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Abstract

A numerical method for longitudinal wave propagation in nonlinear elastic
solids is presented. Here, we consider polynomial stress-strain relationships,
which are widely used in nondestructive evaluation. The large-strain and
infinitesimal-strain constitutive laws deduced from Murnaghan’s law are de-
tailed, and polynomial expressions are obtained. The Lagrangian equations
of motion yield a hyperbolic system of conservation laws. The latter is solved
numerically using a finite-volume method with flux limiters based on Roe
linearization. The method is tested on the Riemann problem, which yields
nonsmooth solutions. The method is then applied to a continuum model
with one scalar internal variable, accounting for the softening of the material
(slow dynamics).

1. Introduction

Rocks and concrete are known to behave nonlinearly when vibrating lon-
gitudinally, even at very low amplitudes [1, 2]. Firstly, dynamic acoustoe-
lastic testing (DAET) [3, 4] reveals that the speed of sound measured lo-
cally decreases with time, and recovers its initial value after the excitation
is stopped. This softening occurs over a time scale larger than the period

∗Corresponding author. Tel.: +33 491 16 44 13.
Email addresses: berjamin@lma.cnrs-mrs.fr (H. Berjamin),

lombard@lma.cnrs-mrs.fr (Bruno Lombard),
guillaume.chiavassa@centrale-marseille.fr (G. Chiavassa),
nicolas.favrie@univ-amu.fr (N. Favrie)

Preprint submitted to Elsevier June 2, 2018



of the dynamic loading, which highlights the phenomenon of slow dynamics.
Secondly, the evolution of this speed with respect to the strain presents an
hysteretical behavior. Lastly, all these phenomena are enhanced when the
forcing amplitude is increased. Such observations are not compatible with
linear elastodynamics, where the speed of sound is a constant.

Polynomial nonlinear stress-strain relationships are widely used in non-
destructive testing [5, 6]. However, nonlinear elasticity is not sufficient to
represent the softening and the hysteresis revealed by DAET. Several models
can be found in the literature to reproduce these phenomena (see e.g. [7, 8]).
The soft-ratchet model by Vakhnenko et al. [9, 10] consists in introducing a
scalar variable g to describe the softening of the material. A similar model
with refinements was proposed by Lyakhovsky and coauthors in a series of
papers [11, 12]. Recently, a 3D model of continuum has been developed by
the authors [13] in the framework of continuum thermodynamics with inter-
nal variables of state [14, 15]. This model, which generalizes the soft-ratchet
model to 3D geometries and fixes thermodynamical issues, will be used along
the present paper.

Regardless the fact that slow dynamics is taken into account or not, the
equations of the model appear as a nonlinear hyperbolic system of conser-
vation laws with relaxation, the solutions of which may be discontinuous
(shock waves). The numerical computation of nonsmooth solutions requires
a particular care. Here, dedicated finite-volume methods [16, 17, 18] are used
to compute such solutions in a non-oscillatory manner. A 1D scheme based
on the Roe linearization and flux limiters is adapted to the present system
of equations. Due to the separation of timescales between the wave prop-
agation and the softening of the material, the coupling between nonlinear
elastodynamics and the slow dynamics is straightforward.

The article is organized as follows. For pedagogical purposes, the case
of nonlinear elastic solids without slow dynamics is first considered (sections
2 and 3). Section 2 derives the equations of nonlinear elastodynamics, and
the case of Murnaghan hyperelastic material [19] is tackled. The use of
this law is discussed, in particular the way it relates to polynomial stress-
strain relationships [20, 21]. The numerical method is presented in section 3,
including the construction of a Roe matrix. In section 3.4, the numerical
method is validated with the analytical solution of the Riemann problem of
nonlinear elastodynamics [22]. Section 4 introduces the modifications of the
equations to account for the slow dynamics, as well as the modifications of
the numerical method. Then, the propagation of a sinusoidal wave in the
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material is addressed (section 4.4). The results are in qualitative agreement
with experimental observations.

