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Abstract

We propose a method to study the variation ly-
ing between different word embeddings mod-
els trained with different parameters. We ex-
plore the variation between models trained
with only one varying parameter by observing
the distributional neighbors variation and show
how changing only one parameter can have
a massive impact on a given semantic space.
We show that the variation is not affecting all
words of the semantic space equally. Variation
is influenced by parameters such as setting a
parameter to its minimum or maximum value
but it also depends on the corpus intrinsic fea-
tures such as the frequency of a word. We
identify semantic classes of words remaining
stable across the models trained and specific
words having high variation.

1 Introduction

Word embeddings are widely used nowadays in
Distributional Semantics and for a variety of tasks
in NLP. Embeddings can be evaluated using ex-
trinsic evaluation methods, i.e. the trained em-
beddings are evaluated on a specific task such as
part-of-speech tagging or named-entity recogni-
tion (Schnabel et al., 2015). Because this type of
evaluation is expensive, time consuming and dif-
ficult to interpret, embeddings are often evaluated
using intrinsic evaluation methods such as word
similarity or analogy (Nayak et al., 2016). Such
methods of evaluation are a good way to get a
quick insight of the quality of a model. Many dif-
ferent techniques and parameters can be used to
train embeddings and benchmarks are used to se-
lect and tune embeddings parameters.

Benchmarks used to evaluate embeddings only
focus on a subset of the trained model by only
evaluating selected pairs of words. Thus, they lack
information about the overall structure of the se-
mantic space and do not provide enough informa-

tion to understand the impact of changing one pa-
rameter when training a model.

We want to know if some parameters have more
influence than others on the global structure of
embeddings models and get a better idea of what
varies from one model to another. We specifically
investigate the impact of the architecture, the cor-
pus, the window size, the vectors dimensions and
the context type when training embeddings. We
analyze to what extent training models by chang-
ing only one of these parameters has an impact on
the models created and if the different areas of the
lexicon are impacted the same by this change.

To do so, we provide a qualitative methodol-
ogy focusing on the global comparison of seman-
tic spaces based on the overlap of the N nearest
neighbors for a given word. The proposed method
is not bound to the subjectivity of benchmarks and
gives a global yet precise vision of the variation
between different models by evaluating each word
from the model. It provides a way to easily inves-
tigate selected areas, by observing the variation of
a word or of selected subsets of words.

We compare 19 word embedding models to a
default model. All models are trained using the
well-known word2vec. Using the parameters of
the default model, we train the other models by
changing the value of only one parameter at a time.
We first get some insights by performing a quan-
titative evaluation using benchmark test sets. We
then proceed to a qualitative evaluation by observ-
ing the differences between the default model and
every other model. This allows us to measure
the impact of each parameter on the global vari-
ation as well as to detect phenomena that were not
visible when evaluating only with benchmark test
sets. We also identify some preliminary features
for words remaining stable independently of the
parameters used for training.
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2 Related Work

The problems raised for the evaluation of Distri-
butional Semantic Models (henceforth DSMs) is
not specific to word embeddings and have been
given attention for a long time. Benchmarks only
focus on a limited subset of the corpus. For ex-
ample, WordSim-353 (Finkelstein et al., 2002) is
testing the behaviour of only 353 pairs of words
meaning we only get a partial representation of
the model performance. To get a better idea of
the semantic structure of DSMs and of the type of
semantic relations they encode, some alternative
datasets were designed specifically for the evalu-
ation of DSMs (Baroni and Lenci, 2011; Santus
et al., 2015). Although these datasets provide a
deeper evaluation, they focus on specific aspects
of the model and we still need a better way to un-
derstand the global impact of changing a parame-
ter when training DSMs.

Some extensive studies have been made com-
paring a large number of configurations gener-
ated by systematic variation of several parameters.
Lapesa and Evert (2014) evaluated 537600 mod-
els trained using combinations of different param-
eters. Other studies focused on a specific param-
eter when training embeddings such as the cor-
pus size (Asr et al., 2016; Sahlgren and Lenci,
2016), the type of corpus used (Bernier-Colborne
and Drouin, 2016; Chiu et al., 2016) or the type
of contexts used (Levy and Goldberg, 2014; Mela-
mud et al., 2016; Li et al., 2017). Results showed
that choosing the right parameters when training
DSMs improve the performance for both intrinsic
and extrinsic evaluation tasks and can also influ-
ence the type of semantic information captured by
the model. Levy et al. (2015) even found that tun-
ing hyperparameters carefully could prove better
in certain cases than adding more data when train-
ing a model.

Chiu et al. (2016) showed that the performance
of DSMs is influenced by different factors includ-
ing corpora, preprocessing performed on the cor-
pora, architecture chosen and the choice of sev-
eral hyperparameters. However they also noticed
that the effects of some parameters are mixed and
counterintuitive.

