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NUMERICAL TREATMENT OF THE NONCONSERVATIVE
PRODUCT IN A MULTISCALE FLUID MODEL FOR PLASMAS IN

THERMAL NONEQUILIBRIUM: APPLICATION TO SOLAR
PHYSICS∗

QUENTIN WARGNIER† , SYLVAIN FAURE‡ , BENJAMIN GRAILLE‡ , THIERRY MAGIN§ ,

AND MARC MASSOT†

Abstract. This contribution deals with the modeling of collisional multicomponent magnetized
plasmas in thermal and chemical nonequilibrium aiming at simulating and predicting magnetic re-
connections in the chromosphere of the sun. We focus on the numerical simulation of a simplified
fluid model to investigate the influence on shock solutions of a nonconservative product present in
the electron energy equation. Then, we derive jump conditions based on traveling wave solutions and
propose an original numerical treatment in order to avoid non-physical shocks for the solution that
remains valid in the case of coarse-resolution simulations. A key element for the numerical scheme
proposed is the presence of diffusion in the electron variables, consistent with the physically-sound
scaling used in the model developed by Graille et al. following a multiscale Chapman-Enskog expan-
sion method [M3AS, 19 (2009) 527–599]. The numerical strategy is assessed in the framework of a
solar physics test case. The computational method is able to capture the traveling wave solutions in
both the highly- and coarsely-resolved cases.

Key words. Fluid model, two-temperature plasmas, solar physics, nonconservative product,
shock wave, traveling wave, jump conditions, finite volume schemes.

AMS subject classifications. 65M08, 82D10, 76N15, 76M12, 76L05

1. Introduction. Plasmas are composed of electrons and heavy particles, such
as atoms and molecules, neutral or ionized. At the microscopic level, electrons and
heavy particles do not effectively exchange energy during collisions, due to their mass
disparity. At the macroscopic level, their respective populations of translational en-
ergy can be distributed at different temperatures. Thermal nonequilibrium is found
in a variety of plasma applications ranging from astrophysics [2] through electric
propulsion [3] to combustion [33], as well as atmospheric entry flows [21]. This contri-
bution deals with the modeling of collisional multicomponent magnetized plasmas in
thermal and chemical nonequilibrium, aiming at simulating and predicting magnetic
reconnections in the chromosphere of the sun. If multicomponent magnetohydrody-
namic (MHD) simulations are still scarce in solar physics, in recent years, the study
of partially ionized plasmas has become an important topic because solar structures,
such as prominences [27] as well as layers of the solar atmosphere (photosphere and
chromosphere) [38, 17], are made of partially ionized plasmas. Multicomponent plas-
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well as CMAP and Initiative HPC@Maths from Ecole Polytechnique. T. Magin is supported by a
Jean d’Alembert chair of University Paris-Saclay at Ecole Polytechnique.
†CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau

Cedex,
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mas introduce physical effects which cannot be described by means of models for fully
ionized mixtures, i.e., Cowling’s resistivity, isotropic thermal conduction, heating due
to ion-neutral friction, heat transfer due to collisions, charge exchange, and ioniza-
tion, these effects are important to better understand the behavior of plasmas in the
sun chromosphere. Multifluid MHD models [16, 17, 4] allows us to describe nonequi-
librium effects based on distinct continuity, momentum, and energy equations per
species considered in the plasma mixture. However, these models have their own lim-
itations. For instance, the model of Braginskii [4] is only valid for high-temperature
fully-ionized plasmas. Besides, multifluid models can lead to very stiff systems with
characteristic velocities ranging from the speed of sound of the various fluids up to
the speed of light [18].

In this context, Graille et al. [14] have derived from kinetic theory a multicompo-
nent fluid model for multicomponent plasmas in thermal nonequilibrium accounting
for the influence of the electro-magnetic field, that can be applied to the sun chromo-
sphere conditions. The model is obtained by seeking a generalized Chapman-Enskog
solution to the Boltzmann equation using a multiscale perturbation method. A note-
worthy difference with the conventional multifluid models is the scaling based on a
dimensional analysis. This leads to one single momentum conservation equation and
multicomponent diffusion species continuity equations coupled to two equations for
the translational (thermal) energy of the electrons and heavy particles. These de-
velopments provide a model with an extended range of validity from partially- to
fully-ionized plasmas, for the non-, weakly-, and strongly- magnetized regimes, to-
gether with an entropy inequality and Onsager reciprocity relations for the transport
properties. At the zeroth order of the expansion, this development yields a hyper-
bolic system of equations with a parabolic regularization of the electron variables
due to dissipative terms such as the electron diffusion velocity and heat flux. When
weak solutions (shocks) are considered, the total energy equation is used regarding
its conservative form suitable for the development of a numerical scheme. Both the
electron and heavy-particle energy equations exhibit non conservative terms leading
to some numerical difficulties that will be reviewed in the next paragraph. In this
paper, we propose to select the electron energy equation to close the system, allowing
us to benefit from the regularization of the electron variables. Although our model
directly inspired from [14] is directly applicable to the sun chromosphere conditions,
it is still necessary to understand how to treat the nonconservative term present in
the hyperbolic convection part of the system.

Indeed, solving nonconservative hyperbolic systems is a delicate problem because
of the definition of weak admissible solutions. First, from a theoretical point of view,
Dal Maso et al. have proposed in [24] a theory to define nonconservative products
based on the introduction of paths, that generalizes the notion of weak solution for
conservative systems in the sense of distributions. In this context, Parès [28] have
developed path-conservative schemes for nonconservative hyperbolic systems. How-
ever, it has been proved by Abgrall and Karni [1] that these numerical schemes fail
to converge to the right solutions. In fact, even if the correct path is known, the
numerical solution obtained can be far from the expected solution, depending mainly
on the numerical dissipation of the scheme. In [7], Chalons and Coquel have proposed
a different strategy for nonconservative hyperbolic systems using Roe-type conserva-
tive schemes. They changed the common path-conservative schemes by introducing
modified cells in order to compute correctly the solution. Even if progress has been
made in the field, the design of accurate and efficient schemes for shock solutions to
nonconservative systems of equations and their numerical analysis still lacks complete-
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ness. Second, from an application point of view, several fields have encountered this
difficulty. For two-phase flows, Pelanti and Shyue [29] have proposed an alternative
strategy: a Roe solver is used in order to simulate liquid-gas flows with cavitation,
neglecting the nonconservative part of the system. Raviart and Sainsaulieu [30] have
succeeded in evaluating jump conditions relying on the fact that, in two-phase flows,
the nonconservative product acts on linearly degenerate fields. In the field of plasma
physics, Coquel and Marmignon [8] have replaced the equation of thermal energy of
electrons by an equation of conservation of entropy for a model applicable to weakly
ionized hypersonic flows in thermal non-equilibrium. Candler and MacCormack [6]
have considered the nonconservative product in the equation of thermal energy for
electrons as a source term for a model applicable to weakly ionized flows. These meth-
ods lead to conservative system of equations where the structure of the shock waves
is identified, but the link with the original system of equations is still incomplete.
More recently, in [11, 5], several numerical schemes have been proposed for the ap-
proximation of a nonconservative compressible Euler system applied to the modeling
of fully ionized plasmas in thermal non-equilibrium; the question of how to evaluate
the proper physical jump conditions is not solved. In [20], [19], Lowrie et al. have
defined semi-analytic solutions for planar radiative shock waves, which can be used
for verifying codes for thermal equilibrium diffusion-radiation models. These ideas
are also used by Masser et al. [25] to analyze the structure of shock waves in a two-
temperature model for fully ionized plasmas. The corresponding ordinary differential
equations are integrated and the missing jump relation is obtained by replacing the
equation of thermal energy of electrons by a conservative equation of entropy as in [8],
thus avoiding the proper definition and evaluation of a jump condition in the presence
of a nonconservative term. This is more difficult in this case, since the nonconserva-
tive product acts directly on the genuinely nonlinear waves. Besides, Shafranov [31],
Zel'dovich and Raizer [39], and Mihalas and Mihalas [26] have been the shock wave
structure for a nonequilibrium fully ionized plasma in the context of a two-fluid model
without nonconservative product. Relying on the high thermal conductivity of the
electrons compared to the one of the ions, the structure of the wave is studied and the
temperature of the electrons is shown to be smooth whereas the temperature of the
ions exhibits a discontinuity. In [39], it has been shown that the dissipative processes
play a major role in the jump conditions for the shock wave: it depends on both the
gradients of macroscopic quantities and the transport coefficients. Even if we know
what to expect in terms of physics, such waves structure and jump conditions have
not been obtained in the framework of a one-fluid model exhibiting a nonconservative
product. In summary, no fully satisfactory solution has yet been achieved to han-
dle both theoretically and numerically the nonconservative product appearing in a
one-fluid model and it remains an open problem.

