [15], two different se-
lection strategies are discussed: hard-selection corresponds to
all triplets contributing to the loss (ie. 0 < ∆i + α), while soft-
selection consists in excluding the hardest triplets (ie. keeping
those in the margin, 0 < ∆i + α < α).

The procedure is the following for each training epoch. For
each speaker class which contains at least 3 i-vectors, we ran-
domly select i-vectors pairs (φi

a, φ
i
p). Among the k-Nearest

Neighbors (k-NN) of each anchor embedding f(φi
a), a negative

φi
n is randomly picked so that 0 < ∆i + α (< α, depending

on the selection strategy). All selected triplets are then used to
update the network weights and gradients.

4. Experimental collections
The datasets used for our experiments are described in [22].
They consist in multiple recordings of various French radio and
TV shows broadcast between 1998 and 2007, where speakers
are identified by their first and last name. Speakers appear-
ing in more than one recording of a dataset are called recur-
ring (R.) speakers, as opposed to one-time (O.T.) speakers, who
only speak in one recording. Only radio recordings were used

Corpus LCP BFM

Episodes 45 42
Labeled speech duration 10h08m 19h57m
One-Time speakers 127 345
Recurring speakers (2+ occurrences) 93 77
R. speakers (3+ occurrences) 48 35
Total speakers 220 422
O.T. speakers speech proportion 20.12% 44,84%
R. speakers (2+ occurrences) s.p. 79.88% 55,16%
R. speakers (3+ occurrences) s.p. 67.06% 45.94%
Average speaker time per episode 1m08s 1m58s

Table 1: Composition of target corpora.

to build the train corpus, while both target corpora contain
TV recordings only. This was initially chosen to maximize the
acoustic mismatch between the train and target data. Since
we do not have any development data, a cross evaluation is per-
formed between the two target collections.

4.1. Train corpus

The train corpus, used to train initial and contrastive systems,
is composed of 317 audio files from ESTER [23] campaign cor-
pora, taken from radio broadcasts, for a total of 190 hours of
speech duration. The corpus contains 372 speakers that speak
in at least three recordings, with a minimum speech time per
recording of 10s.

4.2. Target corpora

We define two target corpora built from REPERE [1] and
ETAPE corpora [2]: LCP and BFM . LCP (resp. BFM ), is
the collection of all available recordings of the show LCP Info
(resp. BFM Story), a French TV news broadcast (resp. talk-
show). Those two shows have been selected because they both
contain a decent number of episodes (more than 40), and there is
a large amount of recurring speakers, who speak for more than
50% of the total speech duration of the collection. Numerical
details about the two corpora are presented in table 1.

5. Experiments
Diarization and linking systems are evaluated with the Di-
arization Error Rate (DER). DER was introduced by the NIST
as the fraction of speech time which is not attributed to
the correct speaker, using the best match between references
and hypothesis speaker labels. The scoring tool [24] evalu-
ates within-recording and cross-recording speaker diarization.
Cross-recording speaker diarization aims at labeling a recurring
speaker in the same way, in every recording that composes a
collection. For DER computation, a collar of 250ms is allowed,
and the overlapping speech is not evaluated. In the following,
we will call the cross-recording DER X-DER, as opposed to I-
DER, for within-recording DER.

5.1. Neural Network Training

5.1.1. Implementation

Before evaluating the proposed TR scoring on the diarization
and linking task, we first evaluated it on a speaker verifica-
tion task, using a ground truth version i-vectors extracted us-
ing true labels of the target datasets. The metrics used are the
Equal Error Rate (EER) and minimum Detection Cost Func-
tion (minDCF), with a prior of 1%. This allows us to faster



Figure 2: Average EER and minDCF on both target datasets,
using different margins for training. Each condition is repeated
20 times.

explore different configurations. The neural network consists
in a feed-forward layer of dimension 200 (same as the i-vectors
dimension), followed by a tanh activation layer. The chosen op-
timizer is Adadelta [25] and the network is implemented with
Keras [26]. In the next paragraphs, we explore some key as-
pects of the network configuration : choice of margin, number
of k-NN and representativity of the classes. In all experiments,
we decide to use the soft triplet selection strategy, as our pre-
liminary explorations did not show significant differences with
hard selection.

