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ONLINE DECONVOLUTION FOR INDUSTRIAL HYPERSPECTRAL1

IMAGING SYSTEMS∗2

YINGYING SONG† , EL-HADI DJERMOUNE† , JIE CHEN‡ , CÉDRIC RICHARD§ , AND3

DAVID BRIE†4

Abstract. This paper proposes a hyperspectral image deconvolution algorithm for the online5
restoration of hyperspectral images as provided by wiskbroom and pushbroom scanning systems.6
We introduce a least-mean-squares (LMS)-based framework accounting for the convolution kernel7
non-causality and including non-quadratic (zero attracting and piece-wise constant) regularization8
terms. This results in the so-called sliding block regularized LMS (SBR-LMS) which maintains9
a linear complexity compatible with real-time processing in industrial applications. A model for10
the algorithm mean and mean-squares transient behavior is derived and the stability condition is11
studied. Experiments are conducted to assess the role of each hyper-parameter. A key feature of12
the proposed SBR-LMS is that it outperforms standard approaches in low SNR scenarios such as13
ultra-fast scanning.14

Key words. hyperspectral image, online deconvolution, LMS, ZA-LMS15
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1. Introduction. Hyperspectral imaging has received considerable attention in17

the last decade as it combines the power of digital imaging and spectroscopy. Every18

pixel in a hyperspectral image provides local spectral information about a scene of19

interest across a large number of contiguous bands. This information can be used to20

characterize objects with great precision and details in a number of areas, including21

agricultural monitoring, industrial inspection, and defense. The core characteristics of22

hyperspectral images raise new data processing issues ranging from image restoration23

to pattern recognition [27, 10, 2, 38]. Several sensing techniques have been devised24

for hyperspectral imaging. They can be categorized into four main groups [46, 33]:25

whiskbroom (point scan), pushbroom (line scan), tunable filter (wavelength scan), and26

snapshot. Pushbroom systems are used in many areas such as food safety [13, 28], geo-27

referencing [7] and material sorting [42, 35]. The main feature of pushbroom imaging28

systems is that the hyperspectral data cubes are acquired slice by slice, sequentially in29

time (which in fact represents the so-called along track spatial dimension). This paper30

is a first step towards the development of advanced online (real-time) hyperspectral31

image processing methods required in industrial processes that aim at controlling and32

sorting input materials right after each line scanning. For example, this is the case33

for paper and chipboard plants that use recycled materials in the manufacturing pro-34

cess. The aim of this paper is to address the fast online (sequential) deconvolution of35

hyperspectral images captured by pushbroom imaging systems. However, it is worth36

noting that the proposed sequential deconvolution algorithm can be easily extended37
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to whiskbroom (point-by-point) systems.38

Multichannel image restoration was carried out with Wiener methods in [29, 22].39

Other strategies such as those in [23, 25, 27, 50] were also introduced, but only in40

an offline setting. Let us mention the works of Jemec et al. [30, 31] which specifi-41

cally address the calibration and (offline) deconvolution of pushbroom hyperspectral42

images. The idea of restoring images in a sequential way can be traced back to the43

end of the 70’s and has suscited extensive works up to the mid 90’s. Early works on44

2D-image restoration are due to Woods and Radewan, who developed a Kalman-filter45

(KF)-based approach allowing a pixel by pixel image restoration [48]. This approach46

was then modified in [47] to lower the computational cost, resulting in the so-called re-47

duced update KF which was then extended to the restoration of color images [43]. An48

alternative KF-based approach was proposed by Biemond et al. [4] to perform a line-49

by-line image restoration and which, due to Toeplitz matrix structures in the image50

and observation models, can be efficiently implemented in the Fourier domain. This51

approach was then extended to multichannel image restoration [21] allowing a slice52

by slice restoration. The interest of KF-based image restoration started to decrease53

in the mid 90’s with the growth of the computational capabilities. This led to the54

development of new iterative off-line image restoration approaches handling efficiently55

non-quadratic terms (including edge-preserving regularization) as in [8, 3, 5]. There56

is currently a renewed interest in extending these approaches to online estimation as57

[40, 24, 15, 14] that comes from the need for processing tools that are able to handle58

very large data sets. However, extending such approaches to online hyperspectral59

image deconvolution can be tricky. For example, the online ADMM algorithm pro-60

posed in [40] addresses the problem of estimating fixed parameters and derives online61

algorithms that converge to the same solution as the batch ADMM. Basically they62

consist of (sub)-gradient-based algorithms with a step size that decreases to zero as63

the number of time samples increases. This may be irrelevant for online hyperspectral64

image deconvolution since, in that case, the key feature is the tracking capability of65

the algorithms.66

The approach proposed in this paper has connections with [21] since it addresses67

the slice-by-slice hyperspectral image restoration problem. It also uses the same ap-68

proach to transform the non-causal blurring model into a (semi-)causal model. How-69

ever, the KF equations need to update the state vector, the associated Kalman gain70

and covariance matrices. This complexity may not be compatible with real-time pro-71

cessing in industrial applications of hyperspectral imaging systems. The main motiva-72

tion is to derive algorithms that allow to incorporate additional constraints enforcing73

some prior properties in the restored images while maintaining a linear complexity74

with respect to the number of unknown parameters. This work introduces an least75

mean-squares (LMS) framework for sequential deconvolution of hyperspectral images76

in which the subgradient is substituted by an instantaneous stochastic approximation77

and the step size is constant. Our algorithm operates in the spirit of LMS-based78

algorithms used, for instance, for adaptive system identification [45, 12, 9] and super-79

resolution restoration of sequences of images [19, 16]. However, LMS-based sequential80

deconvolution of (hyperspectral) images has never been reported in the literature. Ac-81

counting for the specificities of the online image deconvolution (non-causal blurring,82

low signal-to-noise ratio), we propose a sliding-block regularized least mean-squares83

(SBR-LMS) algorithm that allows the restoration of images within a preset delay Q.84

The paper is organized as follows. In Section 2, the image-blurring model is stated.85

Causality of the convolution kernel and of the estimator are discussed. In Section 3,86

the hyperspectral image deconvolution problem is introduced. The SBR-LMS algo-87
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rithm is proposed to address this problem. The criterion includes a spatial regularizer88

promoting the restoration of piecewise constant objects, a zero-attracting regularizer89

promoting the removal of the conveyor background, and a spectral regularizer pro-90

moting the smoothness of the spectral response. In Section 4, the transient behavior91

of the algorithm is analyzed in the mean and mean-squares sense. Its stability is92

also discussed. In Section 5, simulation results are presented to assess the accuracy of93

the convergence behavior model in both stationary and non-stationary scenarios. The94

role of each hyper-parameter is discussed. Numerical results are reported to assess the95

performance of the proposed approach and to compare it with state-of-the-art meth-96

ods. Finally, the algorithm is applied to real hyperspectral images acquired under97

different experimental conditions.98

2. Blurring and causality issues.99

2.1. Scanning technologies and data structure. Recording a 3D hyperspec-100

tral data cube can be performed in several ways, depending on how the 3D signal is101

acquired, as a sequence of either 1D or 2D signals. Each configuration results in a102

specific imaging system. Here, we restrict our attention to whiskbroom and push-103

broom scanners which are the most usual configurations in industrial applications.104

Figure 1 depicts schematically how a hyperspectral image is captured by whiskbroom105

and pushbroom imagers. In both cases, the scene is scanned by moving the imager106

or its field-of-view (FOV) across the scene. For example, for material analysis, the107

samples to be imaged are carried by a conveyor moving at constant speed, while in108

remote sensing applications, the imaging system is carried on an airborne platform109

moves over the scene. In a whiskbroom imaging system, an 1D sensor (i.e., a spec-110

trometer) is used to form the 3D data cube. Thus, the whole spatial scene is observed111

point-by-point yielding a stream of spectra which are stacked into a 3D data cube.112

A mechanized angular movement using a scanning mirror sweeping allows to cover a113

spatial line from one edge to the other. Alternatively, pushbroom imaging systems114

make use of 2D sensors allowing to observe the scene line-by-line at each time instant.115

The stream of spatial-spectral arrays is stacked to form the 3D-data cube.