In this contribution, we focus on a specific class of solutions written as traveling
waves. These solutions are regular enough to ensure that all the terms appearing in
the systems are well defined (in particular the nonconservative product). Obviously,
the gain of regularity is allowed thanks to the diffusion terms on the electron fields.
The main goal is to build a numerical scheme able to capture first the regular solutions
of the system and second these particular traveling waves. This is a first step towards
capturing the solution of the Riemann problems corresponding to an intermediate
scale where the electronic diffusion terms remain. The question of the existence of
weak solutions (with or without the diffusion terms) is not the subject of this paper.
Moreover, we do not deal with the mathematically interesting question of the limit
of these traveling waves when the diffusion terms fully vanish since it is beyond the
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scope of the present paper and it is not relevant for the applications we aim at,
where dissipation for the electronic variable always occurs at the same order as the
convection phenomena.

We focus on the model derived by Graille et al. [14] at the zeroth order of the
Chapman-Enskog expansion. First, we identify a simplified model, which inherits the
same difficulty of dealing with nonconservative products and proper shock numerical
solution as the original system, but which is tractable mathematically. A decoupling
of the governing equations is proposed and we look for piecewise smooth traveling
wave solutions to the decoupled problem, as it is coherent with [39, 31]. This analysis
leads to a complete analytical solution, as well as an explicit expression of the missing
jump relation for the thermal energy of electrons, where the nonconservative term
is to be found. The ability of conducting the full analysis strongly relies on the
proper form of the system and on the presence of a regularizing effect in the electron
variables at this order of the expansion. For the numerical solution, we first use a
standard finite volume Godunov scheme based on a consistent discretization of the
nonconservative product, in order to resolve the traveling wave. When the level of
resolution is too coarse, some artificial and non-physical additional shock appears
in the solution, whereas for fine resolution, the proper and expected traveling wave
solution is reproduced. We thus identify the characteristic scales associated with the
compatibility conditions related to the analytic solution for the traveling wave in order
to define the limit between the coarse and fine resolutions. Surprisingly enough, it is
proved that the smallest diffusion scales associated with the electron mass diffusion
have to be properly resolved for the traveling wave to be correctly captured by the
numerical scheme. A new scheme based on a specific treatment of the nonconservative
product is developed to verify the compatibility equations in a discretized sense. It
is able to capture the proper traveling wave even in weakly-resolved cases without
generating unexpected additional and artificial numerical shocks. Although we use a
finite volume Godunov method, the numerical treatment of the nonconservative term
and the proposed numerical scheme can be generalized to many finite volume methods:
numerical experiments with a Lax-Friedrichs scheme and an upwind scheme are in
good agreements. The proposed numerical strategy is assessed for a traveling wave
test case based on the sun chromosphere conditions, for which the characteristic scales
are identified and for which the resolution of the finest diffusion scales is out of reach.
Using the new scheme combined to a Strang operator splitting technique, we obtain
an accurate resolution of the test case with two main advantages: we do not have to
resolve the smallest diffusion spatial scales in order to capture the proper traveling
wave, as expected, and the timestep is not limited by the Fourier stability condition
based on the largest diffusion coefficient. We eventually investigate the structure of
the traveling wave for the original coupled system of equations and prove that: 1- the
structure is similar to the one of the decoupled problem, which allow us to have a
precious insight on the wave structure and jump conditions; even if we have to resort
to a numerical resolution of the missing jump condition by solving a system of ordinary
differential equations using a Dormand-Prince (DOPRI853) method with dense output
[10, 15], we can obtain the missing jump conditions for any Mach numbers in the
general case, 2- in a regime of Mach numbers close to one, the missing jump condition
for the decoupled and coupled problems are very close to one another, thus fully
justifying our strategy to focus on a simplified problem.

The paper is organized as follows: in Section 2 the model derived by Graille et al.
[14] is presented and briefly compared to other models used by the solar physics com-
munity. Then, the decoupling of the governing equations is discussed. In Section 3,
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piecewise smooth traveling wave solutions to the decoupled problem are derived, as
well as the missing jump condition associated with the equation of thermal energy of
electrons. The analytical solution calculated is then compared to the ones obtained
by solving various models found in the literature. In Section 4, a 1D finite volume
Godunov scheme with a standard discretization of the nonconservative product is de-
veloped, as well as a new scheme based on a specific treatment of the nonconservative
product. In Section 5, a test case based on the sun chromosphere conditions is fully
investigated and our numerical strategy assessed. Finally, in Section 6, we show how
the ideas developed in the decoupled system case can be extended to the general case
and highlight the validity of the decoupled approach in a reasonable Mach number
range close to one.

2. Modeling and governing equations. In this section, we present a multi-
scale and multicomponent one-fluid model and explain its advantages and differences
compared to the conventional models that are used for describing collisional plas-
mas in thermal non-equilibrium, such as those found in the sun chromosphere. We
identify a simplified system of equations, which reproduces the difficulty due to the
nonconservative product encountered in the general model. An approximation of this
system will allow us to conduct analytical studies in Section 3 and also to highlight
the proper paths in the theoretical approach.

2.1. One simplified model for solar physics. The non-equilibrium model is
developed based on a thorough kinetic theory derivation by Graille et al. [14, 23]. It
is a generalized Chapman-Enskog solution to the Boltzmann equation by means of
a multiscale perturbation method. To achieve a fluid limit, the Knudsen number is
assumed to scale as a small parameter ε equal to the square root of the ratio of electron
mass to a characteristic heavy-particle mass, that drives thermal non-equilbrium. The
model is general (see Appendix A) and can be used for multicomponent, non- to
weakly- and strongly-ionized plasmas including reactive collisions between species.

Considering the level of complexity of the general model shown in Appendix A
that we propose to use for solar physics applications, some simplified model is now
introduced. We consider the system of equations associated to the zeroth-order of
the Chapman-Enskog expansion. At this order, only the electrons have dissipative
effects. For simplicity reason, neither Soret-Dufour effects nor electromagnetic forces
have been considered. Thermal energy relaxation and chemical processes are assumed
to be negligible. Both heavy particles (multiple species can be considered) and elec-
trons have a common adiabatic coefficient γ = 5/3, since the internal energy modes
are neglected. While diffusion can be anisotropic in the strongly magnetized case, we
assume isotropic diffusion since no magnetic field is present. The diffusion structure
is still nonlinear even if the electron diffusion coefficient and thermal conductivity are
assumed to be constant. Under these assumptions, the simplified system of equations
is made up of the conservation equations for the heavy-particle mass, mixture momen-
tum and total energy, and the electron mass and thermal energy. In nondimensional
form (assuming a unit reference Mach number, see [14]), this system reads:

(S)



∂tρh + ∂x·(ρhvh) = 0,

∂t(ρhvh) + ∂x·(ρhvh⊗vh + pI) = 0,

∂tE + ∂x·(Evh + pvh) = ∂x·
(
λ∂xTe + γ

γ−1D∂xpe
)
,

∂tρe + ∂x·(ρevh) = ∂x·
(
D 1
Te
∂xpe

)
,

∂t(ρeee) + ∂x·(ρeeevh) = −pe∂x·vh + ∂x·
(
λ∂xTe + γ

γ−1D∂xpe
)
,
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where quantity ρh stands for the heavy-particle density, vh the heavy-particle velocity,
p the mixture pressure, E the mixture total energy, λ the electron thermal conductiv-
ity, Te the electron temperature, D, the electron diffusion coefficient, pe the electron
pressure, ρe, the electron density, ρeee, the electron thermal energy. Notice that the
mixture pressure is composed of both the electron and heavy-particle partial pres-
sures p = pe +ph, obeying the perfect gas law pe = (γ−1)ρeee, ph = (γ−1)ρheh, where

ρheh is the heavy-particle thermal energy. The mixture total energy E is defined as

E = ρh||vh||
2
/2 + p/(γ−1). The term −pe∂x·vh in the electron energy equation is a

nonconservative product examined in great details in this paper. The simplified model
(S) inherits the difficulty of dealing with nonconservative products and proper shock
numerical solution from the original system, but it remains mathematically tractable.

2.2. Structure of the system. System (S) is hyperbolic in the open set of
admissible states Ω = {ρh > 0, ρe > 0, vh ∈ R3, p > 0, pe > 0} with a
parabolic regularization on the electron variables. For any direction defined by the
unit vector n, the matrix n·A, where A is the Jacobian matrix of the hyperbolic
part (removing the second order diffusion terms) is shown to be diagonalizable with
real eigenvalues and a complete set of eigenvectors. The eigenvalue vh·n is linearly
degenerate of multiplicity d+ 2, where d is the space dimension, and the eigenvalues
vh·n± c are genuinely nonlinear, where c is the sound speed defined by c =

√
γp/ρh.

Electrons participate in the momentum balance through the pressure gradient. As a
result, the sound speed includes as well the electron contribution to the pressure.

We recall that the equation of electron thermal energy is nonconservative in sys-
tem (S). This leads to the difficulties mentioned in the introduction when looking
for discontinuous solutions to the hyperbolic part of the problem. For shock wave
solutions, one possibility would be to transform the system (S) into a conservative
system. For instance, the equation of electronic thermal energy can be exchanged
with a conservative equation for the electron entropy [8]. This method works only
for smooth solutions when there is no dissipation in the electron energy equation.
Another possibility would be to consider the nonconservative product as a source
term [6]. However, this strategy modifies the eigenstructure of the system and, as a
consequence, the electronic temperature remains constant through a shock wave. Our
approach is different: we want to make use of the sound structure of system (S) in
order to derive general jump conditions involving neither simplifications nor modifi-
cations of the system.

