Online deconvolution for industrial hyperspectral imaging systems - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2019

Online deconvolution for industrial hyperspectral imaging systems

Yingying Song
Jie Chen
  • Fonction : Auteur
  • PersonId : 990759
Cédric Richard
David Brie

Résumé

This paper proposes a hyperspectral image deconvolution algorithm for the online restoration of hyperspectral images as provided by wiskbroom and pushbroom scanning systems. We introduce a least-mean-squares (LMS)-based framework accounting for the convolution kernel non-causality and including non-quadratic (zero attracting and piece-wise constant) regularization terms. This results in the so-called sliding block regularized LMS (SBR-LMS) which maintains a linear complexity compatible with real-time processing in industrial applications. A model for the algorithm mean and mean-squares transient behavior is derived and the stability condition is studied. Experiments are conducted to assess the role of each hyper-parameter. A key feature of the proposed SBR-LMS is that it outperforms standard approaches in low SNR scenarios such as ultra-fast scanning.
Fichier principal
Vignette du fichier
sbr_lms.pdf (3.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01801272 , version 1 (28-05-2018)
hal-01801272 , version 2 (02-10-2018)
hal-01801272 , version 3 (28-11-2018)

Identifiants

Citer

Yingying Song, El-Hadi Djermoune, Jie Chen, Cédric Richard, David Brie. Online deconvolution for industrial hyperspectral imaging systems. SIAM Journal on Imaging Sciences, 2019, 12 (1), pp.54-86. ⟨10.1137/18M1177640⟩. ⟨hal-01801272v3⟩
432 Consultations
376 Téléchargements

Altmetric

Partager

More