Along track A
cr
os
s
tr
ac
k

(a) Whiskbroom imaging system

Along track A
cr
os
s
tr
ac
k

(b) Pushbroom imaging system

Fig. 1: Data acquisition by hyperspectral imaging systems

116

Following [36], respective pros and cons of whiskbroom and pushbroom imaging117

systems are as follows. Because whiskbroom systems rely on 1D detector, the cal-118

ibration is much simpler than with pushbroom systems. The disadvantages of this119

design include the presence of a mechanical scanning system, the shorter integration120

time than in pushbroom systems, and the image forming geometry which is depen-121

dent on the scanning speed, the scan mirror arrangement and the conveyor movement.122
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As compared to whiskbroom scan, pushbroom scanners allow for longer integration123

times for individual detector elements; the pixel dwell time is approximatively the124

inverse of the line frequency. In addition, there are distinct but fixed geometric rela-125

tions between the pixels within a scan line. Since 2D sensors are used as focal planes126

in these systems, the uniform calibration of the detector response is critical. Note127

that in a combined analysis of signal-to-noise ratio (SNR), uniformity, and stabil-128

ity, pushbroom scanners might not necessarily outperform whiskbroom systems even129

though they have a longer integration time. For example, [35] developed a whiskb-130

room hyperspectral imaging system for ultra fast material sorting application allowing131

to reach up to 3 meters per second scanning velocity. However, pushbroom scanners132

are increasingly used in industrial applications.133

A hyperspectral image is a 3D data cube whose dimensions are generally re-134

ferred to as across-track, along-track and spectral dimensions. However, in the se-135

quel, to avoid any confusion, they will be designated as spatial (across-track), time136

(along-track) and spectral dimensions. We will denote a hyperspectral image by137

Y ∈ R
N×P×K , where N , P , and K are the number of spatial, spectral and time138

measurements, respectively (see Figure 2). The hyperspectral image is then obtained139

slice by slice, each slice being denoted by Yk ∈ R
N×P , k = 1, . . . ,K. The size of Y140

increases with k, which can possibly grow to infinity.

Yk

Time instant k

Sp
ec
tr
al

di
m
en
sio
n

P

Across track
dimension

N

K

Along track (time) dimension

Fig. 2: Structure of a hyperspectral data cube Y

141

2.2. Blurring and noise. A hyperspectral image Y may suffer from distor-142

tions caused by the measuring devices and acquisition process such as keystone effect,143

smile effect, non-uniform illumination, and sensor response. These degradations may144

be corrected using standard calibration techniques [36, 20]. In this paper, we are pri-145

marily concerned with another type of distortion, namely, spatial distortions resulting146

in a loss of spatial resolution.147

In a whiskbroom imaging system, the spatial resolution is mainly controlled by148

the size of the beam footprint on the scanned object. Additional distortion can be149

caused by the conveyor motion but, in this paper, we shall assume that the integration150

time is small enough so that this distortion can be neglected. In general, the spatial151

sampling period ιs is chosen equal to the beam footprint size yielding a low resolution152

image. To increase the spatial resolution, it is necessary to reduce ιs, but this results153

in a spatial blurring of the hyperspectral image as sketched in Figure 3, where pixels154

are represented by the dots, and the beam footprint is represented by the circles.155
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The integration time T mainly acts on the noise level: a low value for T results in a156

low SNR. Consequently, assuming a constant acquisition velocity ιs/T , any resolution157

improvement results in an increase of both blurring and noise level. Assuming that the158

scanning angle is small, the beam footprint size can be considered as invariant with159

respect to the pixel position. We also assume that the footprint size is independent of160

the wavelength. Thus, the corresponding distortion can be modeled by linear invariant161

convolution.162

ιs

K

Convolution kernel

(a)

ι′s

K ′

(b)

Fig. 3: Data acquisition with (a) low and (b) high spatial sampling rate. high spatial
sampling rate results in a blurring of the image.

For pushbroom imaging systems, the quality of the acquired images can be signif-163

icantly degraded by the blurring effect resulting from the miscalibration of the optical164

system [30, 31, 20]. According to [41], there are many reasons that can cause spa-165

tial degradation of the pushbroom imaging system such as optical aberrations, slit166

size, and detector element size. In [31], the observed image corresponds to the 3D167

convolution of the original image with a spatial-spectral blurring filter varying with168

the spatial position. Here, the dependence of the spatial blurring with respect to the169

spatial position is neglected. We consider situations where the spectral response is170

smooth enough to choose a spectral sampling ιλ (controlled by the spectral binning)171

greater than the support of the spectral blurring and a spatial sampling ιs smaller172

than the support of the point spread function. This results in a degradation model173

involving only spatial blurring (possibly depending on the wavelength) of the hyper-174

spectral image which is given by Equation (2.1) in the next section. The integration175

time is supposed to be small for fast scanning yielding a low SNR.176

2.3. Causality. We shall now discuss issues related to the causality of the convo-177

lution kernel and associated estimates. Following [27], hyperspectral image blurring178

can be seen as P simultaneous spatial convolutions. For each wavelength λp, the179

blurred spatial image Yp ∈ R
N×K is given by the 2D convolution:180

(2.1) Yp = H⋆p∗Xp + Zp
181

where Yp ∈ R
N×K is the blurred spatial image for each wavelength λp, X

p ∈ R
N×K182

is the image to restore, H⋆p ∈ R
M×L is a convolution kernel (filter), and Zp ∈ R

N×K183

is an additive i.i.d. noise. The symbol ∗ stands for the 2D convolution operator. First184

we derive a sequential causal formulation of model (2.1). Without loss of generality,185

we focus on the sequential model for 2D images. The image Yp, collected online, can186

be represented as a sequence of vectors yp
k := [yp1,k, . . . , y

p
N,k]

⊤, with k = 1, . . . ,K,187
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where ⊤ denotes the transpose of a matrix. We use the same notation for the columns188

of Xp. We assume a finite length blurring kernel of size L along the time dimension,189

centered around 0 which means that both past and future values of xp
k contribute to190

the observation yp
k. In order to make the blurring kernel causal1, it has to be shifted191

by (L− 1)/2. It is thus necessary to delay the observation by (L− 1)/2 samples, that192

is, ỹp
k = yp

k−(L−1)/2. Writing H⋆p = [hp
L, . . . ,h

p
1] with hp

ℓ =
[

hp
M,ℓ, . . . , h

p
1,ℓ

]⊤

, model193

(2.1) can be expressed as:194

(2.2) ỹp
k = yp

k−(L−1)/2 =

L∑

ℓ=1

Hp
ℓx

p
k−ℓ+1 + zpk−(L−1)/2195

where the measurement noise zpk is zero mean and statistically independent of196

the other signals. Hp
ℓ is the N × N Toeplitz matrix with first column and first197

row given by [hp
(M+1)/2,ℓ, . . . , h

p
M,ℓ, 0, . . . , 0] and [hp

(M+1)/2,ℓ, . . . , h
p
1,ℓ, 0, . . . , 0], respec-198

tively2. Relation (2.2) introduces a delay in time dimension because the filter is199

