A finite-volume approach to 1D nonlinear elastic waves: Application to slow dynamics - Archive ouverte HAL
Article Dans Une Revue Acta Acustica united with Acustica Année : 2018

A finite-volume approach to 1D nonlinear elastic waves: Application to slow dynamics

Résumé

A numerical method for longitudinal wave propagation in nonlinear elastic solids is presented. Here, we consider polynomial stress-strain relationships, which are widely used in nondestructive evaluation. The large-strain and infinitesimal-strain constitutive laws deduced from Murnaghan's law are detailed , and polynomial expressions are obtained. The Lagrangian equations of motion yield a hyperbolic system of conservation laws. The latter is solved numerically using a finite-volume method with flux limiters based on Roe linearization. The method is tested on the Riemann problem, which yields nonsmooth solutions. The method is then applied to a continuum model with one scalar internal variable, accounting for the softening of the material (slow dynamics).
Fichier principal
Vignette du fichier
Acustica2-HAL.pdf (478.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01806373 , version 1 (02-06-2018)

Identifiants

  • HAL Id : hal-01806373 , version 1

Citer

Harold Berjamin, Bruno Lombard, Guillaume Chiavassa, Nicolas Favrie. A finite-volume approach to 1D nonlinear elastic waves: Application to slow dynamics. Acta Acustica united with Acustica, 2018, 104, pp.561-570. ⟨hal-01806373⟩
119 Consultations
242 Téléchargements

Partager

More