2. Nonlinear elastodynamics

2.1. Governing equations

Lagrangian hyperelasticity.. Let us consider an homogeneous continuum in
which no heat transfer occurs. Furthermore, self-gravitation is neglected. A
particle initially located at some position x0 of the reference configuration
moves to a position xt of the current configuration. The deformation gradient
is a second-order tensor defined by (see e.g. [23, 24, 25, 26])

F = gradxt = I + gradu , (1)

where u = xt − x0 denotes the displacement field and grad is the gradient
with respect to the material coordinates x0 (Lagrangian gradient). In the
reference configuration, the deformation gradient (1) is equal to the metric
tensor I. Here, the Euclidean space is described by an orthonormal basis
(e1, e2, e3) and a Cartesian coordinate system (O, x, y, z). In this case, the
matrix of the coordinates of I is the identity matrix. Here, the Lagrangian
representation of motion is used. The material derivative of the deformation
gradient satisfies

Ḟ = gradv , (2)

where v(x0, t) is the velocity field. The conservation of mass implies ρ0/ρ =
det(F ), where ρ denotes the mass density in the deformed configuration, and
ρ0 denotes the mass density in the reference configuration. The motion is
also driven by the conservation of momentum

ρ0 v̇ = div
(

det(F )σ · F−⊤
)

+ f v , (3)

where div denotes the divergence with respect to the material coordinates.
The tensor σ = σ⊤ is the Cauchy stress tensor, and f v is an external volume
force applied to the material.

In hyperelasticity, the only variables of state are the specific entropy η
and a strain tensor. Moreover, the dissipation in the material is zero, i.e. the
thermodynamic process is isentropic. Here, the deformation of the material
is represented by the Green-Lagrange strain tensor, but other choices are
possible. The Green-Lagrange strain tensor is defined as E = 1

2
(C − I)
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where C = F ⊤ · F is the right Cauchy-Green strain tensor, or equivalently
as a function of the displacement gradient tensor:

E =
1

2

(

gradu+ grad⊤u+ grad⊤u · gradu
)

. (4)

The internal energy per unit of reference volume is W (E), where W is the
strain energy density function. Under these assumptions, the expression of
the Cauchy stress tensor is

σ =
1

det(F )
F · ∂W

∂E
· F⊤. (5)

Thus, the first Piola-Kirchhoff tensor in (3) satisfies

det(F )σ · F−⊤= F · ∂W
∂E

. (6)

In the isotropic case, the strain energy is a function of the invariants of E
defined by

EI = tr(E) ,

EII =
1

2

(

tr(E)2 − tr(E2)
)

,

EIII = det(E) .

(7)

The derivative of the strain energy with respect to the strain tensor writes

∂W

∂E
= α0I + α1E + α2E

2, (8)

where

α0 =
∂W

∂EI

+ EI

∂W

∂EII

+ EII

∂W

∂EIII

,

α1 = − ∂W

∂EII

− EI

∂W

∂EIII

,

α2 =
∂W

∂EIII

,

(9)

are functions of the invariants (EI, EII, EIII).
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Longitudinal plane waves.. We make the assumption that the displacement
field u has no component along e2 and e3. Moreover, its component u
along e1 is independent on y and z. Therefore, the displacement gradient
writes gradu = ε (e1 ⊗ e1), where ε = ∂xu > −1 is the axial component of
the displacement gradient. The invariants (7) of the Green-Lagrange strain
tensor are EI = ε + 1

2
ε2 and EII = 0 = EIII. Thus, the strain energy W is

now a function of ε only. In the longitudinal case, the 11-coordinate of the
first Piola-Kirchhoff tensor (6) is equal to the coordinate σ of the Cauchy
stress tensor. Equations (8)-(9) and the expression of the invariants provide
the stress-strain relationship

σ = (1 + ε)
(

α0 + EI α1 + EI
2 α2

)

,

=
∂EI

∂ε

∂W

∂EI

,

= W ′(ε) ,

(10)

where the ′ denotes the total derivative with respect to ε.

Constitutive laws.. The Murnaghan model of hyperelasticity [19] is widely
used in the communities of geophysics and nondestructive testing [27, 28, 20,
21]. Its strain energy density function is

W =
λ+ 2µ

2
EI

2 − 2µEII +
l+ 2m

3
EI

3

− 2mEIEII + nEIII ,

(11)

where (λ, µ) are the Lam parameters and (l,m, n) are the Murnaghan coeffi-
cients. Sometimes, Landau’s law with parameters (A, B, C) is used instead,
and the relationship with Murnaghan’s law (11) is specified in [26]. With
the above expression of the strain energy (11), the axial component of the
Cauchy stress (10) is

σ = M0 ε

(

1 +

(

3

2
+ ϑ

)

ε+

(

1

2
+ 2ϑ

)

ε2

+
5ϑ

4
ε3 +

ϑ

4
ε4
)

,

(12)

where M0 = λ+2µ > 0 is the elastic modulus, and ϑ = (l+2m)/(λ+2µ). If
the Murnaghan coefficients equal zero (ϑ = 0), only geometric nonlinearities
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remain, and the SaintVenant-Kirchhoff model of hyperelasticity is recovered.
The later reduces to the classical Hooke’s law in the case of infinitesimal strain
ε ≃ 0.