2.3. Approximate decoupled problem. This section is devoted to an approx-
imate decoupled system obtained by removing the electronic diffusion in the conser-
vation equation for the total energy. This modified system is so-called decoupled since
the first three conservation equations constitute the Euler system and the electronic
equations are then solved, once the heavy part velocity vh is known. This simpli-
fication has no physical justification since the structure of the diffusion is modified.
Nevertheless the decoupled system allows us to derive analytical expressions for trav-
eling wave solutions. The wave structure of the decoupled problem obtained will be
shown to be very close to the fully coupled problem of system (S) in a Mach number
regime close to 1, shedding some light on the structure of traveling wave solutions
for the fully coupled system. Moreover, this approach allows us to build a numerical
scheme which is able to capture the associated traveling wave solutions. Eventually,
relying on the same strategy, we will be able to determine the jump conditions for
the original five-equation model semi-analytically (using the integration of a dynam-
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ical system coupled to a shooting method) and we will check a posteriori that the
simplification is physically fully justified in a range of Mach numbers close to one.

The approximate decoupled system splits then into the Euler system

(S̄1)


∂t(ρ̄h) + ∂x·(ρ̄hv̄h) = 0,

∂t(ρ̄hv̄h) + ∂x·(ρ̄hv̄h⊗v̄h + p̄I) = 0,

∂tĒ + ∂x·(Ē v̄h + p̄v̄h) = 0,

and a nonconservative drift-diffusion system

(S̄2)

{
∂tρ̄e + ∂x·(ρ̄ev̄h) = ∂x·

(
1
T̄e
D∂xp̄e

)
,

∂t(ρ̄eēe) + ∂x·(ρ̄eēev̄h) = −p̄e∂x·v̄h + ∂x·
(
λ∂xT̄e + γ

γ−1D∂xp̄e
)
.

The mixture pressure is introduced as before, p̄ = p̄e + p̄h, with the partial pressures

p̄e = (γ−1)ρ̄eēe, p̄h = (γ−1)ρ̄hēh. We also have p̄e = ρ̄eT̄e . The mixture total

energy is given by Ē = ρ̄h||v̄h||
2
/2 + p̄/(γ−1). One can find a global solution to

this decoupled problem. The first part (S̄1) admits discontinuous solutions for which
the discontinuity is propagating with the velocity prescribed by the usual Rankine-
Hugoniot jump relations and Lax’s condition. One can then calculate a solution to the
sub-system of electron (S̄2) as one piecewise smooth traveling wave, and determine
the missing jump condition, with a heavy-particle velocity field previously solved from
system (S̄1).

3. Jump relations and traveling wave solutions to the approximate de-
coupled problem. In this section, we determine traveling wave solutions for the
system (S̄2), being given the velocity v̄h as a piecewise constant function. The vari-
ables (ρ̄h, ρ̄hv̄h, Ē) are assumed to be a shock wave solution to the Euler System (S̄1)
with velocity σ, which satisfies the Rankine-Hugoniot jump relations and the Lax en-
tropy condition. We are subsequently looking for a piecewise smooth traveling wave
solution in the variables (ρ̄e, ēe), moving with the same velocity σ, solution to the sys-
tem (S̄2). Since the electron variables experience nonlinear heat and mass diffusion,
their profile is expected to exhibit only weak discontinuities, that is discontinuities in
their gradients. We derive boundary conditions at left and right infinities and show
that they do not depend on the (constant) diffusion coefficients λ and D, hence they
can be used as jump conditions associated with the electronic variables ρ̄e and ρ̄eēe.
It is consistent with the work of Zel'dovich and Raizer in [39]. These jump conditions
are then compared with literature results. A onedimensional case (d=1) is considered.

3.1. Structure of the traveling wave and jump conditions. We consider
that the heavy-particle variables read as piecewise constant functions depending only
on ξ = x·n − σt where σ > 0 is the velocity of the traveling wave prescribed by
the Rankine-Hugoniot jump conditions on the heavy-particle variables, and n, a unit
vector in the first direction, such that x·n = x. The same notation is used for
functions depending on time and space and for functions depending on ξ as there is
no ambiguity. Superscript R denotes the right state and L denotes the left state. We
have

(3.1) ρ̄h(ξ) =

{
ρ̄L
h if ξ < 0,

ρ̄R
h if ξ > 0,

v̄h(ξ) =

{
v̄L
h if ξ < 0,

v̄R
h if ξ > 0,

p̄(ξ) =

{
p̄L if ξ < 0,

p̄R if ξ > 0.

We consider a 3-shock wave that propagates at velocity σ > 0. The case of a 1-shock
wave is symmetric to the 3-shock case and can be solved in a similar way.
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Based on the sub-system of electrons (S̄2), we look for piecewise smooth traveling
wave for the electron variables that propagate at the velocity σ. More precisely, the
functions ρ̄e and p̄e solutions to (S̄2) are assumed to satisfy

• ρ̄e : ξ 7→ ρ̄e(ξ) ∈ C0(R), p̄e : ξ 7→ p̄e(ξ) ∈ C0(R),
• ρ̄e and p̄e are C∞ on (−∞, 0) and (0,+∞),
• ρ̄e and p̄e admit limits in ±∞ denoted by

lim
ξ→−∞

ρ̄e(ξ) = ρ̄L
e , lim

ξ→+∞
ρ̄e(ξ) = ρ̄R

e , lim
ξ→±∞

ρ̄′e(ξ) = 0,

lim
ξ→−∞

p̄e(ξ) = p̄L
e , lim

ξ→+∞
p̄e(ξ) = p̄R

e , lim
ξ→±∞

p̄′e(ξ) = 0.

The goal of this section is to exhibit the structure of these solutions in order to
understand the relations between the left and right states according to the traveling
wave velocity σ and structure of the diffusion (in particular the value of the coefficients
D and λ). We assume that the right state R is known, and we look for state L
connected to the state R.

System (S̄2) of partial differential equations becomes a system of ordinary differ-
ential equations:

(3.2)

{
− σρ̄′e + (ρ̄ev̄h)′ = D( 1

T̄e
p̄′e)
′,

− 1
γ−1σ p̄

′
e + 1

γ−1 (p̄ev̄h)′ = −p̄ev̄′h + λ T̄ ′′e + γ
γ−1D p̄′′e ,

where v̄h is a piecewise constant function given in Equation (3.1). The Mach number
MR at state R is introduced as MR = (σ− v̄R

h )/cR, where cR is the speed of sound at

the right state defined by cR =
√
γp̄R/ρ̄R

h , and is written in such a way that MR > 1
from the Lax conditions. The system (3.2) can be solved by considering the two
domains ξ > 0 and ξ < 0 and their interface ξ = 0. For ξ > 0, after some algebra, it
reads

(3.3)

(
p̄e − p̄R

e

T̄e − T̄R
e

)′
= ηR

(
1 −ρ̄R

e

−rR γ−1
γρ̄R

e
rR

)(
p̄e − p̄R

e

T̄e − T̄R
e

)
,

where the thermal diffusivity κR at the right state and the coefficients ηR and rR are
defined as κR = (γ−1)λ/(γρ̄R

e ), ηR = −cRMR/D, and rR = D/κR. Considering that
quantities κR and rR are non negative and quantity ηR non positive for γ > 1, the
matrix of Equation (3.3) has two negative eigenvalues δ±

(3.4) δ± = 1
2η

R
(

1 + rR ±
√

(1 + rR)2 − 4
γ r

R
)
.

Finally, for ξ > 0 one gets an analytical expression of the solution that combines
decreasing exponential functions

p̄e(ξ) = p̄R
e + ρ̄R

e

(
KR+ eδ

+ξ +KR− eδ
−ξ
)
, ξ > 0,

T̄e (ξ) = T̄R
e +

(
1− δ+

ηR

)
KR+ eδ

+ξ +
(
1− δ−

ηR

)
KR− eδ

−ξ, ξ > 0,

where KR± are two integration constants that need to be determined by using the
continuity and the jump of the derivative gradients in ξ = 0. Moreover, for ξ < 0,
similar algebraic relations as those found in Equation (3.3) are obtained by replacing
state R by state L. It leads to similar eigenvalues as those in Equation (3.4) by
replacing state R by state L. However, the only way for having a non diverging
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solution is to get constant functions equal to the left constant state L by setting the
integration constants KL± = 0. Indeed, the only bounded solutions when ξ goes to
−∞ are constant solutions.

At ξ = 0, since p̄e and ρ̄e (and T̄e ) are continuous functions, the system (3.2)
leads to the following compatibility equations

(3.5) p̄e(0)[v̄h](0) = D[p̄′e](0),
γ
γ−1 p̄e(0)[v̄h](0) = λ[T̄ ′e ](0) + γ

γ−1D[p̄′e](0),

where [·](0) denotes for the value of the jump in ξ = 0. The term of the left hand side
in the second equality of Equation (3.5) is the contribution of two terms: a first one
coming from the convective part and a second one coming from the nonconservative
product. Actually, since p̄e is continuous and the derivative v̄′h has a jump at ξ = 0, the
nonconservative product in the second equation of Equation (3.2) is not ambiguous.
Finally, the second relation of Equation (3.5) can be simplified by using the first one.
The compatibility Equation (3.5) then become

(3.6) p̄e(0)[v̄h](0) = D[p̄′e](0), [T̄ ′e ](0) = 0.