5.1.2. Choice of margin

Figure 2 presents the results on the ground truth i-vectors of
both target datasets, as a function of the number of epochs. Dif-
ferent margins are tested, from 0.4 to 1.0 with a 0.1 step, using
the same network initialization. For each margin, the experi-
ment is repeated 20 times (ie. 20 different initializations). At
each epoch, one triplet per speaker class is presented, the k-NN
value of 100. For better readability, only one half of the curves
is presented (0.2 step).

Results show that the proposed approach outperforms the
cosine setup for all tested margins for both metrics. The op-
timal margin is of 0.6 and is presented with the (min,max)
performances interval at each epoch, over all 20 experiments.
When comparing with the PLDA setup, we see that the pro-
posed scoring with a margin of 0.6 outperforms PLDA for both
metrics, in average, while being very close in terms of EER for
LCP and in terms of minDCF for BFM .

5.1.3. Number of nearest neighbors

In practice, using nearest neighbors for triplet selection is a way
to accelerate training and to optimize triplet selection. A neg-
ative i-vector compliant to the margin constraint is more likely
to be found in a certain neighborhood of an anchor. In figure
3, we explore the number of nearest neighbors and influence on
the EER and minDCF. The k-NNs are updated every 50 epochs.
The same evaluation protocol is used : contrastive evaluation of
parameters using the same network initialization, repeated 20
times and averaged.

Results show that the higher the k-NN, the better the per-
formances, but past 100, results do not improve that much, as

Figure 3: Average EER and minDCF on the two target
datasets, using different number of nearest neighbors for train-
ing. Each condition is repeated 20 times and averaged.

Figure 4: Influence of the number of examples provided per
class. Average EER, minDCF and number of speaker classes
contributing to the loss, on the two target datasets.

the majority of good negative candidates must be located in the
100-NN area. We decide to keep the 100-NN configuration for
the following experiments, as it is a good trade-off between per-
formance and speed.

5.1.4. Representativity of the classes

In the literature [15, 16], triplet-loss neural networks are trained
on raw input (acoustic features or images), and 40 examples per
class are provided at each epoch. In our work, we train the net-
work on i-vectors, and the number of examples per class is very
limited (our train corpus contains between 3 and 59 i-vectors
per class, half of the classes containing 5 examples or less).
Since we cannot provide much diversity in terms of speaker
pairs (3 examples in a class means 6 possible anchor-positive
pairs only), we explore the influence of the number of examples
per class provided during training. Providing too many exam-
ples per class might lead to introduce some bias, as the same
anchor-positive pairs would be selected at each epoch, even if
diversity is enforced by the presence of negative. Another side
effect of the low number of examples per class is that after some
epochs, some classes stop contributing to the loss: there is no
negative in the margin anymore. Results are presented in figure
4, where we compare performances using 1,3 and 5 examples
per class, each experiment being repeated 20 times.

Results show that using more than one triplet per speaker
class works better, as it provides some within speaker variability
information. Using 3 triplets per class gives the best EER and
minDCF and we will keep that configuration in the following



Corpus LCP BFM

oracle linking I-DER & X-DER 5.9 7.8
false speech 3.0 3.7
missed speech 0.7 1.0
speaker error 2.2 3.0

Table 2: oracle diarization results, for both collections

scoring clust. λI λX
LCP DER BFM DER
I-. X-. I-. X-.

cosine
HAC -0.55 -0.5 8.5 19.5 13.6 23.8
CC -0.55 -0.65 8.5 22.6 12.4 19.3

PLDA
HAC 10 10 10.0 19.1 10.6 15.7
CC 10 -20 8.7 21.2 9.9 13.6

TRavg CC -0.55 -0.65 8.0 16.6 9.8 13.3
TRbest 7.9 16.1 9.6 13.1

Table 3: Baseline performances of contrastive and proposed
systems, for HAC and CC clustering, in terms of I- and X-DER.
λI & λX are the clustering thresholds, applied on the opposite
of cosine similarity or PLDA likelihood ratio.

experiments. For all tested configurations, we see a reduction of
around 17% of the contributing speaker classes during training.