When geometric nonlinearities are neglected (e.g., when the Murnaghan
coefficients are very large), the Green-Lagrange strain tensor is linearized
with respect to the components of gradu, so that the strain tensor (4) is
replaced by the infinitesimal strain tensor: E ≃ ε. Doing this, the first
invariant of the strain tensor is EI ≃ ε in the longitudinal case. Moreover,
the first Piola-Kirchhoff stress is linearized with respect to the components of
gradu as well, i.e. F ·∂W/∂E ≃ ∂W/∂ε in (6). Doing this, the longitudinal
constitutive law (10) reduces to σ = α0 + α1ε+ α2ε

2, and (12) becomes

σ = M0 ε (1 + ϑε) . (13)

This constitutive law corresponds to a quadratic polynomial σ = M0 ε (1− βε),
with β = −ϑ.

A cubic polynomial constitutive law [7, 8, 10]

σ = M0 ε
(

1− βε− δε2
)

(14)

is also widely used to describe nonlinear elasticity in solids. If the geometric
nonlinearities are negligible (13), then the parameters β = −ϑ and δ = 0
correspond to Murnaghan’s law. If the geometric nonlinearities are taken
into account (12), then the choice −β = 3

2
+ ϑ and −δ = 1

2
+ 2ϑ makes the

two models coincide up to the third order. Contrary to (12), orders 4 and
5 are not taken into account in (14), which shows that both models are not
equivalent.

The major difference between the stress-strain relationships (12) and (14)
is the number of independent parameters. In (14), the cubic term can be
set independently of the quadratic term. In (12), the cubic term is not
independent on the quadratic term: if (12) and (14) are assimilated, then
δ = 5

2
+2β. However, experimental evidence shows that δ is larger than β by

several orders of magnitude, so that a constitutive law of the Murnaghan type
is not sufficient to represent accurately elastic nonlinearity in geomaterials [3].
From now on, the cubic polynomial law (14) is used.

2.2. Hyperbolic system of conservation laws

The equations of motion (2)-(3) write as a non-homogeneous system of
conservation laws with respect to the variables q = (ε, v)⊤, where v is the
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particle velocity component along e1:

∂tq+ ∂xf(q) = s . (15)

The flux function is f(q) = −(v, σ(ε)/ρ0)
⊤, and the forcing is s = (0, f v/ρ0)

⊤,
where f v is the volume force component along e1. The Jacobian matrix of
the flux is

f ′(q) = −
(

0 1

σ′(ε)/ρ0 0

)

, (16)

where σ′ = W ′′ is the derivative of σ with respect to ε. The eigenvalues of
f ′(q) are {−c(q), c(q)}, where c(q) =

√

σ′(ε)/ρ0 is the speed of sound. The
system of conservation laws is strictly hyperbolic if σ′(ε) > 0, i.e. over a
domain where the strain energy W is a strictly convex function of ε. Some
properties of the system (15) are listed below without proof. Interested
readers are referred to standard textbooks for more details about hyperbolic
systems [16, 17].

In the case of the cubic law (14), strict hyperbolicity is ensured if [22]

ε ∈
]

1

β −
√

β2 + 3δ
,

1

β +
√

β2 + 3δ

[

. (17)

If β = δ = 0, then the polynomial law (14) amounts to Hooke’s law, and
the characteristic fields are linearly degenerate. If β 6= 0 and δ = 0, then
the polynomial law is quadratic, and the stress is either a strictly convex
or a strictly concave function of the strain. The characteristic fields are
genuinely nonlinear. If δ 6= 0, then the polynomial law (14) is neither convex
nor concave. Indeed, an inflexion point is located at ε0 = −β/3δ. The
characteristic fields are neither genuinely nonlinear nor linearly degenerate
(i.e., they are nongenuinely nonlinear). In the case of Murnaghan’s law (12),
a similar analysis is carried out in the appendix.

3. Finite volumes with flux limiters

3.1. Conservative scheme

In the examples presented later on, the physical domain is unbounded.
We consider a finite numerical domain [x0, xN ]. It is discretized using a
regular grid in space with step ∆x = (xN − x0)/N . Also, a variable time
step ∆t = tn+1 − tn is introduced. Therefore, q(xi, tn) denotes the solution
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to (15) at the abscissa xi = x0 + i∆x and at the time tn. The volume force
f v is assumed to be a point load f v = δs(x)ϕ(t), where δs(x) = δ(x − xs) is
the Dirac delta located at the abscissa x = xs, and ϕ(t) is the source signal.