The second relation of Equation (3.6) provides the continuity of the derivative
of Te in the discontinuity (at ξ = 0). In other words, Te is a C1 function. This
result is consistent with the work of Zel'dovich and Raizer in [39], showing that the
temperature of electron is smooth in the shock wave of a nonequilibrium fully ionized
plasma. Moreover, the first relation of Equation (3.6) can be seen as a relation between
the jump of the pressure gradient in the discontinuity, the jump of the velocity and the
diffusion coefficient D. This result is also consistent with the work of Zel'dovich and
Raizer in [39], showing that the discontinuity of the shock wave in a plasma depend
on the dissipative process. Defining the two characteristic lengths of the diffusion
LD associated to the electron diffusion coefficient and Lλ associated to the thermal
conductivity by

(3.7) LD =
D

[v̄h](0)
, Lλ =

γ−1

γ

λ

ρ̄R
e

1

[v̄h](0)

=
κR

[v̄h](0)

, [v̄h](0) > 0,

Equation (3.6) can be rewritten as

(3.8) [p̄′e](0) = 1
LD
p̄e(0), [T̄ ′e ](0) = 0.

0 LD

0

p̄R
e

p̄L
e

ξ = x− σt

p̄
e

0 LD

0

T̄R
e

T̄L
e

ξ = x− σt

T̄ e

Fig. 3.1: Scheme of the traveling wave with the characteristic diffusion length LD
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The jump compatibility relations for the pressure of electron p̄e and for the elec-
tron temperature T̄e link the states R and L at infinity. They are obtained by integrat-
ing Equation (3.2) from 0+ to ∞, then using Equation (3.6) and the jump conditions
for the heavy particle velocity v̄h. Finally, these relations can be combined to obtain
the density jump conditions between the states R and L at infinity. One gets

(3.9)
p̄L
e

p̄R
e

=
(γ + 1)M2

R

(1− γ)M2
R + 2γ

,
T̄L
e

T̄R
e

=
(γ − 1)M2

R + 2

(1− γ)M2
R + 2γ

,
ρ̄L
e

ρ̄R
e

=
(γ + 1)M2

R

(γ − 1)M2
R + 2

.

The state L at infinity does not depend on the diffusion coefficients D and λ. However,
according to Equation (3.6), the jump compatibility relations depend on the variables
and their gradients in the discontinuity. This result is consistent with the work of
Zel'dovich and Raizer in [39], and Shafranov in [31]. Notice that the jump condition
ρ̄L
e /ρ̄

R
e is the same as for ρ̄L

h/ρ̄
R
h and is compatible with the Rankine-Hugoniot jump

relations. Let us underline however that the relations of Equation (3.9) are valid only
for M2

R < 2γ/(γ − 1), and a singularity is present when MR goes to
√

2γ/(γ − 1). In
the case where the Mach number is equal to this value, it is not possible to solve the
problem of the traveling wave and build a solution in the expected form. In addition,
beyond this limit value, the solution is showing negative temperatures. Thus the
decoupling of the system provides a reasonable solution only below this value. In fact
this coupling of heavy species and electrons is expected to be of very weak amplitude
in the neighborhood of Mach one since the dissipation is going to be really weak for
such small amplitude shocks; dissipation is only playing a role in that Mach range
in order to regularize the electrons profiles and reach the proper jump conditions on
the electronic temperature. In particular the heavy particle decoupled hydrodynamic
velocity jump is a good prediction in this range of the velocity jump condition for the
full system, thus justifying the weak coupling leading to the decoupled system. When
the Mach number is increasing, the full system exhibit a strong coupling between the
jump of electronic variables and the jump in heavy particle hydrodynamic velocity,
which can not be reproduced by the decoupled system and eventually leads to an
incompatibility in terms of jump conditions of the electronic variables. Thus, the
obtained relations are valid for a Mach number range close to one and will prove, in
Section 6, to provide a good estimate in that range of the jump conditions for the full
system.

3.2. Comparison with classical jump conditions in the literature. In
this section, the jump conditions proposed in Equation (3.9) are compared with other
usual jump conditions from conservative system of equations.

First, one can consider a conservative system of equations where we replace the
nonconservative equation of electron internal energy by an equation of conservation
of electron entropy (see Equation (B.1) in Appendix B). The obtained model is called
model Ment. In this case, one would get the following jump conditions:

(3.10)
p̄L
e

p̄R
e

:=
Ment

(
(γ + 1)M2

R

(γ − 1)M2
R + 2

)γ
,

T̄L
e

T̄R
e

:=
Ment

(
(γ + 1)M2

R

(γ − 1)M2
R + 2

)γ−1

.

Second, one can consider another conservative system of equations where the
nonconservative product is considered as a source term: only the conservative part
of the system is considered for getting the jump conditions (see Equation (B.2) in
Appendix B). The model obtained in that case is called model Msrc and the jump



SIMULATION OF PLASMA WITH NONCONSERVATIVE PRODUCT 11

conditions read

(3.11)
p̄L
e

p̄R
e

:=
Msrc

(γ + 1)M2
R

(γ − 1)M2
R + 2

,
T̄L
e

T̄R
e

:=
Msrc

1.

The jump conditions for the electron pressure and electron temperature obtained
by the traveling wave method in Equation (3.9) are then compared to those obtained
by means of Equation (3.10) and Equation (3.11). In Figure 3.2, the three jump
conditions are plotted as functions of the Mach number for Mach numbers between 1
and 1.5. We observe first that the isothermal jump conditions of model Msrc rapidly
underestimates the post-jump temperature. Moreover, this model is not reasonable
since the dynamics of smooth waves, such as rarefaction waves, is modified. Second,
the jump conditions Equation (3.11) of model Ment are similar to the ones of Equa-
tion (3.9) for a Mach number regime close to 1. However, significant differences can
be observed when the Mach number is increasing.

1 1.1 1.2 1.3 1.4 1.5

0.5

1

1.5

2

2.5

3

3.5

Mach number MR

pLe
pRe

1 1.1 1.2 1.3 1.4 1.5

0.8

1

1.2

1.4

1.6

1.8

2

T
L
e

TR
e

Mach number MR

Fig. 3.2: Ratio p̄L
e /p̄

R
e and T̄L

e /T̄R
e as a function of the Mach number MR, from

Equation (3.9) in full line, from Equation (3.10) in semi-dashed line and from Equa-
tion (3.11) in dashed line.

As a conclusion, by looking for piecewise smooth traveling wave solutions, we were
able to get an analytical expression of the missing jump condition associated with the
thermal energy of electrons, and the analytical traveling wave solution of the electron
variables valid for a Mach number regime close to one. For that purpose, we had
to decouple the problem: a discontinuity propagating at velocity σ where the jump
conditions are prescribed by the usual Rankine-Hugoniot relations solution to the
sub-system (S̄1) and a continuous traveling wave propagating at the same velocity
σ, solution to the sub-system (S̄2). The resulting jump conditions are valid in a
neighborhood of Mach one and then lead to a singularity for larger Mach numbers.
In the interval where they are valid, they exhibit rather important differences with
the conditions found in the literature. In section 6, we will prove that the analytical
expression obtained for the decoupled system is a very good approximation in a Mach
range close to the one of the jump conditions for the fully coupled problem (S), which
does not lead to any singular behavior. The jump condition for the fully coupled
problem (S) will also be proved to be very different from the usual jump conditions
of the literature. The next step is to verify numerically the jump conditions and if we
can capture the analytical traveling waves.

4. Numerical scheme for the decoupled system (S̄1) and (S̄2). In the
previous section, we show the existence of a traveling wave for system (S̄2). The
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aim of this section is to develop numerical methods able to capture the dynamic of
the traveling wave. First, we introduce a standard scheme based on a finite volume
Godunov method with a standard discretization of the nonconservative product and
then a specific treatment.

Note that the proposed method to treat the nonconservative term is indepen-
dant of the chosen finite volume scheme. Numerical experiments for a Lax-Friedrichs
scheme and an upwind scheme have been performed and led to the same conclusions.

4.1. Finite volume scheme with a standard discretization for the non-
conservative product. The electron variables ρ̄e and ρ̄eēe are initialized by using
the analytical solution found in the previous section. The heavy variables ρ̄h, v̄h, and

Ē are discontinuities propagating at velocity σ, where the conditions are fixed by the
Rankine-Hugoniot conditions.

A monodimensional finite volume Godunov method is used to discretize the elec-
tron sub-system (S̄2). We consider a finite domain of length L with N cells of length
∆x = L/N . The position of each cell Cj , 1 ≤ j ≤ N is defined by its center xj at the
middle of the interfaces xj+1/2 and xj−1/2. The bounds of the domain are not taken
into account as the simulations are stopped before any interaction occurs between the
traveling wave and the boundary. Left and right Dirichlet conditions are then used.
The time is also discretized with a timestep ∆t. Figure 4.1 can be used to visualize
these standard notations.

x

t

Cj−1

xj−1/2

Cj
xj+1/2

Cj+1

∆x

∆t

Fig. 4.1: Notations for finite volume scheme.