made causal along this dimension. Another consequence of causality issues concerns200

the estimation process of xp
k. First, xp

k is involved in past and future observations201

(yp
k−(L−1)/2, . . . ,y

p
k, . . . ,y

p
k+(L−1)/2). Secondly, let us consider the problem of esti-202

mating only xp
k from the dataset:203

(2.3) ỹp , col{ỹp
k}Kk=1.204

where col{·} stacks its vector arguments on top of each other. The least squares205

criterion can be written as:206

(2.4) ||ỹp − Fpxp||2207

where xp is built similarly to ỹp and Fp is a Toeplitz-block-Toeplitz matrix of proper208

dimensions. To make the dependence of the criterion on xp
k explicit, we introduce the209

following partitions:210

xp =
[

xp⊤
1:k−1,x

p⊤
k ,xp⊤

k+1:K

]⊤

,(2.5)211

Fp =
[
Fp

1:k−1,F
p
k,F

p
k+1:K

]
(2.6)212213

where xp
i:j , col{xp

k}
j
k=i and Fp

i:j is the the submatrix formed by the columns (i −214

1)N + 1 through jN of Fp. This results in:215

(2.7) ||ỹp − Fpxp||2 = ||ỹp − Fp
1:k−1x

p
1:k−1 − Fk+1:Kxp

k+1:K − Fp
kx

p
k||2.216

It is now clear that optimally estimating xp
k requires all the past estimations x̂p

1:k−1 and217

future estimations x̂p
k+1:K , which precludes the derivation of a sequential estimator218

for xp
k. To address these issues, we propose to produce the estimates x̂p

k with a delay219

Q. More precisely, at time instant k, we shall estimate xp
k−Q+1 from Q observations220

(ỹp
k, ỹ

p
k−1 . . . , ỹ

p
k−Q+1), coarse posterior estimates (x̂p

k, x̂
p
k−1, . . . , x̂

p
k−Q+2) refined as k221

increases, and anterior estimates (x̂p
k−Q, x̂

p
k−Q−1, . . . , x̂

p
k−Q−L+2) which are no longer222

updated. This is the key idea of the sliding-block LMS deconvolution algorithm223

developed in the next section.224

1For simplicity, L is assumed to be odd.
2For simplicity, M is assumed to be odd.
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3. Online image deconvolution.225

3.1. Block Tikhonov. In this section, we introduce the Tikhonov-like approach226

proposed in [27] and a direct extension for online hyperspectral image restoration.227

They will serve as reference methods to assess the performance of the proposed LMS-228

based method. This Tikhonov-like approach, originally developed in an offline setting,229

consists of seeking the minimum of a criterion composed of three terms: a data fitting230

term, a spatial regularizer, and a spectral regularizer:231

(3.1) min
x

J (x) =
1

2
‖y −Hx‖2 + ηs

2
‖∆sx‖2 +

ηλ
2
‖∆λx‖2.232

where x and y denote, respectively, the original and the observed vectorized hy-233

perspectral images. Operator ∆s corresponds to a Laplacian filter promoting the234

smoothness along both spatial and time dimensions, and ∆λ corresponds to a first-235

order derivative filter along the spectral dimension. Parameters ηs and ηλ are re-236

spectively the spatio-temporal and spectral regularization parameters. Matrix H is237

block-diagonal and corresponds to the convolution kernel. Because the criterion is238

quadratic, solution of problem (3.1) results in the following linear estimator:239

(3.2) x̂ = (HTH+ ηs∆
T
s ∆s + ηλ∆

T
λ∆λ)

−1HTy.240

Due to the block diagonal structure of H, the estimator (3.2) can be efficiently im-241

plemented in the frequency domain (see [27] for details).242

The Block Tikhonov (BT) deconvolution approach addresses problem (3.1) in an243

online way by sequentially restoring spatio-spectral arrays Xk ∈ R
N×P . Let xk and244

yk be the vectorized matrices Xk ∈ R
N×P and Yk ∈ R

N×P , respectively:245

(3.3) xk , col {xp
k}

P

p=1 , yk , col {yp
k}

P

p=1 .246

where superscript p refers to the spectral band. This BT algorithm implements esti-247

mator (3.2) with slidding blocks of Q samples [xk−Q+1, . . . ,xk], ∀k = Q, . . . ,K and248

outputs the estimated vector x̂k−(Q−1)/2 as the final result3. This algorithm works249

fast since only quadratic regularization terms are considered. However, when other250

constraints are needed, such as ℓ1-norm-based ones, no explicit solutions are available251

and time consuming iterative algorithms are required.252

In the next section, we focus on extending the zero-attracting LMS (ZA-LMS)253

algorithm proposed in [12] to online deconvolution, while accounting for some image254

specificities (non-causal blurring, presence of smooth regions separated by abrupt255

edges, and low SNR) resulting in the so-called Sliding-block regularized LMS (SBR-256

LMS).257

3.2. Sliding-block regularized LMS (SBR-LMS). Consider the problem of258

sequentially estimating xk−Q+1 based on the delayed observations (ỹk, . . . , ỹk−Q+1)259

and past estimates x̂k−Q, . . . , x̂k−Q−L+2. Due to the non-causality of the estimation260

process, we propose to determine the future estimates with respect to time k−Q+1,261

namely, xk, . . . ,xk−Q+2. In what follows, to simplify notations, yk refers to the262

3For simplicity, Q is chosen to be odd.
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delayed observation ỹk andˆsymbol is omitted. This results in the following criterion:263

J (

updated
︷ ︸︸ ︷
xk, . . . ,xk−Q+1|

past estimates
︷ ︸︸ ︷
xk−Q, . . . ,xk−Q−L+2) =

Q
∑

q=1

E

∥
∥
∥
∥
∥
yk−q+1 −

L∑

ℓ=1

Hℓxk−q−ℓ+2

∥
∥
∥
∥
∥

2

264

+ ηz

Q
∑

q=1

‖xk−q+1‖1 + ηs

Q
∑

q=1

‖Dsxk−q+1‖1 + ηλ

Q
∑

q=1

‖Dλxk−q+1‖2(3.4)265

266

where E{·} stands for the expectation operator, ‖ · ‖1 =
∑

n |{·}n| denotes the ℓ1-267

norm of its argument, and {·}n stands for the n-th entry of a vector. Matrix Hℓ ,268

blkdiag{Hp
ℓ}Pp=1 is a block-diagonal matrix.269

The regularizer ||Dsxk−q+1‖1 promotes the restoration of piecewise constant pat-270

terns along the spatial dimension. The first-order filtering operator Ds is defined271

as:272

(3.5) Ds , IP ⊗TN273

where ⊗ stands for the Kronecker product, matrix IJ denotes the J×J identity matrix274

and TJ is the Toeplitz matrix of size (J − 1) × J with first column [1, 0, . . . , 0] and275

first row [1,−1, 0, . . . , 0]. The zero-attracting regularizer ‖xp
k−q+1‖1 aims at removing276

the conveyor background. The choice of these regularization terms is thus mainly277

motivated by the targeted application, namely, the inspection of objects put on a278

conveyor belt. At a given wavelength, the response of the conveyor after background279

removal is close to zero while that of the objects is supposed to be piecewise constant.280

The strength of the first derivative regularizers along spatial dimension is controlled281

by ηs ≥ 0. The strength of the zero-attracting regularizer is controlled by ηz ≥ 0.282