The non-homogeneous system of conservation laws (15) is integrated ex-
plicitly:

qn+1
i = qn

i −
∆t

∆x
(fni+1/2 − fni−1/2) +

∆t

∆x
sni , (18)

where qn
i ≃ q(xi, tn) approximates the solution at the grid nodes, and sni =

s(xi, tn). The numerical flux fni+1/2 of the flux-limiter method is specified
later on. This scheme is stable under the classical CFL condition

κ =
∆t

∆x
cnmax 6 1 , (19)

where κ is the Courant number, and cnmax is the maximum sound speed that
is encountered at time tn. If σ is convex or concave, then the maximum
sound speed at time tn is

cnmax = max
06i6N

c(qn
i ) . (20)

If the constitutive law is neither convex nor concave, sound speeds larger than
(20) may be reached (see e.g. section 16.1 in [17]). The local maximum sound
speed is obtained by maximizing c(q) for q between qn

i and qn
i+1. Then, one

obtains

cnmax = max
06i<N

√

1

ρ0
max
ε∈Di

σ′(ε) , (21)

where Di is the interval with bounds εni and εni+1. Finally, the method has a
variable time step satisfying ∆t = κ∆x/cnmax.

Since the flux function f is nonlinear with respect to q, an initial-value
problem (or Cauchy problem) of the homogeneous system defined by the data
q(x, 0) at the time t = 0 can have several weak solutions (i.e. solutions of
an integral form of (15)). It is not straightforward for a numerical method
to converge towards the correct weak solution. In particular, the numerical
fluxes fni+1/2 in (44) must be computed carefully. Given that the eigenvalues

±c(q) of (16) have constant sign, no transsonic rarefaction can occur. More-
over, no slow-moving shock can occur either, due to the monotonicity of σ
over the domain of hyperbolicity (17). Therefore, Roe linearization can be
used to construct an accurate numerical scheme.
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3.2. Roe linearization

The nonlinear flux f(q) is approximated locally by the linear fluxAi+1/2 q.
A Roe matrix Ai+1/2 approximates the Jacobian f ′(qn

i+1/2) at the midpoint

of [xi, xi+1] and the time tn, in such a way that

1. Ai+1/2 is diagonalizable with real eigenvalues;

2. Ai+1/2

(

qn
i+1 − qn

i

)

= f(qn
i+1)− f(qn

i ) ;

3. lim
q
n

i+1
→q

n

i

Ai+1/2 = f ′(qn
i ) .

According to section 15.3.2 of [17], such a matrix may be expressed by the
formula

Ai+1/2 =

∫ 1

0

f ′
(

qn
i + ξ (qn

i+1 − qn
i )
)

dξ , (22)

which ensures that the properties 2. and 3. are satisfied.
In the case of the system (15), which corresponds to exercise 15.1.(a) p.

349 of [17], the following matrix is obtained:

Ai+1/2 =

(

0 −1

−ai+1/2 0

)

, (23)

where

ai+1/2 =
W ′(εni+1)−W ′(εni )

ρ0
(

εni+1 − εni
) . (24)

To avoid divisions by zero when εni = εni+1, one computes

ai+1/2 =
W ′′(εni )

ρ0
, (25)

in this particular case. The eigenvalues of the matrix (23) are {−si+1/2, si+1/2},
where si+1/2 =

√
ai+1/2. Since the strain energy function W is convex over

the hyperbolicity domain, the coefficient ai+1/2 is positive. Therefore, the
eigenvalue si+1/2 is real, and the property 1. is satisfied. The matrix (47) is
a Roe matrix.

For later use, we introduce the decomposition of qn
i+1−qn

i in the basis of
right eigenvectors of the Roe matrix

p1
i+1/2 =

(

1, si+1/2

)⊤
,

p2
i+1/2 =

(

1,−si+1/2

)⊤
.

(26)
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The jump of the solution can be expanded as

qn
i+1 − qn

i =

2
∑

k=1

αk
i+1/2 p

k
i+1/2 ,

=
2
∑

k=1

W
k
i+1/2 ,

(27)

with the coefficients

α1
i+1/2 =

1

2

(

εni+1 − εni +
vni+1 − vni
si+1/2

)

,

α2
i+1/2 =

1

2

(

εni+1 − εni −
vni+1 − vni
si+1/2

)

.

