Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2019

Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation

Résumé

Sylvester doubles sums, introduced first by Sylvester (see Sylvester (1840, 1853)), are symmetric expressions of the roots of two polynomials. Sylvester’s definition of double sums makes no sense in the presence of multiple roots, since the definition involves denominators that vanish when there are multiple roots. The aim of this paper is to give a new definition of Sylvester double sums making sense in the presence of multiple roots, which coincides with the definition by Sylvester in the case of simple roots, to prove that double sums indexed by (a, b) are equal up to a constant if they share the same value for a+b, as well a proof of the relationship between double sums and subresultants, i.e. that they are equal up to a constant. In the simple root case, proofs of these properties are already known (see Lascoux and Pragacz (2002); d’Andrea et al. (2007); Roy and Szpirglas (2011)). The more general proofs given here are using generalized Vandermonde determinants and symmetric multivariate Hermite interpolation as well as an induction on the length of the remainder sequence of P and Q.
Fichier principal
Vignette du fichier
DOUBLES_SOMMES_VF.pdf (438.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01802846 , version 1 (14-02-2019)
hal-01802846 , version 2 (05-06-2019)

Licence

Identifiants

Citer

Marie-Françoise Roy, Aviva Szpirglas. Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation. Journal of Symbolic Computation, In press, ⟨10.1016/j.jsc.2019.02.013⟩. ⟨hal-01802846v1⟩
322 Consultations
134 Téléchargements

Altmetric

Partager

More