The spectral regularization term ‖Dλxk−q+1‖2 promotes spectral smoothness283

which corresponds to the very nature of NIR hyperspectral images of biological mate-284

rial such as wood [44]. Matrix Dλ is a first-order filtering operator along the spectral285

dimension weighted by the coefficients {cp}P−1
p=1 . It is defined as:286

(3.6) Dλ , (diag(c1, . . . , cP−1)TP )⊗ IN .287

The parameter ηλ controls the strength of the spectral smoothness penalty term.288

The spectral weights cp were introduced to provide some additional flexibility to the289

algorithm. Basically, the strength of the weight cp promotes the smoothness around290

the p-th spectral band. In our case, the spectral data are sampled on a regular grid.291

hence, c1, . . . , cP−1 are all set to 1. however, in the case where the spectral data292

would be recorded on two non adjacent spectral bands, smoothness between these293

bands should not be promoted and the corresponding weight should be set to a small294

value (zero).295

The criterion (3.1) developed in [27] introduces a regularization using second order296

derivatives along spatial and time dimensions. An inspection of criterion (3.4) may297

lead to the assertion that no regularization term is acting along the time dimension298

(time-regularization). However, we prove in Appendix B that, for the denoising case,299

LMS-based algorithm implicitly introduces a time regularization and presents a time300

delay in the estimation. A formal link between µ and the regularization strength301

is given. A small value µ results in strong regularization strength and large delay302

along the time dimension. Experimental results (Subsection 5.1) confirm that the303

interpretation is valid for the deconvolution case.304
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A subgradient of (3.4) is given by:305

(3.7) ∇J (xk, . . . ,xk−Q−L+2) ,

(
∂J
∂xk

, . . . ,
∂J

∂xk−Q+1
,0N×1, . . . ,0N×1

)

306

where 0I×J denotes the I × J zero matrix. Zero terms in the subgradient indicate307

that past estimates x̂k−Q, . . . , x̂k−Q−L+2 are no longer updated. We now derive the308

sliding-block regularized LMS algorithm. Consider the vectorized data:309

(3.8) x′

k , col{xk−q+1}Q+L−1
q=1 , y′

k , col{yk−q+1}Q+L−1
q=1 .310

A valid subgradient for |x| is sign(x) [18] where the sign function is defined as sign(x) =311

0 for x = 0, and sign(x) = x/|x| otherwise. Approximating the subgradient in (3.7)312

by its instantaneous value yields:313

(3.9) ∇J (x′

k) = −2Φ (y′

k −Gx′

k) + ηzΓsign(x
′

k) + ηsΛ
⊤

s sign(Λsx
′

k) + 2ηλΛ
⊤

λΛλx
′

k314

Matrices Φ, G and Γ are of size (Q+L−1)PN×(Q+L−1)PN . Matrix Φ is defined315

by:316

(3.10) Φ ,

[

Φ⊤
11 0QPN×(L−1)PN

0(L−1)PN×(Q+L−1)PN

]

317

where Φ11 is the matrix of size QPN ×QPN defined as:318

Φ11 ,







H1 · · · HQ

. . .
...

0 H1







(3.11)319

320

in which Hℓ = 0PN×PN for ℓ > L. It is necessary to define the matrix Φ11 as above321

to properly account for the cases Q < L and Q ≥ L. Matrix G has the form:322

(3.12) G ,









H1 · · · HL 0

. . .
. . .

0 H1 · · · HL

0(L−1)PN×(Q+L−1)PN









,

[

Φ11 G12

0(L−1)PN×(Q+L−1)PN

]

,323

(see Appendix A for more details). Matrix Γ is defined by:324

(3.13) Γ ,

[

IQPN 0QPN×(L−1)PN

0(L−1)PN×(Q+L−1)PN

]

.325

The first-order derivative filters for spatial and spectral dimensions are:326

(3.14) Λs , [IQ ⊗Ds 0QP (N−1)×(L−1)PN ] , [Λs,1 0QP (N−1)×(L−1)PN ],327

328

(3.15) Λλ , [IQ ⊗Dλ 0Q(P−1)N×(L−1)PN ] , [Λλ,1 0Q(P−1)N×(L−1)PN ].329

Finally, the SBR-LMS algorithm for hyperspectral image deconvolution is given by:330

(3.16) x̂′

k+1 = Ωx̂′

k+µΦ (y′

k −Gx̂′

k)−ρzΓsign(x̂
′

k)−ρsΛ
⊤

s sign(Λsx̂
′

k)−µηλΛ
⊤

λΛλx̂
′

k331
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where ρz = µηz/2, ρs = µηs/2 and µ is a step size parameter that controls the trade332

off between convergence rate and algorithm stability. Matrix Ω is given by:333

(3.17)

Ω ,






IQPN 0QPN×(L−1)PN

0 IPN 0 0PN×PN

0 0 I(L−2)PN 0(L−2)PN×PN




 ,

[

IQPN 0QPN×(L−1)PN

Ω21 Ω22

]

.334

The upper part of matrix Ω corresponds to the set of updated variables, and the335

lower part allows to shift the past estimates. The final result x̂k−Q+2 is obtained by336

selecting the Q-th block of vector x̂′

k+1, that is,337

(3.18) x̂k−Q+2 = Sx̂′

k+1338

where S , [0PN×(Q−1)PN , IPN ,0PN×(L−1)PN ]. It is worth to mention that the pro-339

posed algorithm is different from the standard block-LMS algorithm for which the340

output xk is updated only once for every block of size Q. On the contrary, in the341

proposed algorithm, to account for the causality issues discussed in Subsection 2.3,342

xk is updated Q times.343

Finally, depending on the hyperparameter values, different LMS-like algorithms344

can be defined as presented in Table 1.

Table 1: The different LMS-like algorithms and corresponding hyperparameters

µ Q ηz ηs ηλ
ZA-LMS > 0 1 > 0 0 0
SB-LMS > 0 > 1 0 0 0

SBZA-LMS > 0 > 1 > 0 0 0
SBR-LMS > 0 > 1 > 0 > 0 > 0

345

3.3. Algorithm implementation and computational cost. Algorithm 3.1346

details the SBR-LMS implementation. It should be noted that the storage of matrix347

Hp
ℓ is avoided and that only 1D convolutions are required. Two different implemen-348

tations of the convolution are possible: direct (spatial) domain or frequency domain.349

We also specify the particular case of using separable convolution kernel in form of350

H⋆p = gpfp⊤ where fp = [fp
L, . . . , f

p
1 ]

⊤ and gp = [gpM , . . . , gp1 ]
⊤ which yields lower351

computational burden. The validity of the separable kernel assumption is mainly352

controlled by the calibration of the optical systems. If the optical elements are mis-353

aligned, then the kernel will be non separable. Otherwise, a separable Gaussian kernel354

is a good and widely used model (see [26] for details).355

The computational complexity per iteration of SBR-LMS is given in Table 2,356

where the costs of both direct and frequency domain implementations of the convolu-357

tion are given. The approximate costs in Table 3 give the number of multiplications358

obtained by setting Q = L = M and retaining the dominant complexity. In the359

separable kernel case, both direct and frequency domain implementations yield lower360

complexity than for a non-separable kernel. In the direct domain, the complexity is361

linear w.r.t. the number of unknowns PN . For Q ≫ log2 N , we can reduce the com-362

plexity for the non-separable kernel case by applying the algorithm in the frequency363

domain while for separable kernel case, both direct domain and frequency domain364

yield a computational cost of the same order. As expected, when Q ≪ log2 N , the365

frequency domain implementation provides no benefit.366
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Table 2: Computational cost per iteration of recursion (3.16)

Operation Multiplications Additions

Ωx̂′
k
+ µΦ

(

y′
k
−Gx̂′

k

)

direct domain,

non-separable kernel

PQ

(

L+
Q+ 1

2

)