5.2. Speaker Diarization and Linking

5.2.1. Oracle

Before running any diarization experiment, in table 2, we
present the performances of an ideal speaker linking system.
The speaker segmentation module (see section 2) aims at pro-
ducing pure speaker segments to allow accurate i-vector extrac-
tion. An ideal linking would consist in labeling each segment
according to its most speaking speaker. As seen in the table,
around 60% of the DER is due to speech detection, while the
last part consists in speaker error. This speaker error is due to
the speaker segmentation module. Thus some i-vectors are ex-
tracted over segments containing more than one speaker.

5.2.2. Diarization Results

The Neural Network configuration being set, we now investi-
gate the performances on the diarization and linking task, using
I- and X-DER as an evaluation metric. We stop working with
ground truth i-vectors and use the ones produced by speaker
segmentation. Table 3 shows the baseline performances of the
contrastive cosine and PLDA setups, for HAC and CC cluster-
ing. The clustering thresholds are common to both corpora.

In Figure 5, we present the averaged I- and X-DER over 20
speaker linking experiments, using CC clustering and 20 dif-
ferent TR scoring networks, for the two target corpora, as a
function of the number of epochs. (min,max) intervals are
also presented. Results indicate that for both corpora, after 1300
epochs, the proposed system (TR/CC) outperforms the PLDA
setup (PLDA), in average, with an X-DER of 16.6% (resp.
13.3%) on LCP (resp. BFM), whereas PLDA achieved 19.1%
(resp. 15.7%).

In [21], the authors used HAC for speaker linking, but our
preliminary experiments with TR scoring using HAC gave in-
conclusive results. As shown in the lower part of Figure 5,
HAC gives erratic variations in terms of DER depending on the
number of epochs, for BFM . However, we noticed that using
CC for clustering proved to be more adequate, with a smooth
DER reduction throughout epochs. Indeed, the network tries to

Figure 5: Average X-DER on the two target datasets, using a
margin of 0.6, soft selection strategy and 3 examples per class.
Clustering configuration is (λI = −0.55, λX = −0.65).

ensure the classes are separated by a fixed margin, while CC
makes two elements belong to a same cluster if they are sepa-
rated by less that a certain threshold. By design, both methods
work well together.

It is worth noticing that optimal DERs are obtained for more
than 1300 epochs, while in the previous speaker verification ex-
periments, performances tended to slightly degrade in the same
area, especially for BFM . This could be explained by the fact
that the i-vectors used for speaker verification are different to
those used for diarization, as the latter may be corrupted by
speaker segmentation errors. For BFM , we noticed in sec-
tion 5.1.2 that performances of TR scoring were close to PLDA
in terms of minDCF, as opposed to LCP . The same conclu-
sion applies for DER: minDCF simulates a situation where for
a given i-vector, there are more possible impostors that correct
candidates. This is also the case for speaker linking.

Finally, in the last rows of table 3, the averaged and best TR-
based diarization results after 1500 epochs are presented, over
the 20 linking experiments. We observe that the presented opti-
mal clustering configuration is the same as the cosine-baseline
one (λI = −0.55, λX = −0.65).

6. Conclusions
In this paper, we proposed an novel scoring method for i-
vectors. A neural network projects i-vectors in a space that op-
timizes speaker separation in terms of cosine similarity. The
triplet loss is used for training, with a margin close to the op-
timal speaker separation threshold in the initial i-vector space.
Due to the small amount of train data, 3 triplets per speaker
class are presented at each epoch and some classes stop con-
tributing to the training after few iterations.

Cross-recording speaker diarization results on two distinct
corpora show that the proposed method is competitive with
state-of-the-art scoring methods for i-vectors, both in terms
of within- and cross-recording DER. The triplet loss approach
seems to be promising for future speaker diarization and link-
ing architectures. Further work could consist in replacing the
i-vector by a neural-based speaker embedding, or proposing a
domain adaptation method for the neural scoring, as it was ex-
plored for PLDA.
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