Numerical solutions to a BBM-Burgers model with a nonlocal viscous term - Archive ouverte HAL
Article Dans Une Revue Numerical Methods for Partial Differential Equations Année : 2018

Numerical solutions to a BBM-Burgers model with a nonlocal viscous term

Résumé

In this paper, we numerically investigate the BBM-Burgers equation with a nonlocal viscous term $$u_t+u_x+\beta u_{xxx}+\sqrt{\nu}D^{1/2}u+\gamma u u_x=\alpha u_{xx}$$ where $$ D^{1/2}u(t)=\frac{1}{\sqrt{\pi}}\frac{\partial}{\partial t}\int_0^t \frac{u(s)}{\sqrt{t-s}}\mathrm{d}s $$ is the Riemann-Liouville half-order derivative in time. In particular, we implement different numerical schemes to approximate the solution and its asymptotical behavior. Also, we compare our numerical results with those given in 2013, 2014 for similar models.
Fichier principal
Vignette du fichier
Dumont2018.pdf (693.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-01818121 , version 1 (13-03-2023)

Licence

Identifiants

Citer

Serge Dumont, Imen Manoubi. Numerical solutions to a BBM-Burgers model with a nonlocal viscous term. Numerical Methods for Partial Differential Equations, 2018, 34 (6), pp.2279-2300. ⟨10.1002/num.22291⟩. ⟨hal-01818121⟩
84 Consultations
28 Téléchargements

Altmetric

Partager

More