M

(

N −
M − 1

2

) PQL

[

(M − 1)(N −
M − 1

2
) +N

]

+ PQ

[

Q+ 1

2
(M − 1)(N −

M − 1

2
) +

Q− 1

2
N

]

Ωx̂′
k
+ µΦ

(

y′
k
−Gx̂′

k

)

direct domain,

separable kernel

PQ

(

L+
Q+ 1

2

)

N + 2PQM

(

N −
M − 1

2

) PQ

(

L+
Q− 1

2

)

N

+ 2PQ(M − 1)(N −
M − 1

2
)

Ωx̂′
k
+ µΦ

(

y′
k
−Gx̂′

k

)

frequency domain,

non-separable kernel

4PQ

(

L+
Q+ 1

2

)

N + 2PQ(L+ 1)N log2N PQ(2L+Q − 1)N + 2PQ(L+ 1)N log2N

Ωx̂′
k
+ µΦ

(

y′
k
−Gx̂′

k

)

frequency domain,

separable kernel

PQ(L+Q+ 1)N + 2PQN(2log2N + 4) PQ(L+Q)N + 4PQN log2N

ρzΓsign(x̂′
k
) 0 0

ρsΛ
⊤
s sign(Λsx̂

′
k
) 0 2(N − 1)PQ

µηλΛ
⊤
λ
Λλx̂

′
k

4N(P − 1)(Q + L− 1) 2NP (P − 1)(Q + L− 1)

1
1

T
h
is

m
a
n
u
sc
rip

t
is

fo
r
re
v
ie
w

p
u
rp
o
se
s
o
n
ly
.



Algorithm 3.1 SBR-LMS algorithm for hyperspectral image deconvolution

Data: Y ∈ R
N×K×P , H⋆p = [hp

L, . . . ,h
p
1], ∀p = 1, . . . , P

Result: X ∈ R
N×K×P

Initialization Q, µ, ρz , ρs, ηλ, c1, . . . , cP−1 and TN

hp
ℓ = 0N×1, ∀ℓ = L+ 1, . . . , Q, ∀p = 1, . . . , P ;

Selection of parameters X = 0N×K×P , c0 = cP = 0 for k = L+Q− 1 : K − 1 do
for q = 1 : Q do

for p = 1 : P do
Non-separable convolution kernel:

errpk−q+1 = yp
k−q+1 −

L∑

ℓ=1

hp
ℓ ∗ x

p
k−q−ℓ+2

grad =

q
∑

i=1

hp
q−i+1 ∗ err

p
k−i+1

Separable convolution kernel:

errpk−q+1 = yp
k−q+1 − gp ∗

L∑

ℓ=1

fp
ℓ x

p
k−q−ℓ+2

grad = gp ∗
q

∑

i=1

fp
q−i+1err

p
k−i+1

where ∗ is the 1D convolution operator.

xp
k−q+2 =xp

k−q+1 + µgrad− ρzsign(x
p
k−q+1)− ρsT

T
N sign(TNxp

k−q+1)

− µηλ

[

(c2p−1 + c2p)x
p
k−q+1 −c2p−1x

p−1
k−q+1 − c2px

p+1
k−q+1

]

;

end

end

end

Table 3: Approximate computational cost per iteration for the convolution in (3.16)

Direct domain Frequency domain
Non-separable kernel O(Q3PN) O(Q2PN log2N)
Separable kernel O(Q2PN) O(QPN(Q+ log2 N))

4. Transient behavior analysis. In this section, we derive the transient behav-367

ior model of the deconvolution algorithm (3.16) both in the mean and mean-squares368

sense. The analysis provides us with an important guidance for selecting the step-369

size parameter, and also allows us to study the influence of the other parameters370

(Subsection 5.2). The stability condition of the algorithm is also studied.371
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4.1. Mean and mean-squares transient behavior model. Using the nota-372

tions of Subsection 3.2, Equation (2.2) can be written as: y′

k = Gx′

k + z′k with z′k a373

zero-mean measurement noise of covariance σ2
zI(Q+L−1)NP . Taking the expectation of374

both sides of (3.16), the mean sliding block vector evolves according to the following375

recursion:376

(4.1) E{x̂′

k+1} = AE{x̂′

k}+ µΦGx′

k − ρzΓE{sign(x̂′

k)} − ρsΛ
⊤

s E{sign(Λsx̂
′

k)}377

where A , Ω− µΦG− µηλΛ
⊤

λΛλ. The mean vector can be then obtained by using:378

(4.2) E{x̂k−Q+2} = SE{x̂′

k+1},379

The main difficulty in (4.1) lies in evaluating the expectation of the sign function.380

This point will be discussed later.381

Consider the error:382

(4.3) ǫk = S(y′

k −Gx̂′

k) = S (z′k −G(x̂′

k − x′

k)) ,383

as z′k is assumed independent of other variables, the mean-squared error (MSE) can384

be expressed as:385

E‖ǫk‖2 =NPσ2
z + trace(G⊤S⊤SGE{x̂′

kx̂
′⊤

k })
+ x′

k
⊤
G⊤S⊤SGx′

k − 2x′

k
⊤
G⊤S⊤SGE{x̂′

k}.
386

It follows that E{x̂′

kx̂
′⊤

k } can be updated as:387

E{x̂′

k+1x̂
′⊤

k+1} =AE{x̂′

kx̂
′⊤

k }A⊤ + µ2σ2
zΦΦ⊤ + µΦGx′

kE{x̂′⊤

k }A⊤

+ µAE{x̂′

k}x′⊤

k G⊤Φ⊤ + µ2ΦGx′

kx
′⊤

k G⊤Φ⊤

− ρz(U1 +U⊤

1 +U2 +U⊤

2 ) + ρ2zU3

− ρs(U4 +U⊤

4 +U5 +U⊤

5 ) + ρ2sU6 + ρsρz(U7 +U⊤

7 )

388

where389

U1 = AE{x̂′

ksign(x̂
′

k)
⊤}Γ⊤ ,390

U2 = µΦGx′

kE{sign(x̂′

k)
⊤}Γ⊤ ,391

U3 = ΓE{sign(x̂′

k)sign(x̂
′

k)
⊤}Γ⊤,392

U4 = AE{x̂′

ksign(Λsx̂
′

k)
⊤}Λs ,393

U5 = µΦGx′

kE{sign(Λsx̂
′

k)
⊤}Λs ,394

U6 = Λ⊤

s E{sign(Λsx̂
′

k)sign(Λsx̂
′

k)
⊤}Λs ,395

U7 = ΓE{sign(x̂′

k)sign(Λsx̂
′

k)
⊤}Λs.396397

Again, the main difficulty lies in the evaluation of the expectations in form of398

E{sign(u) sign(v)} and E{u sign(v)}. An analysis of the stochastic behavior of ZA-399

LMS is carried out in [11] where exact expressions of these expectations are derived400

under a Gaussian assumption on the error vectors. however, due to the size of the401

covariance matrix (4.4), we decided to resort to use the following approximations [49]:402

