Algebraic models of the line in the real affine plane - Archive ouverte HAL
Article Dans Une Revue Geometriae Dedicata Année : 2021

Algebraic models of the line in the real affine plane

Résumé

We study smooth rational closed embeddings of the real affine line into the real affine plane, that is algebraic rational maps from the real affine line to the real affine plane which induce smooth closed embeddings of the real euclidean line into the real euclidean plane. We consider these up to equivalence under the group of birational automorphisms of the real affine plane which are diffeomorphisms of its real locus. We show that in contrast with the situation in the categories of smooth manifolds with smooth maps and of real algebraic varieties with regular maps where there is only one equivalence class up to isomorphism, there are non-equivalent smooth rational closed embeddings up to such birational diffeomorphisms.
Fichier principal
Vignette du fichier
Lines-in-plane-2019-final.pdf (533.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01802038 , version 1 (28-05-2018)
hal-01802038 , version 2 (08-01-2020)

Identifiants

Citer

Adrien Dubouloz, Frédéric Mangolte. Algebraic models of the line in the real affine plane. Geometriae Dedicata, 2021, 210, pp.179-204. ⟨10.1007/s10711-020-00539-1⟩. ⟨hal-01802038v2⟩
289 Consultations
239 Téléchargements

Altmetric

Partager

More