We denote by Unj , n ≥ 0, 1 ≤ j ≤ N , the vector of the natural variables at time
tn in the cell Cj is

Unj =
(
Unj,1, U

n
j,2

)
, Unj,1 = ρ̄ne,j and Unj,2 = ρ̄ne,j ē

n
e,j .

The general scheme reads

(4.1) Un+1
j = Unj − ∆t

∆x

(
Fnj+1/2 − F

n
j−1/2

)
+ ∆t

∆x

(
Gnj+1/2 −G

n
j−1/2

)
+Nn

j ,

where Fnj±1/2 are the convective fluxes at interfaces j ± 1/2, Gnj±1/2 the diffusive fluxes

at interfaces j ± 1/2, and Nn
j the value of the nonconservative term in the cell j.

The convective flux Fnj+1/2 is computed by means of Godunov’s scheme, by solving
the Riemann problem with the left and the right values given by the cells j and
j+1 and by taking the value of the flux at the interface. Note that the solution
of the Riemann problem used by this Godunov’s solver is essentially the solution of
the transport equation with a constant velocity but at the interfaces close to the
discontinuity of the velocity v̄h (in these cases, the traveling wave is used).
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Then, the diffusive flux is calculated by using a second-order centered scheme

(4.2) Gnj+1/2 = 1
∆x

(
D γ−1
T̄n
e,j+1/2

(Unj+1,2 − Unj,2), λ(T̄ne,j+1 − T̄ne,j) +Dγ(Unj+1,2 − Unj,2)
)
,

where T̄ne,j = (γ−1)ēne,j = (γ−1)Unj,2/U
n
j,1 and the interface temperature T̄ne,j+1/2 reads

T̄ne,j+1/2 =
γ − 1

2

(Unj+1,2

Unj+1,1

+
Unj,2
Unj,1

)
=

1

2

(
T̄ne,j+1 + T̄ne,j

)
.

Note that the error of consistency of this second-order discretization can be bounded
by a O(∆x2) term. This accuracy is sufficient for the proposed scheme as the major
error is done by the Godunov’s discretization of the hyperbolic part.

Finally, the second composant of the nonconservative term Nn
j = (0, Nn

j,2) is

computed as an approximation (as accurate as possible) of the integral over [tn, tn+1]×
Cj of the nonconservative contribution∫ tn+1

tn

∫
Cj
p̄e∂xv̄h dx dt ' (γ − 1)Unj,2

∫ tn+1

tn

∫
Cj
∂xv̄h dx dt,

where the integral of ∂xv̄h is exactly computed as the velocity v̄h is prescribed. The
proposed scheme is then a consistent numerical scheme with a standard discretization
of the nonconservative product that can be tested for capturing the traveling wave.

4.2. Numerical results. In this section, we present some numerical experi-
ments, using the finite volume scheme with standard discretization for the non-
conservative product proposed in the previous section. Different resolutions of the
traveling wave are presented with a double objective: first, to capture the dynamic of
the traveling wave with a fine enough mesh; second, to visualize the behaviour with
a coarse mesh in order to understand how the scheme can capture a shock disconti-
nuity. We focus on the 3-wave with respect to the wave structure of the Euler system
(S̄1), so that the right state R is known. Besides, a supersonic regime is studied for
a Mach number close to one in order to guarantee the existence of the traveling wave
introduced in Section 3.

The number of nodes N and the length of the domain L are fixed: N = 2000 and
L = 10. The initial position of the traveling wave (that is the position corresponding
to ξ = 0 in the moving frame) is 0.2L. The time discretization ∆t is fixed by a Fourier
condition ∆t ≤ 1

2β∆x2 where β = max(D,κR). All the simulations are stopped at
t = tf = 1, corresponding to a displacement of the traveling wave to 0.373L. The
electron thermal conductivity λ = 0.001 is fixed, so the associated characteristic
length Lλ = 7.6 × 10−2 is fixed. This value has been chosen as a good compromise
between the length of the domain, which is fixed, and the regularization of the profile
of the electron temperature. However, the electron diffusion coefficient D is going to
vary in our numerical experiments changing the resolution of the traveling wave. This
diffusion length LD is related to the diffusion coefficient D in Equation (3.7) as an
increasing function. Consequently, since the length of the domain and the number of
nodes are fixed, we improve the resolution of the traveling wave in the characteristic
length LD by increasing the diffusion coefficient D. Simulations are conducted for
diffusion coefficient D between 10−3 and 10−1 corresponding to different resolutions
of the traveling wave and lengths LD. The two extreme cases, denoted by case OR
(over-resolved) and case UR (under-resolved), are reported in Table 4.1: in case OR,
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Table 4.1: Values of the diffusion coefficient D used in the numerical experiments

case OR case UR

D 10−1 10−3

LD 3.055×10−1 3.055×10−3

Number of nodes in LD 61.1 0.611

LD > Lλ whereas in case UR, LD � Lλ. In Section 5, we will see that the physical
test case in sun chromosphere conditions corresponds to cases where LD � Lλ.

The right state and the left state have been initialized with the values given in
Table 4.2. The left state of the traveling wave has been computed using Rankine-
Hugoniot relations for the heavy particles variables and jump conditions given in
(3.9) for the electronic variables.

Table 4.2: Right and left states of the traveling wave

ρ̄h ρ̄e p̄ p̄e v̄h Mach number

right state R 1 0.01 1 0.1 0.2 1.1832

left state L 1.274 0.01274 1.5 0.1556 0.527 0.8563
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Fig. 4.2: Analytical solution (dashed line), numerical solution (full line), and relative
error (Err) for the traveling wave at t = tf = 1

Figures 4.2a and 4.2b show first that the traveling wave is well captured in the
case OR: the dynamic of the traveling wave is preserved if the number of nodes
in the length LD is large enough; second, that a non-expected artificial numerical
shock appears in the case UR. Two main contributions to the difference between
the numerical and analytical solutions can be exhibited: a contribution upstream of
the shock due to the numerical dissipation in the regular part of the traveling wave;
a contribution downstream of the shock due to the error on the gradients in the
discontinuity.
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Fig. 4.3: Quantity ∂xēe for case OR (full line) and case UR (dashed line) at t =
tf = 1.

Figure 4.3 represents the gradient of the electron energy ∂xēe = (γ−1)∂xT̄e close
to the discontinuity for the cases OR and UR at t = tf = nf∆t, where nf is the
total number of iterations at the final time tf . For each cell 1 ≤ j ≤ N , the gradient
is computed by means of a centered finite difference formula

(∂xēe)
nf

j =
ē
nf

e,j+1 − ē
nf

e,j−1

2∆x
.

One can see that in the case OR, the gradient is small whereas in the case UR, a
numerical artefact appears in the discontinuity. If the equality T̄ ′e (0+) = T̄ ′e (0−) is
verified numerically, one gets the proper traveling wave with the right jump condition.
If not, an artefact is produced in the discontinuity, due to the poor resolution of the
gradient in the discontinuity, resulting in an artificial numerical shock.
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Fig. 4.4: L2-norm of the error on p̄e with respect to the number of nodes in LD. Left:
downstream domain contribution (slopes of the lines: 0.3324 and 1.314); middle:
upstream domain contribution (slopes of the lines: 0.2541 and 0.3846); right: full
domain contribution.

Figure 4.4 shows the error in L2-norm of p̄e in function of the number of nodes in
LD, downstream and upstream of the shock. For the two areas studied, the dynamics
of the L2 norm of the error on p̄e is the same: when the resolution of the wave is
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increasing, this norm is decreasing. Downstream of the shock, one can identify two
dynamics for the L2 norm. It can also be noted that the dynamic is changing when
the error in L2 norm downstream of the shock becomes greater than upstream of
the shock. Moreover, it is exactly at these resolutions that we begin to observe the
appearance of an artificial shock.

The conclusive remark of these numerical experiments is the following. If the gra-
dients in the discontinuity are well resolved (that is the case when the spatial mesh is
fine enough), then, the traveling wave is well captured; if not, an artificial numerical
shock is produced and, in this case, the numerical dissipation is responsible of the
dynamic of the traveling wave. While the wave is regularized, having a non-linear
model with diffusion coming from physics implies that the conditions for solving the
wave are identified. On the contrary, in systems based on general nonconservative hy-
perbolic equations, it is difficult to clearly identify how numerical dissipation impacts
the resolution of the wave [1], [11].

Since the conditions for capturing the traveling wave have been identified, one
wants to improve these results and build a new way for discretizing the nonconser-
vative product allowing us to capture properly the traveling wave, even in weakly
resolved cases. This is particularly relevant in solar physics. Indeed, it will be seen in
Section 5 that the structure of the traveling wave in the sun chromosphere conditions
corresponds to a case where the characteristic length LD is very small compared to
the characteristic length Lλ. Consequently, using the presented standard scheme with
the standard discretization of the nonconservative product, one would need a lot of
nodes in order to capture properly the traveling wave.