(28)

3.3. Flux limiter

We describe now the flux-limiter scheme. The numerical flux in (18) takes
the form (section 15.4 in [17])

fni+1/2 = fLi+1/2 + fHi+1/2 , (29)

where fLi+1/2 is the flux of Godunov’s method or one of its approximated ver-

sions, and fHi+1/2 is a higher-order correction deduced from the Lax-Wendroff
method. Here, the Godunov flux is approximated linearly by the classical
Roe flux, and the Roe matrix (47) is used. Thus,

fLi+1/2 =
1

2

(

f(qn
i ) + f(qn

i+1)
)

− 1

2
si+1/2

(

W
1
i+1/2 +W

2
i+1/2

)

,

(30)

where W
k
i+1/2 is defined in (27). The higher-order correction of the flux-

limiter method writes

fHi+1/2 =
1

2
si+1/2

(

1− ∆t

∆x
si+1/2

)

×
(

φ(θ1i+1/2)W
1
i+1/2 + φ(θ2i+1/2)W

2
i+1/2

)

,

(31)
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where

θ1i+1/2 =
W

1
i+3/2 ·W1

i+1/2

W
1
i+1/2 ·W1

i+1/2

,

θ2i+1/2 =
W

2
i−1/2 ·W2

i+1/2

W
2
i+1/2 ·W2

i+1/2

,

(32)

and φ is a limiter function. Here, the minmod limiter

φ(θ) = max{0,min{1, θ}} (33)

is used.
The weights φ(θki+1/2) are designed to avoid spurious oscillations in the

numerical solution. If the weights φ(θki+1/2) equal one in (31), then the Lax-

Wendroff method based on the Roe matrix (47) is recovered. In the case
of nonconvex flux functions, the minmod limiter (33) has shown better con-
vergence properties than other limiter functions. Similar observations are
reported in [29, 30].

To carry out one iteration in time at some grid node i, the numerical
values of q at the grid nodes i− 2, . . . , i+ 2 are required. Therefore, two
“ghost cells” must be added on the left and on the right of the numerical
domain. Here, a zero-order extrapolation of the numerical solution can be
used to achieve outflow boundary conditions. Thus, we simply set

qn
−2 = qn

−1 = qn
0 ,

qn
N+2 = qn

N+1 = qn
N ,

(34)

at each time step [17].

3.4. Numerical test case

The orders of magnitude of the elastic parameters for Berea sandstone
ρ0, M0, β, δ in table 1 have been taken in table 1 and figure 5-(a) of [3].
From (17), it follows that the model (15) is hyperbolic if |ε| < 5.7 × 10−5.
The numerical domain is [x0, xN ] = [−0.5, 0.5] m. To avoid instability, the
Courant number (19) is set to κ = 0.95.

This test is carried out to validate the ability of the numerical scheme to
represent accurately nonsmooth solutions. Here, no volume force is applied
in the material. We consider piecewise constant initial data with a single
discontinuity at the abscissa x = 0, i.e. a Riemann problem. Here, the
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Table 1: Physical parameters of Berea sandstone.

ρ0 (kg/m3) M0 (GPa) β δ γ (J/m3) τ (ms)

2.2× 103 14 50 108 1.0 10

initial data is ε = 2 × 10−5, v = 0 if x < 0, and ε = −2.6 × 10−5, v =
0.097 m/s if x > 0. The analytical solution to this initial-value problem is
displayed in figure 1-(a). Details about its computation can be found in [22].
Moreover, an interactive application and a Matlab toolbox [31] can be found
at http://gchiavassa.perso.centrale-marseille.fr/RiemannElasto/.

The numerical solution (44) is computed up to t = 0.19 ms on a grid
with N points. Figures 1-(b) and (c) compare the analytical solution with
the numerical solution. On figure 1-(b), the left-going discontinuity is repre-
sented (shock wave). On figure 1-(c), the right-going compound wave with
a continuous part followed by a discontinuous part is represented (rarefac-
tion shock wave). Both waves are well-located and accurately computed by
the numerical scheme. In particular, no spurious oscillations arise, and no
convergence failure is noticed as N increases from 1000 to 2000.

4. Coupling with slow dynamics

As specified in the introduction, nonlinear elastodynamics presented in
section 2 is not sufficient to describe the softening of the material. In [13], a
simple approach was proposed to account for such phenomena. The model
was presented in 3D, and analytical computations were carried out in the
longitudinal case. Here, we show how the previous numerical method is
adapted to this model of slow dynamics.