Hamilton et al. (2016) measured the variation
between models by observing semantic change us-
ing diachronic corpora. Hellrich and Hahn (2016)
also used diachronic corpora to assess the reliabil-
ity of word embeddings neighborhoods. Antoniak

and Mimno (2018) showed how the corpus influ-
ences the word embeddings generated.

We relate to these studies but rather than find-
ing the best combination of parameters or focus-
ing on a single parameter, we assess the individual
impact of selected parameters when training word
embeddings. We intent to investigate those effects
by getting a global vision of the change from one
model to another. Unlike benchmarks test sets, we
will not focus on evaluating only selected word
pairs from the different models but we will eval-
uate the variation for each word from one model
to the other.

3 Measuring neighbors variation

To evaluate the different models trained, we fo-
cus on the study of neighbors variation between
two models. This type of approach was proposed
by Sahlgren (2006) who globally compared syn-
tagmatic and paradigmatic word space models by
measuring their overlap. We go further by apply-
ing this method to a new type of models and by ob-
serving variation for words individually. We also
identify zones with different degrees of variation.

The nearest neighbors of a given target word are
words having the closest cosine similarity score
with the target word. To compute the variation
between models, we propose to compute the de-
gree of nearest neighbors variation between two
models. For two models M1 and M2, we first get
the common vocabulary. We then compute the
variation var by getting the common neighbors
amongst the n nearest neighbors for each word in
the two models such as:

varnM1,M2
(w) = 1− |neighb

n
M1

(w) ∩ neighbnM2
(w)|

n

The value of n is important. To choose the most
representative value, we selected a number of can-
didate values (1, 5, 10, 15, 25, 50 and 100). We
found that for most pairs of models compared with
this method, 25 was the value for which the varia-
tion scores had the highest correlation scores com-
pared with other values of n across the entire vo-
cabulary. In this work all comparisons use this
value. We computed the variation for open-class
parts of speech (henceforth POS) only i.e. nouns,
verbs, adjectives and adverbs.
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Parameters Default Values tested
Architecture SG CBOW

Corpus BNC ACL
Window size 5 1 to 10

Vectors dim. 100
50, 200, 300,
400, 500, 600

Context type window deps, deps+

Table 1. Parameters values used to train embed-
dings that are compared.

4 Experiments

4.1 Experiment setup
In this work, we use a DEFAULT model as a ba-
sis of comparison. Starting from this model, we
trained new models by changing only one param-
eter at a time among the following parameters: ar-
chitecture, corpus, window size, vectors dimen-
sions, context type. We thus trained 19 mod-
els which will all be compared to the DEFAULT
model. Although we compare less models and less
parameters than other studies conducted on the
evaluation of hyperparameters, we provide both
a global and precise evaluation by computing the
variation for each word of the model rather than
evaluating selected pairs of words.

4.1.1 Default model
We trained our DEFAULT model using the widely
used tool word2vec (Mikolov et al., 2013) with
the default parameters values on the BNC corpus1.
The parameters used were the following:

• architecture: Skip-gram,
• algorithm: negative sampling,
• corpus: BNC (written part only, made of

about 90 million words),
• window size: 5,
• vector size: 100,
• negative sampling rate: 5,
• subsampling: 1e-3,
• iterations: 5.

The min-count parameter was set to a value of 100.

4.1.2 Variant models
5 different parameters are evaluated in this work:
architecture, corpus, window size, vectors dimen-
sions and context type. Using the default config-
uration, we then trained one model per possible
parameter value stated in Table 1, e.g. we changed

1http://www.natcorp.ox.ac.uk/

the value of the window size or the number of di-
mensions. We did not change more than one pa-
rameter when training the models since this work
aims at evaluating the influence of a single param-
eter when training word embeddings. We chose
the parameters to be investigated as well as their
values based on selected studies that analyze the
influence of parameters used when training DSMs
(Baroni et al., 2014; Levy and Goldberg, 2014;
Li et al., 2017; Melamud et al., 2016; Bernier-
Colborne and Drouin, 2016; Sahlgren and Lenci,
2016; Chiu et al., 2016).