4.3. Specific treatment of the nonconservative product. In this section,
we develop an original method for discretizing the nonconservative term Nn

j,2. The
idea is to express in a discretized sense the compatibility conditions (3.5) for the
discontinuity, and deduce a new expression of the nonconservative term Nn

j,2 in order
to satisfy these conditions. In that way, we aim at capturing the traveling wave even
when the gradients are not fully resolved.

We consider the general scheme written in term of finite volumes (4.1) and specify
the two vectorial coordinates by means of an index

(4.3)

{
Un+1
j,1 − Unj,1 + ∆t

∆x

(
Fnj+1/2,1 − F

n
j−1/2,1

)
= 0 + ∆t

∆x

(
Gnj+1/2,1 −G

n
j−1/2,1

)
,

Un+1
j,2 − Unj,2 + ∆t

∆x

(
Fnj+1/2,2 − F

n
j−1/2,2

)
= Nn

j,2 + ∆t
∆x

(
Gnj+1/2,2 −G

n
j−1/2,2

)
.

According to the relation found in Equation (3.5), the jump of the gradient of p̄e
in the discontinuity is the same in the electron mass and electron thermal energy equa-
tions. In the discretized sense, one can simply link these two equations by multiplying
the electron mass equation by a temperature T̄ne,j = (γ − 1)Unj,2/U

n
j,1:

(4.4){
T̄ne,j(U

n+1
j,1 − Unj,1) + T̄ne,j

∆t
∆x

(
Fnj+1/2,1 − F

n
j−1/2,1

)
= T̄ne,j

∆t
∆x

(
Gnj+1/2,1 −G

n
j−1/2,1

)
,

Un+1
j,2 − Unj,2 + ∆t

∆x

(
Fnj+1/2,2 − F

n
j−1/2,2

)
= Nn

j,2 + ∆t
∆x

(
Gnj+1/2,2 −G

n
j−1/2,2

)
.

According to Equation (3.6), the derivative of the temperature T̄e is continuous in the
discontinuity so we have:

(4.5) T̄ne,j+1 − T̄ne,j = T̄ne,j − T̄ne,j−1 ⇐⇒ T̄ne,j+1 − 2T̄ne,j + T̄ne,j−1 = 0.

Consequently, the second-order terms of the electron thermal energy equation can be
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simplified using Equation (4.2) as

(4.6) Gnj+1/2,2 −G
n
j−1/2,2 =

Dγ

∆x

(
Unj+1,2 − 2Unj,2 + Unj−1,2

)
,

and coupled to second-order terms of the electron mass Equation (4.2), defined as

(4.7) Gnj+1/2,1 −G
n
j−1/2,1 =

2D (γ − 1)

∆x

[(
Unj+1,2 − Unj,2

)(
T̄ne,j+1 + T̄ne,j

) − (Unj,2 − Unj−1,2

)(
T̄ne,j + T̄ne,j−1

)] ,
Besides, the time derivative terms are not playing a role in the compatibility Equa-
tion (3.5). We couple the electron mass equation with the electron thermal energy
equation, providing a new expression for the nonconservative product. Multiplying
the first line of Equation (4.5) by γ/(γ − 1), substracting by the second line of Equa-
tion (4.5), and neglecting the temporal derivative, one obtains

(4.8) Nn
j,2 = ∆t

∆x

(
Fnj+1/2,2 − F

n
j−1/2,2

)
− γ

γ−1 T̄
n
e,j

∆t
∆x

(
Fnj+1/2,1 − F

n
j−1/2,1

)
− ∆t

∆x

(
Hn
j+1/2 −H

n
j−1/2

)
,

where the second-order terms of Equation (4.8) are given by

(4.9) Hn
j±1/2 = 1

2
γ
γ−1

(
T̄ne,j±1 − T̄ne,j

)
Gnj±1/2,1.

This expression of the nonconservative product Nn
j,2 verifies Equation (3.5) in the

discretized sense, that is to say: 1- the continuity of T̄e in the discontinuity of the
traveling wave verifying Equation (4.5), 2- the conditions on the jump of the gradient
of p̄e in the discontinuity.

However, the expression found in Equation (4.8) for Nn
j,2 makes the global scheme

not consistent with system (S̄2), even if it is able to resolve the traveling wave in
the weakly discretized case. It is thus necessary to add correction terms to recover
consistency in the well-resolved case.

Thus, we want to build a numerical scheme in order to get proper compensations
of the different terms in discontinuities in order to verify the compatibility condition
Equation (3.5) in the discretized sense, and at the same time, to add correction terms
and recover consistency in order to capture properly the regular parts of the traveling
wave. To this aim, we focus only on the first order terms of the specific expression
of the nonconservative terms in Equation (4.8). Then, we add first order correction
terms in order to be consistent with the original system (S̄2). Several alternatives are
possible to define the correction terms. In this work, we have mainly focused on the
correction terms, which involve the gradients of ρ̄eēe and ēe (or T̄e ). By adding first
order correction terms, the expression of the nonconservative product Equation (4.8)
reads:

(4.10) Nn
j,2
∗ = Nn

j,2 −∆t v̄nh,j
Unj,2 − Unj−1,2

∆x
+ ∆t

γ

γ − 1
v̄nh,j T̄

n
e,j

Unj,1 − Unj−1,1

∆x
.

It is important to make sure that these additional correction terms are not playing
any role in discontinuities, which could violate Equation (3.5) in the discretized sense.
We limit the impact of these additional terms in the discontinuities and one can show
that the dynamics of the wave is not depending on the choice of the cut-off.
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Fig. 4.5: L2-norm of the error on p̄e with respect to the number of nodes in LD, . stan-
dard discretization, ◦ discretization without correction terms from Equation (4.8),
and + discretization with correction terms from Equation (4.10). Left: downstream
domain contribution; middle: upstream domain contribution; right: full domain con-
tribution.

Figure 4.5 represent the L2 norm of p̄e in function of the number of nodes in
LD for three different way of discretizing the nonconservative product Nn

j,2. Results
are presented for three methods: the standard way of discretizing Nn

j,2 described in
Section 3, without correction terms of Equation (4.8), and with correction terms Nn

j,2
∗

of Equation (4.10). The formulation of the nonconservative product Nn
j,2 without cor-

rection terms is working well in the weakly discretized case for the traveling wave test
cases. However, in the regularized case, an additional numerical shock is appearing
and the L2 norm is increasing with the number of nodes in LD, because the scheme
is not consistent. By adding correction terms and using the formulation of the non-
conservative term Nn

j,2
∗ from Equation (4.10), we have built a scheme which is able

to capture the traveling wave in both the highly- and coarsely-resolved cases.
We could have built this numerical scheme because of the thorough understanding

of the traveling wave linked to a good structure of the diffusion, as well as system
allowing us to derive compatibility equations in the discontinuity.

5. Application to solar physics. In this section, we apply the previous devel-
opment to a test case chosen so as to reproduce typical scales from sun chromosphere
conditions. We study the ability of our scheme to resolve shock solutions in such
conditions and design a specific numerical strategy based on the new scheme in order
to cope with the nonconservative term. A 3-wave is considered by using the sys-
tem (S̄2) with non-dimensional quantities for building the traveling wave in the sun
chromosphere conditions.

First, we use atmospheric parameters from the model C of Vernazza et al. [35]
where the values of these parameters are given at 52 depth in the atmosphere from
the low corona to the photosphere. For the purpose of the work, we have focused
on the photospheric level at the heigth h = 0 km. We consider p̄R

e = p̄R
h at the

right state, with only two species: electrons and protons H+ as heavy particles. The
transport coefficients D and λ are computed using third-order Sonine polynomials
approximation based on a spectral Galerkin method used in [22, 36] considering local
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thermodynamic equilibrium for the fully ionized gas.
Then, we non-dimensionalize these quantities with reference quantities. The char-

acteristic length of diffusion L0 = LD is chosen as the reference length. The density
of heavy particle is chosen as the reference density ρ0. The reference velocity v0 is the
Alfvén velocity defined as v0 = B0/

√
µ0ρ0 where B0 is the reference magnetic field,

chosen as B0 = 100 G, and µ0 the vacuum permeability.

Table 5.1: Reference quantities at the photospheric level

ρ0 (kg.m−3) L0 (m) v0 (m.s−1) T0 (K) P0 (Pa) n0 (m−3)

1.873 × 10−4 1.747 × 10−6 6.518 × 102 6420 9927.42 1.12 × 1023

Finally, after non-dimensionalizing the governing equations with reference quan-
tities from Table 5.1, the traveling wave is investigated using values from Table 5.2
and Table 5.3. We have chosen a number of nodes of either N = 1000 or N = 5000
and a length of the domain L/L0 = 2×105.

