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ABSTRACT
This paper introduces a triplet Markov tree model designed
to minimize the block effect that may be encountered while
segmenting image using Hidden Markov Tree (HMT) model-
ing. We present the model specificities, the Bayesian Maxi-
mum Posterior Mode segmentation, and a parameter estima-
tion strategy in the unsupervised context. Results on synthetic
images show that the method greatly improves over HMT-
based segmentation, and that the model is competitive with a
hidden Markov field-based segmentation.

Index Terms— Triplet Markov Tree, Image Segmenta-
tion, Unsupervised segmentation

1. INTRODUCTION

Markov models have proven their efficiency in the context of
Bayesian image segmentation, i.e. the estimation of the clas-
sification X from the observation Y = y. Among those mod-
els, one can mention hidden Markov chains, hidden Markov
fields and hidden Markov trees (see for instance [1, 2, 3, 4]
and the references therein). The Bayesian segmentation is
obtained after choosing an estimator, such as the Maximum
Posterior Mode (MPM) [5] or the Maximum A Posteriori
(MAP) [2] in an appropriate context.

In general, Markov chains models allow the fastest seg-
mentation and permit the exact computation of the a posteri-
ori distribution.While this model is not fully intuitive, it of-
ten offers satisfactory robustness. In comparison, the Markov
fields framework is richer. This richness is balanced by the
impossibility to compute exactly the posterior densities, mak-
ing it necessary to use sampling methods, such as the Gibbs
sampler [2].

A compromise between the model richness and ex-
act computation feasibility may be found with the Hidden
Markov Tree (HMT) models, often used within an inde-
pendent noise assumption [3]. This modeling allows the
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exploitation, within a segmentation context, of a hierarchy
representing the classification to obtain. The main drawback
of this hierarchy is the introduction, in the most difficult cases,
either of “speckles” or block effects in the segmentation re-
sult. Several models were introduced to compensate these
effects. For instance, let us mention the evolutive Markov
tree models [6], in which the parent-child transition proba-
bilities depend on the considered resolution. One can also
mention the hierarchical fields modeling, in which the prior
density is Markovian both spatially (over each scale) and
hierarchically [7].

In a similar fashion as Markov chains and Markov fields
models, Markov tree models have been enriched by the intro-
duction of triplets models [8, 9, 10]. In this framework, in
addition to the observed process Y and the classification X,
a third auxiliary process denoted U is adjoined. The objec-
tive of such model is the accurate handling of more complex
phenomena, such as privileged orientation for instance [11].

In this paper, we introduce a Triplet Markov Tree (TMT)
model, in which the auxiliary process modulates the parent-
child transition probabilities, depending on the classification
of the parent’s neighbors. This model will be referred as Spa-
tial Triplet Markov Tree (STMT) and is introduced in Sec-
tion 2, along with the MPM segmentation computation. We
apply this model in the case of a single (high-resolution) in
Section 3. The numerical results presented in Section 4 show
that our model improves the segmentation of very noisy im-
ages over a classical HMT method. We also show that this
method is competitive with a combination of HMT and Hid-
den Markov Field (HMF) models.

2. SPATIAL TRIPLET MARKOV TREES

2.1. Model

Let T = (Ts)s∈S be a stochastic process, where S is the set
of resolutions of a quadtree: S = {S0, . . . ,SN}. Each Sn
contains 4n sites : n = 0 represents the tree root, and n =
N is the finest resolution. Besides, we set T = (Y,X,U),
where Y ∈ R|S| is an observation process, X ∈ Ω

|S|
x is a

class process and U ∈ Ω
|S|
u is an auxiliary process.
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Fig. 1: Parent-child transition detail (gray region in (a)) for
the different tree models.

Formally, T is a Markov tree [3] and verifies:

p(T) = p(Tr)
∏

s∈S\S0

p(Ts|Ts−); (1)

where s− is the parent site of s, and Tr is the value of Ts in
the root site s ∈ S0.