Models were trained on the BNC except for the
ACL model which was trained on the ACL An-
thology Reference corpus (Bird et al., 2008), a
corpus made of about 100 million words. Both
corpora were parsed using Talismane, a depen-
dency parser developed by Urieli (2013). We
trained models with dimensions ranging from 50
to 600 (DIM50 to DIM600 models). We used
two different types of contexts: window-based and
dependency-based contexts. For window-based
models we used a window size from 1 to 10
(WIN1 to WIN10 models). For dependency-based
models (DEPS and DEPS+) we used word2vecf,
a tool developed by Levy and Goldberg (2014).
This tool is an extension of word2vec’s Skip-
gram. Word2vecf uses syntactic triples as con-
texts. We extracted the triples from the corpus
using the scripts provided by Levy and Goldberg
(2014)2 and obtained triples such as head modi-
fier#reltype. Prepositions were “collapsed” as de-
scribed in Levy and Goldberg (2014). To investi-
gate the influence of the triples used for training
on the embeddings generated we decided to train
with selected syntactic relations triples (DEPS+
model). We based our selection on Padó and La-
pata (2007) work and chose to keep the follow-
ing dependency relations: subject, noun modifier,
object, adjectival modifier, coordination, apposi-
tion, prepositional modifier, predicate, verb com-
plement. Prepositions were still collapsed à la
Levy and Goldberg (2014) and the same was done
for conjuctions.

4.2 Quantitative evaluation

To get an overview of the different models per-
formance we first ran a partial quantitative evalu-

2https://bitbucket.org/yoavgo/
word2vecf
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Figure 1. Evaluation results for all models on WordSim-353 and SimLex-999 with 95% confidence
interval span computed from DEFAULT model (DEFAULT model is shown in bold).

ation. We used the toolkit3 provided by Faruqui
and Dyer (2014). This toolkit provides several
benchmarks to test against the trained vectors. The
evaluation is computed by ranking the different
cosine scores obtained for each pair of the cho-
sen dataset. The evaluation was run on WordSim-
353 and Simlex-999 (Hill et al., 2015), two bench-
marks commonly used for DSMs evaluation (e.g.
see Levy and Goldberg (2014); Melamud et al.
(2016)).

Figure 1 shows the performance of the different
models on both test sets as well as the confidence
interval for the DEFAULT model. We see that
changing parameters creates differences in mod-
els performance and that this difference is gen-
erally not significant. Changing the architecture
from Skip-gram to CBOW yields worse results
for WordSim-353 than changing the corpus used
for training. However, when testing on SimLex-
999, performance is similar for the DEFAULT and
CBOW models, while the ACL model performed
worse. In a similar way, changing the training cor-
pus gives better result on WordSim-353 than us-
ing a different type of contexts, as shown per the
results of DEPS and DEPS+.

Performance is not consistent between the two
benchmarks. DEPS and DEPS+ both yields the
worst performance on WordSim-353 but at the
same time their performance on SimLex-999 is
better than most other models. The same is true for
the WIN1 and WIN10 models. Increasing the vec-
tor dimensions gets slightly better performance,
independently of the benchmark used. Increas-
ing the window size gives better performance re-
sults for WordSim-353 but worse for SimLex-999.
Dependency-based models performs the worst on

3https://github.com/mfaruqui/
eval-word-vectors

Figure 2. Mean variation value with standard de-
viation interval for all trained models compared to
DEFAULT model. The dashed line corresponds to
the mean variation value for the DEFAULT model
trained 5 times with the exact same parameters.

WordSim-353.
This kind of evaluation is only performed on se-

lected pairs of words and despite small differences
in performance scores, larger differences may ex-
ist. In the next section we introduce a method that
quantifies the variation between the different mod-
els trained by evaluating the distributional neigh-
bors variation for every word in the corpus.

4.3 Qualitative evaluation
4.3.1 Exploring the variation
Figure 2 shows the mean variation score with the
standard deviation span between the DEFAULT
model and the 19 other models4. Since it is known

4For models trained on the BNC, 27437 words were eval-
uated. When comparing DEFAULT to ACL the vocabulary
size was smaller (10274) since the models were not trained
on the same corpus.
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there is inherent variation when training embed-
dings (Hellrich and Hahn, 2016), we measured the
variation across 5 models using word2vec default
settings. This variation is much lower than for the
other models (0.17).

Training using the same parameters triggers
variation with the DEFAULT model. Even for
models varying the least, the variation is high
with an average variation score of at least 0.3.
This means that by changing only one parame-
ter, among the 25 nearest neighbors of a given
word about 1 neighbor out of 3 is different from
one model to the other. Some variation scores are
higher than 0.8 meaning that the two models com-
pared are drastically different.

The ACL model is the one showing the high-
est variation. This is not surprising since it was
trained on a specialized corpus. However, it is
more surprising that DEPS and DEPS+ also dis-
play a very high variation. This could be explained
by the fact that dependency-based and window-
based models capture different type of semantic
information (Levy and Goldberg, 2014).