Table 5.2: Right and left states at infinity of the traveling wave

ρ̄h ρ̄e p̄ p̄e v̄h

right state R 1 5.44×10−4 0.5974 0.2987 0.07

left state L 1.6962 9.23×10−4 1.5 0.9454 0.6787

Table 5.3: Diffusion coefficients and related typical lengths

D κR LD/L0 Lλ/L0 L/L0

10.7853 121 970.96 1 11309 200 000

After initializing the traveling wave, three numerical schemes are compared. The
first scheme, denoted scheme A, is the standard scheme based on a standard dis-
cretization of the nonconservative product introduced in Section 4, where the timestep,
denoted ∆tF , is limited by a Fourier stability condition, thus involving the largest
diffusion coefficient, that is the electron thermal diffusivity κR. The second scheme,
denoted scheme B, is based on the formulation of the nonconservative product de-
scribed in Equation (4.10), where the timestep is also limited by the same Fourier
stability condition. The third scheme, denoted scheme C, is based on the formu-
lation of the nonconservative product defined in Equation (4.10), using an operator
splitting approach based on a second-order Strang formalism in order to separate the
convection and diffusion operators [32, 13, 9, 12]. The idea is to not be limited by the
small timesteps ∆tF imposed by the Fourier stability condition, due to the electron
thermal diffusivity. Concerning the scheme C, there are two possibilities for the
operators : one can 1- gather diffusive terms and the nonconservative product, or
2- gather convective terms and the nonconservative product. In this work, we have
focused on the second case. Indeed, according to Equation (4.10), the expression of



20 Q. WARGNIER, S. FAURE, B. GRAILLE, T. MAGIN, M. MASSOT

the nonconservative product depends on the thermal energy and density convective
fluxes, which makes the second case a rather more natural choice. Besides, the com-
putational time is drastically shorter in this case, since the nonconservative product is
integrated only one time during the convective timestep, whereas in the other case, the
nonconservative product is integrated several times during the dissipative timestep.

The operators are splitted: one operator X corresponds to convective terms
and the nonconservative product defined by Equation (4.10), where the convective
timestep, called ∆t, is simply limited by a CFL condition; an other operator Y re-
groups diffusion terms, where the timestep ∆tF is computed based on the Fourier
condition and integrated over several sub-timesteps in order to reach the convective
timestep. The general scheme is summarized as follows:

Un+1 = Y
∆t
2 X∆tY

∆t
2 Un.

In the proposed schemes, the values used for the convective timestep ∆t and the
diffusive timestep ∆tF are presented in Table 5.4. In order to perform the comparison
between the timesteps used, we have compared them to the convective timestep ∆t =
C × ∆x/max(v̄R

h + cR, v̄L
h + cL) for N = 1000 and N = 5000, where the Courant

number is C = 0.2.

Table 5.4: Timesteps used for the three schemes for N = 1000 and N = 5000

N ∆t ∆tF
1000 2.233 × 101 4.095 × 10−1

5000 4.466 1.64 × 10−2

Results are presented in Figure 5.1a and Figure 5.1b for the electron energy ēe,
comparing the three schemes, at the final time t = tf = 30000, for N = 1000 and
N = 5000. In the sun chromosphere conditions, the characteristic scales are such
that Lλ � LD, because the electron diffusivity is much higher than the electron
diffusion coefficient in such conditions. In the test case, the smallest spatial scale to
be resolved is the length LD, which is the characteristic scale related to the resolution
of the traveling wave. By fixing the number of nodes N and the length of the domain
L based on Table 5.3, the test case can be identified as a very weakly-resolved traveling
wave test case.

In Figure 5.1a and Figure 5.1b, the standard scheme exhibits artificial numerical
shock since the smallest scale is not properly resolved and small timesteps ∆tF have
to be used, as expected. Switching to a proper treatment of the nonconservative term
allows to reduce by a factor of 9, for N = 5000, the amplitude of the error on the elec-
tron temperature and to reduce drastically the artificial numerical shock, thus leading
to a satisfactory level of resolution. However, using the new scheme based on Strang
splitting operator techniques combined to the new formulation of the nonconservative
product (scheme C) leads to an additional improvement of the resolution of all the
scales of the traveling wave. The traveling wave can be well captured, while using
splitting timesteps of the order of the convective CFL stability limitation, thus leading
to a minimal amount of numerical dissipation in the convective step. In fact, based
on the results obtained in the previous section, a good approximation of the traveling
wave obtained with the scheme A would require several nodes in the characteristic
length LD thus leading to about a million nodes. In this context, the corresponding
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Fig. 5.1: Electron energy (ēe) and relative error (Err) for the solar test case based on
the values from Table 5.2 and Table 5.3. Exact solution at t = 0 (red dashed line)
and t = 30000 (red full line). Numerical solution for scheme A (semi-dashed line),
scheme B (dashed line), and scheme C (full line), at the final time t = 30000.
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Fig. 5.2: Electron energy (ēe) and relative error (Err) for the solar test case based on
the values from Table 5.2 and Table 5.3. Exact solution at t = 0 (red dashed line)
and t = 30000 (red full line). Numerical solution for scheme C at the final time
t = 30000, for N = 5000 in the domain [30000, 140000] for several Courant number
C = 5 × 10−2 (semi-dashed line), C = 0.2 (full black line), C = 0.3 (dashed line),
C = 0.4 (full blue line).

convective timestep and the diffusive timestep would be respectively ∆t = 8.94×10−2

and ∆tF = 4.01× 10−7 and the original scheme would become useless.
In order to perform the analysis of the error generated by the splitting operation,

several splitting timestep ∆t have been tested for the presented test case, used in the
scheme C. Results for several Courant number C ∈ {0.05, 0.2, 0.3, 0.4} are shown in
Figure 5.2, for N = 5000, at t = 30000. These results show that when the splitting
timestep becomes too important (for Courant numbers C = 0.3 or C = 0.4), the
traveling wave is no longer captured with a high level of accuracy, and an additional
numerical artefact is obtained. However, for a splitting timestep where the Courant
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number is C = 0.2, we notice that the numerical solution is shown to be optimal.

6. Traveling wave for the fully coupled problem (S). In this paper, we
have focused so far on the decoupled problem (S̄1) and (S̄2). In the case of the fully
coupled problem (S), the problem is in fact very similar to the decoupled problem
and one can solve for traveling wave solutions as well. However, we get a numerical
solution instead of a complete analytical solution. In this study, we also consider a
3-wave.

In the fully coupled system (S), we solve for a traveling wave where the structure
corresponds to 1- a constant state L, a weak discontinuity (smooth function with
jump of derivative) and a regularization up to a constant state R for the electron
variables (pe, ρe) and 2- a constant state L, a discontinuity connecting state L to
an intermediary state 0 and a regularization from state 0 to a constant R for the
heavy variables (E ,vh, ρh). The structure of the wave is represented in Figure 6.1.
The jump conditions are the Rankine-Hugoniot conditions, the thermal energy of
electrons requires a numerical integration and the velocity jump is coupled to the
weak jump of the electron variables. Actually, the structure of the wave for the heavy
particles is very similar to the one identified by Zel'dovich and Raizer in [39] in §3,
where the role of the heat conduction on the structure of the shock wave in gases has
been studied.

In order to get an accurate estimation of the missing jump condition for the
electron thermal energy of as a function of the Mach number MR as well as the
structure of the traveling wave, we integrate the ordinary differential equations of (S)
using a Dormand-Prince (RKDP) method or DOPRI853 method [10]. In the case of
a 3-wave, we initialize the traveling wave from state L and, by numerical integration,
compute the corresponding state R. In order to get an accurate estimation of the
missing jump condition, a shooting method is used. The steps of the shooting method
are the following: 1- we start the numerical integration of the traveling wave using
the state L of the case A in subsection 4.2 of the decoupled problem, then 2- a state
R associated to the initial state L is computed, finally 3- a dichotomy is used by
initializing different state L until a good approximation of the expected state R is
found. The missing jump condition of the fully coupled problem as a function of the
Mach number can thus be obtained.

The results of the numerical integration are presented in Figure 6.2. The esti-
mated jump condition for the fully coupled problem is compared with the jump con-
ditions from the decoupled problem Equation (3.9), Equation (3.10) from the model
Ment, and Equation (3.11) from the modelMsrc. The jump conditions of the decou-
pled problem Equation (3.9) give a very good approximation of the jump conditions
of the fully coupled problem in a reasonable Mach number range MR close to one.
Besides, in the fully coupled case, no singularities have been observed for the jump
condition of pe and Te for the whole range of Mach number. The results show that the
jump conditions from the conservative modelsMent andMsrc clearly underestimated
the post-shock temperature.

Finally, if having an analytical expression of the traveling wave for the fully cou-
pled problem is not possible, relying on the same strategy designed in the study of the
decoupled problem, we are able to analyze the fully coupled case. By integrating the
ordinary differential equations of the fully coupled problem (S), we get the structure
of the traveling wave as well as an evaluation of the missing jump condition of the
internal energy of electron.