U is an auxiliary process tuning the distribution of X at
each parent-child transition. Each Us is a random vector ruled
by the same distribution as (Xv)v∈Vs

, where Vs is a neigh-
borhood of s to be defined. In the remaining of this paper,
we assume that Xs and Us are independent given Ts− . This
yields ∀s ∈ {S1, . . . ,SN}:

p(Ts|Ts−) = p(Ys|Xs, Us, Ts−)p(Xs|Ts−)p(Us|Ts−). (2)

The three distributions appearing in this equation are specified
in Section 3. Figure 1 represents the quadtree dependency
graph and the dependencies involved in the HMT, the TMT
and the STMT models.

2.2. MPM segmentation

We choose to use the MPM estimator for the segmentation.
For concision, we note p(A = a) as p(a) when possible.
The MPM estimator requires the computation of p(Xs =
ωi, Us = νj |Xs− = ωk, Us− = νl,y) in each s ∈ S and
for all (ωi, νj , ωk, νl) ∈ (Ωx × Ωu)2.

An algorithm for computing the MPM in the HMT model
can be found in [12]. We adapted this method for the more
general case of TMT used here. It consists of the five steps

described below, and requires the computation of auxiliary
functions denoted An for n ∈ {0, 1, . . . , N} in the following
fine-to-coarse pass:

1. At the finest resolution, ∀s ∈ SN :

AN (s;ωi, νj , ωk, νl) = p(ys, ωi, νj |ys− , ωk, νl). (3)

2. On the intermediate resolutions, ∀s ∈ {S1, . . . ,SN−1}:

An(s;ωi, νj , ωk, νl) = p(ys, ωi, νj |ys− , ωk, νl)

×
∏
s+∈Es

 ∑
(ω,ν)∈Ωx×Ωu

An+1(s+;ω, ν, ωi, νj)

 ;

(4)

where Es is the children set of s.

3. On the root, r ∈ S0:

A0(ωi, νj) = p(y0, ωi, νj)

×
∏
s+∈E0

 ∑
(ω,ν)∈Ωx×Ωu

A1(s+;ω, ν, ωi, νj)

 ; (5)

where E0 = S1.

A triplet Markov tree benefits from the posterior Markovian-
ity: p(X,U|Y = y) is a Markov distribution1. Hence, it is
feasible to compute p(Xs = ωi, Us = νj |y) for s ∈ SN and
(ωi, νj) ∈ Ωx × Ωu in the following coarse-to-fine pass:

4. Computation of the posterior distribution in the root r:

p(Xr = ωi, Ur = νj |y) =
A0(ωi, νj)∑

(ω,ν)∈Ωx×Ωu

A0(ω, ν)
. (6)

5. Computation of the posterior ∀s ∈ {S1, . . . ,SN} :

p(Xs = ωi, Us = νj |Xs− = ωk, Us− = νl,y) =

An(s;ωi, νj , ωk, νl)∑
(ω,ν)∈Ωx×Ωu

An(s;ω, ν, ωk, νl)
. (7)

Once the cascading posterior density computations are
performed, one can obtain the MPM estimation for the root:

(x̂r, ûr)
MPM = arg max

(ωi,νj)∈Ωx×Ωu

p(Xr = ωi, Ur = νj |y); (8)

and ∀s ∈ {S1, . . . ,SN}:

(x̂s, ûs)
MPM =

arg max
(ωi,νj)∈Ωx×Ωu

p
(
(Xs, Us) = (ωi, νj)|(x̂s− , ûs−)MPM,y

)
;

(9)

so that the MPM estimation is the set
(
(x̂s, ûs)

MPM
)
s∈S .

1Let us add that p(X|Y = y) is not necessarily a Markov distribution.



3. APPLICATION TO IMAGE SEGMENTATION

3.1. Model specificities

An observed image is represented by (Ys)s∈SN ∈ R|SN |, and
we assume that:

p(Ys|Xs, Us, Ts−) = p(Ys|Xs). (10)

Besides, ∀s ∈ {S1, . . . ,SN−1}, we formally consider that
p(Ys|Xs, Us, Ts−) ∝ 1 and p(Yr|Xr, Ur) ∝ 1.