4.1. Modified equations of motion

Internal-variable model.. An internal-variable g in [0, 1[ is introduced, to rep-
resent the softening of the material. The internal energy per unit of reference
volume ρ0 e = W (ε) becomes [13]

ρ0 e = (1− g)W (ε) + Φ(g) , (35)

where e is the specific internal energy. In (35), Φ(g) represents a storage
energy with expression

Φ(g) = −1

2
γ ln(1− g2) , (36)

12
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Figure 1: (a) Analytical solution to a Riemann problem. Comparison with the numerical
solution (b) on the left-going strain wave, (c) and on the right-going strain wave.13



where γ > 0 is an energy per unit volume, but other choices are suitable.
As discussed in [13], the storage energy (36) is chosen such that equilibrium
points of the model are unique, g = 0 is an equilibrium point, and g is
bounded by 1. With such a choice, one observes that the internal energy per
unit of reference volume (35) is equal to the strain energy W when g is equal
to zero.

The second principle of thermodynamics yields the axial component of
the Cauchy stress [13]

σ = (1− g)W ′(ε) (37)

instead of W ′(ε) (10). The simplest thermodynamically admissible choice of
evolution equation is [13]

τ1ġ = W (ε)− Φ′(g) , (38)

where τ1 = τ × 1 J/m3 and τ > 0 is a time constant. With the laws (37) and
(38), the dissipation per unit of reference volume is [13]

ρ0 T η̇ = −ρ0
∂e

∂g
ġ ,

= τ1 (ġ)
2
> 0 ,

(39)

where T > 0 is the absolute temperature, and η is the specific entropy.

Conservation laws with relaxation.. The variable g is added to the vector of
unknowns q, so that q = (ε, v, g)⊤. The system of conservation laws (15)
becomes

∂tq+ ∂xf(q) = r(q) + s , (40)

where
f(q) = − (v, (1− g)W ′(ε)/ρ0, 0)

⊤
,

r(q) = (0, 0, (W (ε)− Φ′(g)) /τ1)
⊤
,

s = (0, fv/ρ0, 0)
⊤.

(41)

The Jacobian matrix f ′(q) of f has the eigenvalues {−c(q), c(q), 0}, where

c(q) =

√

(1− g)W ′′(ε)

ρ0
(42)

14



is the speed of sound. The speed of sound (42) is real and nonzero— in
other words, the system (40) is strictly hyperbolic—provided that g < 1
and W ′′(ε) > 0. This second condition was already required in the elastic
case (15).

Now let us examine the spectrum of the relaxation function in (40). The
Jacobian matrix r′(q) of r has the eigenvalues {0, 0,−Φ′′(g)/τ1}. The ex-
pression (36) ensures that r′(q) is negative semi-definite. Its spectral radius
is

Υ =
γ

τ1

1 + g2

(1− g2)2
, (43)

which involves the relaxation time τ1/γ characteristic of the slow dynam-
ics [13].

4.2. Modified numerical method

Conservative scheme.. Applying the same explicit discretization as (18) to
(40) yields

qn+1
i = qn

i −
∆t

∆x
(fni+1/2 − fni−1/2)

+ ∆t r(qn
i ) +

∆t

∆x
sni ,

(44)

where the numerical flux fni+1/2 is specified later on. According to the time-

marching formula (44), explicit single-step time integration is used.
Numerical stability imposes a bound of the form

∆t 6 min

{

∆x

cnmax

,
2

Υ n
max

}

, (45)

where cnmax is the maximum sound velocity (42) that is encountered at time
tn, and Υ n

max is the maximum spectral radius of the relaxation function (43).
Since the relaxation time of the slow dynamics is much larger than the period
of exciting signals, the condition (45) reduces to the classical CFL condition
(19). If the constitutive law ε 7→ W ′(ε) is convex or concave, then the
maximum sound speed at time tn is given by (20), with the sound speed (42).
If the constitutive law is neither convex nor concave, then (21) becomes

cnmax = max
06i<N

√

1−min{gni , gni+1}
ρ0

max
ε∈Di

W ′′(ε) , (46)

where Di is the interval with bounds εni and εni+1.
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Roe linearization.. In the case of the system (40), the following matrix is
obtained from (22):

Ai+1/2 =







0 −1 0

−ai+1/2 0 bi+1/2

0 0 0






, (47)

where

ai+1/2 =
σn
i+1 − σn

i

ρ0
(

εni+1 − εni
) +

gni+1 − gni
εni+1 − εni

bi+1/2 ,

bi+1/2 =
W (εni+1)−W (εni )

ρ0
(

εni+1 − εni
) ,

(48)

and the stresses (37) are σn
i = (1 − gni )W

′(εni ). To avoid divisions by zero
when εni = εni+1, one computes

ai+1/2 =

(

1− gni + gni+1

2

)

W ′′(εni )

ρ0
,

bi+1/2 =
W ′(εni )

ρ0
,

(49)

in this particular case.
The eigenvalues of the matrix (47) with the coefficients (48)-(49) are

{−si+1/2, si+1/2, 0}, where the expression si+1/2 =
√
ai+1/2 is unchanged. We

rewrite the coefficient ai+1/2 from (48) as

ai+1/2 =
W ′(εni+1)−W ′(εni )

ρ0
(

εni+1 − εni
)

− gni
W (εni+1)−W (εni )−W ′(εni )

(

εni+1 − εni
)

ρ0
(

εni+1 − εni
)2

− gni+1

W (εni )−W (εni+1)−W ′(εni+1)
(

εni − εni+1

)

ρ0
(

εni+1 − εni
)2

.