E{sign(u)} ≈ sign(E{u}),(4.4)403

E{u sign(v)⊤} ≈ E{u}sign(E{v})⊤,(4.5)404

E{sign(u) sign(v)⊤} ≈ sign(E{u})sign (E{v})⊤(4.6)405406
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which lead to sufficiently accurate models. When |u| and |v| are large, the approxi-407

mations are quite good meaning that the mean behavior is well approximated when408

the dynamic of the image to restore is high enough. When they are close to zero, the409

approximations are of lower quality. However, following [12], these approximations410

yield a worst case transient behavior model. In addition, this approximation does411

not assume any statistical model on u and v. Only their statistical independence is412

required.413

The mean and mean-squares transient models will be used to study the SBR-LMS414

behavior in both steady-state and non-stationary cases (Subsection 5.1). In the next415

section, to study the stability condition of the algorithm, we focus on the steady-state416

case.417

4.2. Stability condition. We shall now discuss the stability of the proposed418

algorithm in the mean and mean-squares sense. Consider a steady-state solution for419

which:420

(4.7) xp
k = x̄p, ∀ k.421

The error-vector vp
k is defined as:422

(4.8) vp
k = x̄p − x̂p

k423

with its vectorized version424

vk , col{vp
k}Pp=1(4.9)425

v′

k , col{vk−q+1}Q+L−1
q=1 .(4.10)426

427

By combining (3.16), (4.8) and (4.10), v′

k can be updated as:428

(4.11)

v′

k+1 = Av′

k − µΦz′k + (I−Ω+ µηλΛλ
⊤Λλ)x̄

′ + ρzΓsign(x̂
′

k) + ρsΛs

⊤sign(Λsx̂
′

k)

= Av′

k − µΦz′k + µηλΛλ
⊤Λλx̄

′ + ρzΓsign(x̂
′

k) + ρsΛs

⊤sign(Λsx̂
′

k)
429

where x̄ , col{x̄p}Pp=1 and x̄′ , [x̄⊤, . . . , x̄⊤]⊤ of size (Q+L−1)PN×1. We consider430

the following partition of the matrix A:431

A =

[

I 0

Ω21 Ω22

]

− µ

[

Φ⊤
11 0

0 0

][

Φ11 G12

0 0

]

− µηλ

[

Λ⊤

λ,1Λλ,1 0

0 0

]

432

,

[
A11 A12

Ω21 Ω22

]

(4.12)433

434

where Φ11 is defined by (3.11), Ω21 and Ω22 are defined by (3.17), A11 = I −435

µ(Φ⊤
11Φ11 + ηλΛ

⊤

λ,1Λλ,1), A12 = −µΦ⊤
11G12.436

Mean stability. We now consider the mean stability of (4.11). Taking the expec-437

tation of both sides, the mean-error vector can be expressed as:438

(4.13) E{v′

k+1} = AE{v′

k}+ dk439

where440

(4.14) dk , µηλΛ
⊤

λΛλx̄
′ + ρzE{sign(x̂′

k)}+ ρsΛ
⊤

s E{sign(Λsx̂
′

k)}.441
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Let E{v′
1} be the initial condition. Then we obtain:442

(4.15) E{v′

k+1} = (A)kE{v′

1}+
k−1∑

n=0

(A)ndk−n443

The Euclidean norm of dk is bounded. Indeed, we have:444

(4.16) ||dk|| ≤ µηλ||Λ⊤

λΛλx̄
′||+ ρz||E{sign(x̂′

k)}||+ ρs||Λ⊤

s E{sign(Λsx̂
′

k)}||.445

The first term ||Λ⊤

λΛλx̄
′|| corresponds to the initial condition and is bounded if x̄′ is446

bounded. The last two terms are also bounded:447

||E{sign(x̂′

k)}|| ≤
√

QPN(4.17)448

||Λ⊤

s E{sign(Λsx̂
′

k)}|| ≤
√

QP (4N − 6).(4.18)449450

Following the arguments reported in [17], if the spectral norm of A is less than 1,451

the series
∑

∞

n=0(A)ndk−n is convergent. Thus, the convergence of (4.15) is entirely452

controlled by the spectral norm of A. Because matrix A is not symmetric, standard453

stability results cannot be applied straightforwardly. Let D be the closed unit disc454

in the complex plane. We say that the matrix A is discrete stable (see [6]) if δ(z) =455

det(I−zA) 6= 0, ∀z ∈ D. Using the Schur determinant formula, it can be shown that:456

(4.19) δ(z) = det(I− zA11) · det(I− zΩ22 − z2Ω21(I− zA11)
−1A12).457

Then, δ(z) 6= 0 if and only if the following two conditions hold:458

det(I− zA11) 6= 0, ∀z ∈ D(4.20)459

det(I− zΩ22 − z2Ω21(I− zA11)
−1A12) 6= 0, ∀z ∈ D(4.21)460461

The condition in (4.20) is fulfilled if all the eigenvalues of the symmetric matrix A11462

lie inside the unit disc, i.e., its spectral radius r(A11) < 1. The matrix Φ⊤
11Φ11 +463

ηλΛ
⊤

λ,1Λλ,1 being the sum of a positive semi-definite matrix and a positive definite464

matrix, it is positive definite; thus, standard stability result applies from which we465

conclude that A11 is stable iff:466

(4.22) 0 < µ <
2

r(Φ⊤
11Φ11 + ηλΛ⊤

λ,1Λλ,1)
.467

In practice, it is not easy to check the second condition in (4.21) for all values of z468

in the unit disc. However, in the case of Gaussian convolution kernels, we checked469

experimentally that the stability of A depends only on that of A11. For example,470

Figure 4 displays the spectral radius of A as a function of the tuning parameters471

µ and ηλ for two Gaussian kernels. The red curve is obtained using (4.22) which472

corresponds to the stability limit of A11. The region where the spectral radius of473

A is less than 1 (i.e., A is stable) is highlighted in green. One can observe that for474

different Gaussian kernels, except for some numerical errors, the stability region of475

A is the same as that of A11. In conclusion, we conjecture that for Gaussian filters,476

the stability condition of A is also given by (4.22). Numerical experiments seem to477

indicate that the stability of A is also controlled by the stability of A11 for a larger478

class of low-pass filters, including hanning, hamming and rectangular windows. We479

also found counter examples for which the stability of A11 does not guarantee the480

stability of A. It is worth mentioning that the stability region depends on both µ481

and ηλ and that increasing ηλ necessitates to lower µ to guarantee the stability of the482

algorithm.483
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Fig. 4: Spectral radius of A (in log scale) as a function of µ and ηλ. The green area
corresponds to the values of µ and ηλ for which A is stable. The red curve corresponds
to the stability limit of A11.

Mean-squares stability. We now address the stability in the mean-squares sense.484

First, define the zero-mean misalignment vector wk as:485

(4.23) wk = v′

k − E{v′

k},486

then using (4.11) and (4.13), wk can be updated as:487

(4.24) wk+1 = Awk − µΦz′k + ρzezk + ρsesk488

where489

ezk = sign(x̂′

k)− E{sign(x̂′

k)},(4.25)490

esk = Λ⊤

s (sign(Λsx̂
′

k)− E{sign(Λsx̂
′

k)}).(4.26)491492

The covariance matrix of wk is defined as:493

(4.27) Wk = E{wkw
⊤

k }494

Since E{wk} = 0, E{ezk} = 0 and E{esk} = 0, Wk can be updated as follows:495

Wk+1 =AWkA
⊤ + µ2σ2

zΦΦ⊤ + ρzAE{wkez
⊤

k }+ ρzE{ezkw⊤

k }A⊤ + ρ2zE{ezkez⊤k }496

+ ρsAE{wkes
⊤

k }+ ρsE{eskw⊤

k }A⊤ + ρ2sE{eskes⊤k }497

+ ρsρzE{eskez⊤k }+ ρsρzE{ezkes⊤k }(4.28)498499

From (4.8) and (4.23) we have:500

E{wkez
⊤

k } = E{x̂′

k}E{ez⊤k } − E{x̂′

kez
⊤

k } = −E{x̂′

kez
⊤

k },(4.29)501

E{wkes
⊤

k } = E{x̂′

k}E{es⊤k } − E{x̂′

kes
⊤

k } = −E{x̂′

kes
⊤

k }.(4.30)502503

Thus, we observe:504

trace(Wk+1) =trace(A⊤AWk) + µ2σ2
ztrace(ΦΦ⊤) + 2ρsρzE{es⊤k ezk}505

− 2ρztrace(AE{x̂′
⊤

k ezk}) + ρ2zE{ez⊤k ezk}506

− 2ρstrace(AE{x̂′
⊤

k esk}) + ρ2sE{es⊤k esk}.(4.31)507508
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It is straightforward to verify that ezk and esk are bounded. With E{x̂′

k} = x̄′ −509

E{v′

k}, the terms E{x̂′
⊤

k ezk} and E{x̂′
⊤

k esk} converge if E{v′

k} converges which is510

true if A is stable and x̄′ is bounded. Thus to have the stability of (4.28), only the511

stability of its first term on the right hand side has to be studied (see for example512

