Numerical treatment of the nonconservative product in a multiscale fluid model for plasmas in thermal nonequilibrium: application to solar physics - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Scientific Computing Année : 2020

Numerical treatment of the nonconservative product in a multiscale fluid model for plasmas in thermal nonequilibrium: application to solar physics

Résumé

This contribution deals with the modeling of collisional multicomponent magnetized plasmas in thermal and chemical nonequilibrium aiming at simulating and predicting magnetic reconnections in the chromosphere of the sun. We focus on the numerical simulation of a simplified fluid model in order to properly investigate the influence on shock solutions of a nonconservative product present in the electron energy equation. Then, we derive jump conditions based on travelling wave solutions and propose an original numerical treatment in order to avoid non-physical shocks for the solution, that remains valid in the case of coarse-resolution simulations. A key element for the numerical scheme proposed is the presence of diffusion in the electron variables, consistent with the physically-sound scaling used in the model developed by Graille et al. following a multiscale Chapman-Enskog expansion method [M3AS, 19 (2009) 527--599]. The numerical strategy is eventually assessed in the framework of a solar physics test case. The computational method is able to capture the travelling wave solutions in both the highly- and coarsely-resolved cases.
Fichier principal
Vignette du fichier
ex_article.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01811837 , version 1 (22-06-2018)
hal-01811837 , version 2 (18-02-2020)

Identifiants

Citer

Quentin Wargnier, Sylvain Faure, Benjamin Graille, Thierry E. Magin, Marc Massot. Numerical treatment of the nonconservative product in a multiscale fluid model for plasmas in thermal nonequilibrium: application to solar physics. SIAM Journal on Scientific Computing, 2020, 42 (2), pp.B492-B519. ⟨10.1137/18M1194225⟩. ⟨hal-01811837v2⟩
506 Consultations
356 Téléchargements

Altmetric

Partager

More