Models showing the lowest variation are models
with less drastic differences with the DEFAULT
model, namely the vector size was changed from
100 to 200 or the window size from 5 to 6. A gen-
eral tendency is that models trained with minimum
and maximum values for a given parameter show
more variation. Going back to the performance
of the models (see Figure 1), we also notice that
models having a performance score close to the
DEFAULT model can still display a high variation.
This is the case of the DIM600 model which had
a performance score very close to the DEFAULT
model on both benchmarks but still displays a vari-
ation higher than 0.4.

We observed that the variations between mod-
els do not follow the differences in performance
on test sets shown in Figure 1. We measured
the absence of correlation between the variation
score and the performance scores on WordSim-
353 (ρ = −0.08, p = 0.78) and Simlex-999
(ρ = 0.25, p = 0.36).

For every comparison shown in Figure 2, we
can see a high standard deviation. This means that
there are different behaviors across the lexicon and
some words vary more than others. In the next sec-
tion, we show how the frequency affects the varia-
tion across the different models.

Figure 3. Effect of frequency on words variation.

4.3.2 Role of POS and frequency

To find some cues explaining the variation, we first
investigated the interaction between the POS of a
word and its variation score. However, we found
for all models that the repartition of the variation
was similar independently of the POS. This is sur-
prising as we know embeddings perform differ-
ently across POS, especially when contexts vary.

We then investigated the role of the frequency in
the variation. Figure 3 shows the average variation
given the frequency of a word. For all window-
based models, we observe a clear pattern: words
in the mid-frequency range (1000 to 10000) dis-
play less variation than words in lower and higher
frequency ranges. This is in line with Sahlgren and
Lenci (2016) who showed that DSMs perform the
best for medium to high-frequency ranges items.
Models trained with different dimensions seem
less affected by frequency. The variation is quite
constant across all frequency ranges. CBOW,
DEPS and DEPS+ follow the same pattern than
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Model Var. Identified semantic classes
ACL Low numerals (2nd, 14th, 10th...)

nationalities (hungarian, french, danish, spanish...)
time nouns (afternoon, week, evening...)

High
specialized lexicon (embedded, differential, nominal, probabilistic, patch, spell,
string, graph...)

DIM200 Low numerals (40th, 15th...)
nationalities (hungarian, dutch, french, spanish...)
family nouns (grandparent, sister, son, father...)

High generic adjectives (all, near, very, real...)
polysemic nouns (field, marker, turn, position...)

Table 2. Words showing lowest and highest variation for ACL and DIM200 compared to DEFAULT.

the window models, with a variation less high for
medium frequency words. ACL5 display a very
high variation for low frequency words but the
variation decreases with frequency.

4.3.3 Getting a preview of the variation
The variation measure can also be used to ex-
amine more local differences. For example, for
given pairs of models we can easily identify which
words show the most extreme variation values. We
did this for two of our models: ACL which shows
the highest variation and DIM200 which shows
the lowest variation. Table 2 shows a few of the
most stable and unstable words. It appears that
different semantic classes emerge in each case. It
seems that these classes correspond to dense clus-
ters, each word having all others as close neighbor.
Some of these clusters remain the same across the
two pairs of models (e.g. nationality adjectives)
while other clusters are different. In the ACL
model, we find a cluster of time nouns while in the
DIM200 model we find family nouns. We see that
words varying the most for the specialized corpus
are words carrying a specific meaning (e.g. nomi-
nal, graph). We also find that words with a high
variation score are highly polysemic or generic in
the DIM200 model (e.g. field, marker). In the fu-
ture we want to analyze the impact of the degree of
polysemy on the variation score along with other
characteristics of words.

5 Conclusion

This work compared 19 models trained using one
different parameter to a default model. We mea-
sured the differences between these models with

5The variation for ACL was measured on a smaller vocab-
ulary set. The frequency used in Figure 3 is the one from the
BNC.

benchmark test sets and a methodology which
does not depend on the subjectivity and limited
scope of benchmark test sets. Test sets show
marginal differences while neighbors variation re-
vealed that at least one third of the nearest 25
neighbors of a word are different from one model
to the other. In addition it appears that the parame-
ters have a different impact depending on the way
differences are measured.

We saw that the variation is not affecting all
words of the semantic space equally and we
found features which help identify some areas of
(in)stability in the semantic space. Words having
a low and high frequency range have a tendency to
display more variation. Words in the medium fre-
quency range show more stability. We also found
word features that could play a role in the varia-
tion (polysemy, genericity, semantic clusters etc.).
These features can help understanding what really
changes when tuning the parameters of word em-
beddings and give us more control over those ef-
fects.

In further work, we want to extend our analysis
to more parameters. We especially want to see if
the observations made in this study apply to mod-
els trained with specialized corpora or corpora of
different sizes. We also want to distinguish fea-
tures that will help classify words displaying more
or less variation and qualify the variations them-
selves.
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