Towards Qualitative Word Embeddings Evaluation: Measuring Neighbors Variation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Towards Qualitative Word Embeddings Evaluation: Measuring Neighbors Variation

Résumé

We propose a method to study the variation lying between different word embeddings models trained with different parameters. We explore the variation between models trained with only one varying parameter by observing the distributional neighbors variation and show how changing only one parameter can have a massive impact on a given semantic space. We show that the variation is not affecting all words of the semantic space equally. Variation is influenced by parameters such as setting a parameter to its minimum or maximum value but it also depends on the corpus intrinsic features such as the frequency of a word. We identify semantic classes of words remaining stable across the models trained and specific words having high variation.
Fichier principal
Vignette du fichier
document.pdf (303.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01806468 , version 1 (08-06-2018)

Identifiants

  • HAL Id : hal-01806468 , version 1

Citer

Bénédicte Pierrejean, Ludovic Tanguy. Towards Qualitative Word Embeddings Evaluation: Measuring Neighbors Variation. Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Jun 2018, New-Orleans, United States. pp.32 - 39. ⟨hal-01806468⟩
296 Consultations
232 Téléchargements

Partager

More