Concerning the auxiliary process U, the considered
neighborhood is the set of 8 closest neighbors at the same
resolution. Hence Us is 8−valued and is noted: Us =
(Us,1, . . . , Us,8). Since Us has the same distribution as
(Xv)v∈Vs

and since the (Xv)v∈Vs
are independent given

Ts−, one can write:

p(Us|Ts−) = p ((Xv)v∈Vs
|Ts−) =

∏
v∈Vs

p(Xv|Ts−). (11)

Xv may belong to the children of Ts− or not (see Fig-
ure 2). In the first case, we define p(Xv|Ts−) along the lines
of a Potts model:

p(Xs|Ts−) ∝ exp

βδXs

Xs−
+ γ

∑
1≤k≤8

δXs

Us−,k

 ; (12)

where δba is the Kronecker product, which equals to 1 when
a = b and 0 otherwise, and β and γ are model parameters.

Remark. When γ = 0, the transition probabilities corre-
spond to a classical HMT model.

In the second case, when Xv does not belong to the chil-
dren of Ts− , we know that Xv− ∈ (Xw)w∈Vs−

. Let us as-
sume that Us−,k models the same site as the parent of v.

Then, we define:

p(Xv|Ts−) ∝ exp(βδXv

Us−,k
+ γδXv

Xs−
+ γ

∑
1≤k′≤8
k′ 6=k

δXv

Us−,k′
).

(13)
Besides, in the root and ∀(ωi, νj) ∈ Ωx × Ωu, we have

p(T0 = (y0, ωi, νj)) = πi, where the πi are model parameters
representing the prior on the tree root.

Remark. In practice, the 8−neighborhood is not defined
on the image border. In the model implementation, borders
are replicated to bypass this limit.

In the remaining of this paper, we assume a Gaussian
noise model parametrized by µi, σi and consider the segmen-
tation with |Ωx| = 2 classes.

3.2. Unsupervised Parameter Estimation

The model parameters are:

θ = {µ0, µ1, σ0, σ1, π0, π1, γ, β}. (14)

S2

S1

S0

s−

s

Fig. 2: Restriction of the quadtree dependency graph from
Figure 1a to the 8 neighbors of s and their parents. The light
red disks indicate the neighbor of Xs which are children of
Xs− , the distribution of which is given by (12). The light blue
disks represent the other neighbor of Xs, which are ruled by
distribution (13).

In an unsupervised framework, θ must be estimated from
Y = y only. At first, we present the estimators when a
“complete” realization (y,x,u) is available.

The estimation of µi et σi is performed with the maxi-
mum likelihood estimator using (x,y). The πi are directly
estimated from the posterior density computation (6) :

π̂i = p(Xr = ωk|Y = y)

=
∑
ν∈Ωu

p(Xr = ωk, Ur = ν|Y = y). (15)

We now detail the estimators for β and γ, inspired by
the least-squares estimator from [13], initially proposed for
Markov field distributions. We have ∀s ∈ {S1, . . . ,SN} and
for ωi 6= ωj :

p(Xs = ωi|Ts−)

p(Xs = ωj |Ts−)
=

exp

β (δωi

Xs−
− δωj

Xs−

)
+ γ

∑
1≤k≤8

(δωi

Us−,k
− δωj

Us−,k
)

 .
(16)

The left-hand term of this equation is computed thanks to the
posterior distribution (7)2. We obtain the “partial” estimation
of β for all pairs (xs, ts−):

β̂s,s− =

log
[
p(xs=ωi|ts− ,Y=y)

p(xs=ωj |ts− ,Y=y)

]
− γ

∑
1≤k≤8

(δωi
us−,k

− δωj
us−,k

)

δωi
xs−
− δωj

xs−

.