(50)

One can note that the first term in (50) corresponds to the elastic case (24).
Moreover, the next terms vanish when gni = 0 = gni+1, i.e. when no softening
occurs. Since the strain energy function W is convex and g < 1 over the
hyperbolicity domain, the coefficient ai+1/2 in (50) is positive. Finally, the
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eigenvalue si+1/2 is real, and the property 1. is satisfied. The matrix (47) is
a Roe matrix for (40).

Now, the jump qn
i+1−qn

i is decomposed in the basis of right eigenvectors
of the Roe matrix (47)

p1
i+1/2 =

(

1, si+1/2, 0
)⊤

,

p2
i+1/2 =

(

1,−si+1/2, 0
)⊤

,

p3
i+1/2 =

(

1, 0,
ai+1/2

bi+1/2

)⊤

.

(51)

The jump of the solution can be expanded as a sum (27) of three W
k
i+1/2 =

αk
i+1/2 p

k
i+1/2, where the coefficients are

α1
i+1/2 =

1

2

(

vni+1 − vni
si+1/2

+
σn
i+1 − σn

i

ρ0 si+1/2
2

)

,

α2
i+1/2 =

1

2

(

−vni+1 − vni
si+1/2

+
σn
i+1 − σn

i

ρ0 si+1/2
2

)

,

α3
i+1/2 = εni+1 − εni −

σn
i+1 − σn

i

ρ0 si+1/2
2
.

(52)

Since the eigenvalue corresponding to k = 3 in the decomposition of the
jump is zero, W3

i+1/2 does not appear in the numerical flux (29) of the flux-
limiter method. Therefore, the formulas (29) to (33) can be applied without
modification with the flux function (41), the eigenvalue si+1/2 deduced from
(48)-(49), and the decomposition of the jump (51)-(52).

4.3. Pulse propagation

Figure 3 of [3] provides an order of magnitude of the characteristic time
of the slow dynamics, and an order of magnitude of the average softening
〈∆M/M〉 for a given strain amplitude V . According to [13], the character-
istic time of the slow dynamics is τ1/γ, and the average softening satisfies
〈∆M/M〉 ≃ −1

4
(M0/γ + 6δ)V 2. If this scaling rule is combined with the

values in [3], then a negative value of γ is obtained, which is not reliable.
Thus, the parameters γ and τ in table 1 are not chosen to reach quantitative
agreement with [3], but rather to obtain comparable orders of magnitude of
the softening’s characteristics.
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The numerical domain and the Courant number are the same as in sec-
tion 3.4, but here, the softening is taken into account. The initial data is
zero, and a point load f v = δs(x)ϕ(t) located at the abscissa xs = 0 generates
a smooth pulse with angular frequency ωc = 2π fc, with fc = 6 kHz. The
source signal in (40) satisfies

ϕ(t) = 2M0V

4
∑

m=1

am sin(2m−1 ωc t) , (53)

where V = 6.64×10−6, a1 = 1, a2 = −21/32, a3 = 63/768, and a4 = −1/512.
It is turned on from t = 0 to t = 1/fc, which corresponds to one fundamental
period.

The reference solution is an oversampled numerical solution (44) com-
puted at t = 0.19 ms on a grid with N ref = 215 points (figure 2-(a)). The
pulse injected at xs = 0 has propagated both towards increasing x and to-
wards decreasing x. By symmetry, only the right-going part is displayed
here. No shock wave is observed: the waveform is slightly distorted but still
smooth. Figure 2-(b) illustrates the convergence of the numerical method.
For a given coarse spatial discretization where N ≪ N ref , the numerical
solution is computed up to t ≈ 0.19 ms, and is compared to the reference nu-
merical solution at the same final time. The evolution of the L2 global error
between both strain waveforms is represented in figure 2-(b) with respect to
∆x = 1/N . One can observe that the order of convergence is between one
and two.