From this study, two conclusions can be drawn: 1- Relying on the missing jump
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condition proposed in the literature through various approximation yields a very poor
approximation of the effective jump conditions, even in a Mach number range close
to one and the present study allows to derive the physically sound jump conditions,
2- Focusing on the decoupled problem, at least in a reasonable Mach number range
around one, is fully justified since it provides a very good approximation of the effective
jump conditions.
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Fig. 6.1: Structure of the traveling wave for the fully coupled problem (S)

7. Conclusions. The general plasma model derived in [14] has been presented in
a simplified model, without considering the electro-magnetic forces and under several
assumptions, which inherits the difficulties of the general case in terms of evaluating
jump conditions and simulating shock solutions. We have proposed a decoupling
of the governing equations in order to derive an analytic expression of the missing
jump condition on the electron temperature; this decoupling even if seemingly non-
physical, will prove to provide a good estimate of the jump conditions for the full
system in a non-negligible range of Mach number close to one. We observe that this
analytic jump condition is rather different from the jump conditions obtained in the
literature and the discrepancies get worse as the Mach number increases. In order to
reproduce numerically the structure of the traveling wave solution with the proper
jump conditions, we have used a finite volume method of Godunov type. A naive
consistant treatment of the nonconservative product proves that, for a fine resolution,
the expected wave is well reproduced. We have verified the jump condition as well as
the structure of the traveling wave obtained analytically and identified the required
level of resolution in order to prevent the appearance of an additional artificial jump
due to the numerical dissipation of the numerical scheme.

In this context, we have developed a numerical scheme with a specific treatment
of the nonconservative product. The idea is to express the compatibility equations at
the discontinuity of the traveling wave in a discretized sense. It gives the ability to
predict the proper traveling wave even when the gradients are not fully resolved. We
have thus built a scheme, which is able to capture the traveling wave in the highly- or
weakly-resolved cases. Such a scheme is important since the weakly-discretized case
is particularly relevant in the sun chromosphere conditions. We have also applied a
Strang operator splitting technique in order to prevent the use of small time-steps
limited by the presence of large diffusion terms and a Fourier stability condition.
Eventually, a 1D traveling wave test case has been presented based on conditions
found in the sun chromosphere, which allowed us to assess the numerical scheme and
numerical strategy based on operator splitting. Such a strategy should prove very
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Fig. 6.2: Jump of pe and Te as a function of the Mach number MR. In full line: the
jump from the decoupled system (S̄2), in semi dashed-line: model Ment from the
system (B.1), in dashed line: model Msrc from the system (B.2), in dotted line:
jump from the fully coupled system from (S)

useful for applications in solar physics in order to gain computational cost, as well as
obtain physically accurate simulations.

This scheme has then be validated numerically with a specific choice for the
initial conditions. Indeed, we have focused on particular solutions of the systems (S),
(S̄1), and (S̄2) as traveling waves. We have provided a numerical treatment of the
nonconservative product that can be used in both cases OR and UR, that is even if
the length LD is much smaller than Lλ. However, the behavior of this scheme was
not investigated for more complicated initial conditions and in particular in the case
where several traveling waves interact.

Furthermore, jump conditions based on our knowledge of the decoupled problem
have been derived numerically for the fully coupled system and we were able to justify
that studying the decoupled problem provides a good approximation of the original
system in a range of Mach number close to one, as well as a good insight on the
resolution of the problem for the general system of equations.

Two natural questions arise from this piece of work. A second order version of our
first order scheme is highly desirable for applications. Besides, it would be interesting
to derive an asymptotic preserving (AP) scheme, when the mass diffusion of electrons
is going to zero. Let us underline that the thermal conductivity of electrons if usually
high and the limit of no dissipation for the electronic variable is irrelevant from a
physical perspective. however, our compatibility conditions exhibit the fact that the
solution smoothness is changing when the electron mass diffusion coefficient is taken as
zero and deriving an AP scheme for this limit would be interesting. The right path to
resolve these two problems is to obtain a numerical scheme with the ability to decouple



SIMULATION OF PLASMA WITH NONCONSERVATIVE PRODUCT 25

completely the discretized version of the compatibility conditions and the consistency
condition of the scheme. We are currently investigating this issue in collaboration with
F. Coquel. The contributions proposed in this paper should also be extended to the
case where electro-magnetic forces are present and the system is coupled to Maxwell’s
equations. Once this is accomplished, we have developed a massively parallel code
and implemented a general multicomponent model for partially ionized plasma flows
coupled to Maxwell equations in [37] and the extension to multi-D configurations and
more complex flows should be rather straightforward. These are the subjects of our
current research.
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Appendix A. General governing equations.
Multicomponent nonequilibrium Navier-Stokes equations are obtained from the

fluid model derived in [14, 23] for the fully magnetized case and the Maxwellian regime
for reactive collisions. The general governing equations read in non dimensional form:
(A.1)

∂tρe + ∂x·(ρevh) = −∂x·(ρeVe)− ε
(
∂x·(ρeV

(2)
e )− ω0

e

)
,

∂tρi + ∂x·(ρivh) = −ε
(
∂x·(ρiVi )−mi ω

0
i

)
, i ∈ H,

∂t(ρhvh + ε0E∧B) + ∂x·
(
ρhvh⊗vh + (p+ EEM )I− (ε0E⊗E + 1

µ0
B⊗B)

)
= −ε∂x·Πh,

∂t(ρeee) + ∂x·(ρeeevh) + pe∂x·vh = −∂x·qe + S(1) − ε
(
∂x·q(2)

e − S(2)
)
,

∂t(E + EEM ) + ∂x·(Hvh + 1
µ0
E∧B) = −∂x·qe
− ε
(
∂x·q(2)

e + ∂x·qh + ∂x·(Πh·vh)
)
,

with the same notations as in System (S). Some new quantities are introduced:

symbol V (2)
e stands for the second-order electron diffusion velocity, ω0

e the electron
chemical production rate, ρi the density of the heavy particle i ∈ H, Vi the diffusion
velocity of the heavy particle i ∈ H, mi the non-dimensional mass of the heavy particle
i ∈ H, ω0

i the chemical production rate of the heavy particle i ∈ H, ε0 the vacuum
permittivity, E the electric field, B the magnetic field, EEM = ε0E

2/2+B2/(2µ0) the
electromagnetic energy, µ0 the vacuum permeability, Πh the heavy-particle viscous
stress tensor, q

(2)
e the second-order electron heat flux, qh the heavy-particle heat flux.

The source terms S(1) and S(2) are defined as

(A.2) S(1) = Je·E′ −∆E
(1)
h , S(2) = J (2)

e ·E
′ −∆E

(2)
h −∆E

(2)
chem,

where quantity Je = neqeVe is the first-order electron conduction current density
with qe the electron charge, E′ = E + vh∧B, the electric field expressed in the
heavy-particle reference frame, ∆E

(1)
h , the energy transferred from heavy particles to

electrons at order zero, J (2)
e = neqeV

(2)
e , the second-order electron conduction current

density, ∆E
(2)
h , the energy transferred from heavy particles to electrons at first order

zero, and ∆E
(2)
chem, the chemistry-energy coupling term. In solar physics applications,

the full system of equations (A.1) can be coupled with Maxwell’s equations [34]

(A.3)


∂x·E =

nq

ε0
,

∂x·B = 0,

∂tB + ∂x∧E = 0,

µ0ε0∂tE − ∂x∧B = −µ0I,

where quantity nq is the mixture charge, and I = nqvh+Je+J
(2)
e +Jh, the total current

density with Jh =
∑
i∈H niqiVi , the heavy-particle conduction current density with qi

the charge of the heavy particle i ∈ H. The electron transport fluxes Ve and qe appear
at the convective time scale corresponding to the Euler equations for the heavy species
(zeroth order). The transport fluxes V (2)

e and q
(2)
e are obtained at the dissipative time

scale corresponding to the Navier-Stokes equations for the heavy species. Notice that
electrons participate in the momentum balance through the pressure gradient and
the Lorentz force but they do not contribute to the viscous stress tensor due to their
small mass. The electron transport properties are anisotropic and depend on the
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direction of the magnetic field whereas the heavy transport properties are isotropic.
For example, the first-order electron diffusion velocity is expressed by means of Fick’s
law and Soret’s law

(A.4) Ve = − ¯̄De(de + ¯̄χe∂xlnTe ),

where ¯̄De is the electron diffusion coefficient tensor, and ¯̄χe the thermal diffusion
ratio. The electron diffusion driving force is de = ∂xpe/pe − neqeE

′/pe. The first-
order electron heat flux is expressed by means of Fourier’s law, together with Dufour’s
law and a term of diffusion of enthalpy

(A.5) qe = −¯̄λe∂xTe + pe ¯̄χeVe + ρeheVe .

Quantity ¯̄λe is the electron thermal conductivity tensor. These transport properties
can be computed at the microscopic level using a spectral Galerkin method.

Appendix B. Convervative models . We introduce two additional models.
Model Ment with a conservation equation of entropy:

(B.1)



∂t(ρh) + ∂x(ρhvh) = 0,

∂t(ρhvh) + ∂x(ρhv
2
h + p) = 0,

∂t(E) + ∂x(Evh + pvh) = 0,

∂t(ρe) + ∂x(ρevh) = 0,

∂t(ρese) + ∂x(ρesevh) = 0,

where the electron entropy se is defined by the relation pe = (γ − 1)ρe
γ

exp(se/cv),
where cv is the electron specific heat at constant volume.

Model Msrc, with the nonconservative product as a source term:

(B.2)



∂t(ρh) + ∂x(ρhvh) = 0,

∂t(ρhvh) + ∂x(ρhv
2
h + p) = 0,

∂t(E) + ∂x(Evh + pvh) = 0,

∂t(ρe) + ∂x(ρevh) = 0,

∂t(ρeee) + ∂x(ρeeevh) = 0.
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