[37]). By using the same argument as in [17], the mean-squares stability of (4.28) is513

guaranteed if the mean stability holds.514

5. Experimental results.515

5.1. Validation of the transient behavior model. The experiment described516

below aims at validating the transient behavior model of the SBR-LMS algorithm517

described in Subsection 4.1. We first address the steady-state case. The simulated518

image is a 2D image whose lines are constant over time k. Its columns are set to:519

xstat. = [01×3, 1, 0.9, . . . , 0.1,01×3]
⊤. The convolution kernel is a Gaussian filter of520

size 3 × 3. The zero-mean i.i.d. Gaussian noise zk is added to reach a 16 dB SNR.521

The SNR is defined as follows:522

(5.1) SNR = 10 log10
||H⋆∗X||2F

||Z||2F
.523

The block size Q is set to 5, the initial value x0 to zero and the step size µ to524

0.01. Experimental results were obtained by averaging the estimations over 50 runs.525

The convergence behavior in the mean and mean-squares sense of SBR-LMS with526

different regularization parameter values are presented in Figure 5. The experimental527

curves (in blue) and the theoretical curves (4.1)–(4.4) (in red) are superimposed thus528

confirming the accuracy of the model. It appears that the zero-attracting property529

results in a faster convergence to zero (Figure 5(c)) than that of the algorithm without530

any regularization (Figure 5(a)). The first order derivative regularizer (Figure 5(e)) is531

favoring the reconstruction of piecewise constant objects along the spatial dimension532

by decreasing the difference between two adjacent rows. However, both zero-attracting533

and the first order derivative properties introduce a bias on the amplitudes explaining534

why the MSEs shown in Figure 5(d) and Figure 5(f) are larger than that shown in535

Figure 5(b).536

The next experiment intends to show that the proposed model is still valid in the537

non-stationary case. The results are reported in Figure 6. The n-th pixel at time k538

of the 2D simulated image is defined as:539

(5.2) x
(nonstat.)
nk = x(stat.)

n +
|x(stat.)

n |
10

sin

(
2π

To
k + 2π

n− 1

K

)

540

with To = 100. The convolution filter and noise level are the same as before. Q is541

set to 5, ρz and ρs are set to 0.2 · 10−3. The simulated images (in black dots) have542

to be compared with the superimposed experimental (blue) and theoretical (red)543

curves. Figure 6(a), Figure 6(b) and Figure 6(c), Figure 6(d) confirm that the step544

size influences the convergence speed and the estimation variance. A large value for545

µ results in an increase of the convergence speed and estimation variance. Also, the546

delay mentioned in Subsection 3.2 and Appendix B can be observed on these figures.547

Increasing the step size (Figure 6(c)) results in a decreasing of the delay.548

5.2. Effects of the parameters. To assess the influence of the parameters Q,549

µ, ρs and ρz, numerical simulations were conducted on a 2D image. The original550

image shown in Figure 7(a) was blurred by a Gaussian kernel of size 15 × 15 with551
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Fig. 5: Transient behavior model in stationary environment

full width at half-maximum (FWHM) set to 7 pixels. A Gaussian noise was added to552

reach a 5 dB SNR. This blurred and noisy image is shown in Figure 7(b). Figure 7(c)553

to Figure 7(f) show respectively the results corresponding to the ZA-LMS algorithm554

obtained by setting Q = 1, µ = 0.06 and ρz = 0.02, the SB-LMS algorithm with555

hyperparameters Q = 15, µ = 0.006, the SBZA-LMS (sliding block LMS with zero-556

attracting term only) with hyperparameters Q = 15, µ = 0.006 and ρz = 0.05 and557

the SBR-LMS with hyperparameters Q = 15, µ = 0.006, ρz = 0.05 and ρs = 0.01.558

The image restored with ZA-LMS in Figure 7(c) exhibits lower noise level than the559
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Fig. 6: Transient behavior model validation in non-stationary environment

original image but deblurring is very limited. Better results are obtained when the560

block size increases as shown in Figure 7(d). The image restored by SBZA-LMS has561

a better resolution and a lower noise level as illustrated in Figure 7(e). As mentioned562

in Subsection 3.2 and Appendix B, the SB-LMS and SBZA-LMS induce a time (and563

no spatial) regularization resulting in horizontal structures visible on the restored564

images. This effect is attenuated by introducing a spatial regularization as shown in565

Figure 7(f).566

Figure 8 shows the influence of the spectral regularization parameter ηλ on a567

simulated hyperspectral image. Original and blurred noisy images corresponding to568

three different wavelengths are shown in Figure 8(a) and Figure 8(b), respectively.569

The blurring kernel and the noise level are the same as those in Figure 7(b). By com-570

paring he estimated results shown in Figure 8(c) (without spectral regularization)571

and Figure 8(d) (with spectral regularization), it appears that spectral regularization572

can help to recover objects whose amplitude is very small (at a given wavelength)573

as pattern 1 in the second band. However, the spectral regularization may also in-574

duce artifacts: for example, pattern 2 appears in the second band when the spectral575

regularization is used while it is not present in the original image.576

We can assess the effect of the parameter Q on the convergence of the SBR-LMS577

by examining the transient behavior of the MSE. The simulated image is the same578

as the one in Subsection 5.1 (2D image whose lines are constant over time k). It was579

blurred by Gaussian filter of size 5 × 5 with FWHM equal to 3 and the SNR of the580
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Fig. 7: Influence of different hyperparameters

image was set to 40 dB. The initial value x0 was set to zero. Experimental MSE were581

obtained by averaging over 100 runs. The result comparing the transient behavior582

of MSE for different values of Q is shown in Figure 9. Convergence speed using the583

SBR-LMS increases when Q increases. Extensive simulations shows that Q should be584

chosen slightly larger than L (convolution kernel length along the time dimension).585

No improvements are observed when Q is much larger than L.586

The next experiment aims at showing that the evolution of each parameter (the587

others being fixed) w.r.t. the SNR is complies with intuition. Figure 10 shows the588

evolution of the MSE as a function of µ, ρz, ρs and ηλ respectively for different values589

of the SNR. For a given SNR, the MSE curve (horizontal lines on Figure 10 ) decreases590

and then increases: the MSE minimum value (red point) corresponds to the best591

tradeoff between bias and variance. The values of ρz, ρs and ηλ minimizing the MSE592

increase as the noise level increases. The value of µ minimizing the MSE decreases as593

the noise level increases: this is in accordance with the time regularization implicitly594

enforced by the LMS (presented in Appendix B) whose strength is controlled by 1/µ.595

596

Let us now concentrate on the parameter ρz which controls the strength of the ZA597

terms. In Subsection 5.1, it was mentioned that ZA was favoring a faster convergence598

to zero. At the same time it can also slow down the convergence to non-zero values.599