(17)
Hence the least-squares estimation of β is:

β̂ =
1

|S \ S0|
∑

s∈S\S0

β̂s,s− . (18)

2In practice, this estimator is more robust than the histogram estimation.



(a) Image xA. (b) HMT. (c) HMT/HMF. (d) STMT.
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(e) Error rate as a function of the SNR (dB) for xA.

(f) Image xB . (g) HMT. (h) HMT/HMF. (i) STMT.
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(j) Error rate as a function of the SNR (dB) for xB .

Fig. 3: Numerical results. Left column: original images. Columns 2, 3 and 4: results instances with SNR = −14 dB. The fifth
column represents the average results with the first and third quartile variations.

Based on the same reasoning, we obtain with (7) and for
all pairs (xs, ts−):

γ̂s,s− =
log
[
p(xs=ωi|ts− ,Y=y)

p(xs=ωj |ts− ,Y=y)

]
− β

(
δωi
xs−
− δωj

xs−

)
∑

1≤k≤8

(δωi
us−,k

− δωj
us−,k

)
.

(19)
When

∑
1≤k≤8(δωi

us−,k
− δωj

us−,k
) = 0, this “partial” estima-

tion is not defined. Denoting C(s−, i, j) this value, the least-
squares estimation of γ is:

γ̂ =

∑
s∈S\S0

1{C(s−,i,j)6=0}γ̂s,s−∑
s∈S\S0

1{C(s−,i,j)6=0}
. (20)

The parameters θ are estimated with the Stochastic
Expectation-Maximization (SEM) method [14]. This stochas-
tic variant of EM [15] iteratively generates realizations of
(X,U) thanks to the previous value of θ, and re-estimate
θ thanks to the simulated realizations with the estimators
presented in this section.

4. NUMERICAL RESULTS

We use two synthetic images of size 1282 pixels, denoted xA
and xB . The former is a realization of a STMT using β =
2.25 et γ = 0.25 (Figure 3a), and the latter present wide ho-
mogeneous regions with smooth boundaries (Figure 3f). Be-
sides, we set µ0 = 0, µ1 = 1 and σ0 = σ1 = σ so that σ tunes
the Signal-to-Noise Ratio (SNR) defined as 20 log10(x/σ), x
being the averaged value of x.In this setting, we evaluate three
methods:

• the HMT-based segmentation with the MPM criterion;

• a “mixed” HMT/HMF method: the segmentation is
made within a classical HMF model, whose Gibbs
sampling are initialized using the HMT result. This
model is expected to handle well both spatial and hier-
archical features in images;

• the STMT-based segmentation introduced in this paper.

Figures 3b-3d and 3g-3i illustrates the segmentation re-
sults, and the error rate evaluated on 100 simulations are dis-
played in Figures 3e and 3j.

These results first show that, in any cases, the HMT-based
segmentation is outperformed by its alternatives. Besides, the
HMT/HMF and STMT model yields close error rates, and
the achievement of the best average error rate depends on the
image to process. This can be visually interpreted as a conse-
quence of the “smoothness” of the image xB , which favors a
Markov field-based method. As a final remark, let us add that
our numerical experiments showed that the computation of
the STMT-based segmentation method is always faster than
the HMT/HMF-based segmentation (up to 10 times faster on
5122 images) due to the ability to compute exactly the poste-
rior densities.

5. CONCLUSION

This paper introduced the STMT model, as well as the com-
putation of the MPM criterion and the segmentation of im-
ages. Results showed that the model is robust and competitive
with a mixed HMT/HMF model, while providing the ability
to compute exactly the posterior densities.
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Patrick Pérez, and Patrick Bouthemy, “Hierarchical
Markovian segmentation of multispectral images for the
reconstruction of water depth maps,” Computer Vision
and Image Understanding, vol. 93, no. 2, pp. 155–174,
2004.

[5] J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic
solution of ill-posed problems in computational vision,”
J. Am. Stat. Assoc., vol. 82, no. 397, pp. 76–89, 1987.

[6] E. Monfrini and W. Pieczynski, “Estimation de
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