Triplet markov trees for image segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Triplet markov trees for image segmentation

Résumé

This paper introduces a triplet Markov tree model designed to minimize the block effect that may be encountered while segmenting image using Hidden Markov Tree (HMT) model-ing. We present the model specificities, the Bayesian Maximum Posterior Mode segmentation, and a parameter estimation strategy in the unsupervised context. Results on synthetic images show that the method greatly improves over HMT-based segmentation, and that the model is competitive with a hidden Markov field-based segmentation.
Fichier principal
Vignette du fichier
ssp_final.pdf (262.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01815562 , version 1 (14-06-2018)

Identifiants

Citer

Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet, Christophe Collet. Triplet markov trees for image segmentation. SSP 2018: IEEE Workshop on Statistical Signal Processing, Jun 2018, Fribourg-en-Brisgau, Germany. pp.233-237, ⟨10.1109/SSP.2018.8450841⟩. ⟨hal-01815562⟩
193 Consultations
206 Téléchargements

Altmetric

Partager

More