STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS

Yvan Martel
  • Fonction : Auteur
  • PersonId : 862330
Pierre Raphaël
  • Fonction : Auteur
  • PersonId : 902039

Résumé

We consider the mass critical two dimensional nonlinear Schrödinger equation (NLS) i∂tu + ∆u + |u| 2 u = 0, t ∈ R, x ∈ R 2. Let Q denote the positive ground state solitary wave satisfying ∆Q − Q + Q 3 = 0. We construct a new class of multi–solitary wave solutions: given any integer K ≥ 2, there exists a global (for t > 0) solution u(t) of (NLS) that decomposes asymptotically into a sum of solitary waves centered at the vertices of a K–sided regular polygon and concentrating at a logarithmic rate as t → +∞ so that the solution blows up in infinite time with the rate ∇u(t) L 2 ∼ | log t| as t → +∞. This special behavior is due to strong interactions between the waves, in contrast with previous works on multi–solitary waves of (NLS) where interactions do not affect the blow up rate. Using the pseudo–conformal symmetry of the (NLS) flow, this yields the first example of solution v(t) of (NLS) blowing up in finite time with a rate strictly above the pseudo–conformal one, namely, ∇v(t) L 2 ∼ log |t| t as t ↑ 0. Such solution concentrates K bubbles at a point x0 ∈ R 2 , i.e. |v(t)| 2 ⇀ KQ 2 L 2 δx 0 as t ↑ 0.
Fichier principal
Vignette du fichier
NLS2d-soumis.pdf (344.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01808634 , version 1 (05-06-2018)

Identifiants

  • HAL Id : hal-01808634 , version 1

Citer

Yvan Martel, Pierre Raphaël. STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS. 2018. ⟨hal-01808634⟩
232 Consultations
84 Téléchargements

Partager

More