4.4. Dynamic acousto-elasticity

The setup is the same as in the previous section, but here, the point load
generates a sinusoidal strain with amplitude V ≈ 10−6 and angular frequency
ωc = 2π fc, with fc = 5 kHz:

ϕ(t) = 2M0V sin(ωc t) . (54)

The source (54) is turned on from t = 0 to t = 40 ms, which corresponds
to 200 periods of signal. A receiver records the numerical solution at the
abscissa xr = 0.3 m.

The numerical solution (44) is computed up to t = 80 ms on a grid with
N = 80 points, which corresponds to 40 points per wavelength at the angular
frequency ωc. The computations are performed in C++. Each simulation
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Figure 2: Assessment of the numerical method’s convergence on the propagation of a
smooth pulse. Reference solution at t = 0.19 ms (a): strain, particle velocity, and softening
variable. (b) Error measurement.
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lasts around 1.5 s, when a recent desktop computer is used (Intel Core i5-
4690, 3.5 GHz, 16 Go, 2015). Figure 3-(a) displays the strain ε and the
variation of the elastic modulus

∆M

M
=

ρ0 c
2 −M0

M0

(55)

deduced from the sound speed (42), which are recorded at the position xr

of the receiver. A slow decrease of the elastic modulus combined with fast
oscillations is observed until the source is stopped. Simultaneously, the strain
signals are smooth sinusoids, so that N = 80 is sufficient. After the source is
sopped, the elastic modulus recovers slowly its initial value, while the strain
is equal to zero.

Figure 3-(b) focuses on the steady-state solution. Here, the last 80 nu-
merical values before t = 40 ms are used, which corresponds to two periods
of signal at the frequency fc. When ∆M/M from (55) is represented with
respect to the strain recorded at the position of the receiver xr, a hysteresis
curve is obtained. The orders of magnitude of these phenomena—duration
of the transients, magnitude of the softening, size and shape of the hystere-
sis curves—are very similar to those reported in [3] for Berea sandstone.
In particular, one can note that the average softening 〈∆M/M〉 is propor-
tional to V 2, as predicted in [13]. However, only qualitative agreement with
figure 5-(a) of [3] is obtained.

5. Conclusion

A finite-volume method with flux-limiters for nonlinear longitudinal elas-
todynamics is implemented, with various polynomial constitutive laws. Based
on Roe linearization, this numerical method is well-suited to the present sys-
tem of partial differential equations, and has been validated with the Rie-
mann problem of nonlinear elastodynamics. Nonsmooth solutions such as
shock waves are well-captured, even in the case of nonconvex stress-strain
relationships. The method is adapted to a case with an additional scalar
evolution equation, which is deduced from the internal-variable model [13] of
slow dynamics. The numerical model reproduces qualitatively experimental
observations related to dynamic acoustoelasticity.

We mention here a few improvements to be introduced. Boundary con-
ditions such as free edges and oscillating walls need to be implemented so as
to reproduce real configurations in a more realistic way (section 7 of [17]).
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Figure 3: (a) Strain signal and softening of the material, as recorded by the receiver at
the abscissa xr = 0.3 m. (b) Hysteresis curves in steady-state. The arrow indicates how
time increases along the curve. 21



Due to resonance, viscoelastic attenuation needs then to be incorporated in
the model, which has been carried out similarly to [10] in recent works [32].
Currently, higher-order shock-capturing methods [33] are developed, as well
as similar methods in multiple space dimensions.
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Appendix

In the case of Murnaghan’s law (12), strict hyperbolicity of (15) is ensured
if

ϑ− 2 + 6 (1− ϑ) (1 + ε)2 + 5ϑ (1 + ε)4 > 0 . (.1)

Therefore, one must have

ε ∈











]ε+, ε−[ if ϑ < 0 ,

]ε+,+∞[ if 0 6 ϑ < 2 ,

]−1, ε−[ ∪ ]ε+,+∞[ if 2 6 ϑ ,

(.2)

where

ε± = −1 +

√

3 (ϑ− 1)±
√
9− 8ϑ+ 4ϑ2

5ϑ
. (.3)

The constitutive law (12) is convex if σ′′(ε) > 0, i.e.

3 + 2ϑ+ (3 + 12ϑ) ε+ 15ϑ ε2 + 5ϑ ε3 > 0 . (.4)

Hence, Murnaghan’s law is locally concave at small strains (ε ≃ 0) provided
that ϑ 6 −3/2, otherwise it is locally convex at small strains. The inflexion
point

ε0 = −1 +

√

3 (ϑ− 1)

5ϑ
. (.5)

is represented in figure .4, as well as the hyperbolicity domains (.2) of Mur-
naghan’s law.
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