To illustrate this point, we consider the following experiment. A simulated image of600

size 27× 500× 4, shown in Figure 11(a) includes many zero values and some non-zero601

values. It was blurred by a Gaussian filter of size 3 × 3. Q was set to 5, µ = 0.01,602

σ2
z = .001, ρs = ρt = ηλ = 0, cp = 1. The initial value x0 was set to one. The practical603

MSE (blue) was obtained by averaging over 10 runs while the theoretical MSE (red)604

was evaluated according to (4.4). They are shown in Figure 11(b) for three different605

values of ρz . The result contains three parts. At first, the algorithm converges from606

one to smaller values, and larger ρz results in a faster convergence. However, as the607

first part of the image contains some non-zero values, the large value of ρz introduces608
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50 100 150

20

40

60

80

100 -0.5

0

0.5

1

50 100 150

20

40

60

80

100 -0.5

0

0.5

1

50 100 150

20

40

60

80

100 -0.5

0

0.5

1

(c) Estimated image (ηλ = 0)
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(d) Estimated image (ηλ = 20)

Fig. 8: Influence of spectral regularization parameter

a large bias resulting in a large MSE after convergence (around k = 500). In the609

second part of the image, pixels were all set to zero. The convergence rate of the610

algorithm increases with ρz. In that case, the zero-attracting does not introduce any611

bias and the MSEs after convergence (around k = 1000) are the same for all values612

of ρz. In the third part of the image, the algorithm starts from zero values and has613

to converge to non-zero values. Since the zero-attracting algorithm is pulling down614

the values to zero, large ρz will slow down the convergence rate. We note that the615

MSE after convergence (around k = 1700) are the same as that of the first part616

of the image. This experiment shows that the ZA term introduces an asymmetric617

transient behavior: it results in a faster convergence when starting from a non-zero618
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Fig. 10: Evaluation of MSE as a function of parameters for different values of the
SNR

value toward a zero value and a slower convergence when starting from a zero value619

toward a non-zero value.620

5.3. Performances. To illustrate the performance of our algorithm, we gen-621

erated an unblurred hyperspectral image of 261 slices with spatial size 171 and 16622

spectral bands. The chosen spatial image corresponds to 5 piecewise constant pat-623

terns put on the background whose response is zero. The spectra of the different624

22

This manuscript is for review purposes only.



1000 2000

5

10

15

20
0

0.5

1

1000 2000

5

10

15

20
0

0.5

1

1000 2000

5

10

15

20
0

0.5

1

1000 2000

5

10

15

20
0

0.5

1

(a) Simulated image (4 wavelengths)

0 500 1000 1500 2000
10

-2

10
-1

10
0

10
1

10
2

10
3

k

M
S
E

ρz = 0.005

ρz = 0.005
ρz = 0.005

ρz = 0.001
ρz = 0.001 ρz = 0.001

ρz = 0.0001
ρz = 0.0001

ρz = 0.0001

(b) Evolution of MSE with 3 values of ρz

Fig. 11: MSE as function of k for different values of ρz

objects were chosen to be smooth making the spectral smoothness penalty effective.625

The convolution filter H⋆ was assumed to be a low-pass Gaussian filter of size (9×9).626

It is invariant with respect to spectral band p. A Gaussian noise was then added to627

the blurred image. The noise level was the same for all bands.628

The SBR-LMS results are compared to an off-line deconvolution algorithm pro-629

posed in [27] which corresponds to the Tikhonov approach with ℓ2 spatial and spec-630

tral regularizers. It is also compared to the BT approach presented in Subsection 3.1631

whose block size is the same as the block size of the SBR-LMS. Note that better per-632

formance would certainly be achieved by using much more refined methods enforcing633

additional constraints (non-negativity, edge preserving) at the price of an increased634

computational burden. That is why we decided to restrict the comparison to decon-635

volution approaches having a computational burden similar to that of the SBR-LMS.636

Three versions of SBR-LMS algorithms are considered for performance evaluation:637

SBR-LMS without spatial and zero-attracting regularizations, SBR-LMS with spatial638
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regularization but without zero-attracting regularization, SBR-LMS with spatial and639

zero-attracting regularizations.640

As a performance measure, we consider the MSE as a function of the SNR and641

the goal is to assess the performance of the proposed SBR-LMS and to compare them642

to those of alternative approaches. As shown in the previous section, the optimal643

hyperparameter values are depending on the noise level. Thus, comparing the perfor-644

mances of different methods would require to determine for each noise level the set of645

optimal parameters by an exhaustive grid search which, due to the large number of646

hyperparameters (2 for Tikhonov, 3 for Block Tikonov and up to 5 for SBR-LMS), is647

out of reach in reasonable time. To handle this problem, while keeping a fair compar-648

ison between the different methods, we propose the following performance evaluation:649

the strength of the spectral regularization is fixed to a small value (the same for all650

methods) and the block size Q is fixed to 11 (BT, SBR-LMS). All the other param-651

eters are fixed by a grid search yielding the minimum MSE for a fixed SNR= 12 dB.652

These parameter values are then used for all other noise levels. Figure 12 shows that653

SBR-LMS without spatial and zero-attracting regularization terms yields the highest654

MSE for all noise level. This can be attributed to the fact that, in that case, only a655

time regularization is used. For high SNR, Tikhonov and BT give the lowest MSEs.656

however, when SNR is lower than 12 dB, SBR-LMS with spatial regularization has657

almost the same performance as the Tikhonov approach and better performance than658

BT algorithm. Adding a zero-attracting regularization improves the performance at659

low SNR even more. In conclusion, if we focus on sequential deconvolution, BT has660

to be chosen if the SNR is high while SBR-LMS should be preferred for low SNR.
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Fig. 12: Performances of the hyperspectral image deconvolution algorithms

661

5.4. Real hyperspectral image deblurring. The last experiment aims at662

illustrating the performance of the SBR-LMS algorithm on real blurred hyperspectral663

images of size 481 × 656 × 28 (spatial, time and spectral sizes respectively) with664

wavelengths varying from 947.71 nm to 1707.7 nm with an increment of 27.68 nm.665

The spectral response of the conveyor (background) was estimated from data in an666

area of size 140×140×28. It was then subtracted from each pixel of the hyperspectral667

image. The imaged objects put on the conveyor are pieces of woods (wood wastes).668

The convolution filter was estimated from data (using a calibration target) to be669

a Gaussian kernel of size 7 × 7 with FWHM of 3 points. No dependence of the670
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convolution kernel w.r.t. the wavelength was observed.671

First, we compare different algorithms in the case of an image acquired using a672

large integration time (2.146 ms) resulting in a high SNR. This corresponds to the673

situation where Tikhonov and BT are expected to yield the best results. Figure 13674

presents the deconvolution result obtained on the whole real hyperspectral image675

(only 3 slices corresponding to wavelengths 1058.64 nm, 1198.12 nm and 1479.78 nm676

are shown). Figure 14 is a part selected from the whole image. The original images677

are shown in Figure 13(a) and Figure 14(a). The images restored with SBR-LMS678

(µ = 2.3, Q = 9, ρz = 0.005, ρs = 0.01, ηλ = 0.001) are shown in Figure 13(b) and679

Figure 14(b). Figure 13(c) and Figure 14(c) correspond to the Tikhonov approach680

with ℓ2 spatial and spectral regularizers. Figure 13(d) and Figure 14(d) correspond to681

the BT approach. The hyperparameters of the Tikhonov approaches were estimated682

by the minimum distance criterion (MDC) proposed in [38]. The FWHB of the kernel683

being equal to 3 points, the blurring of the real images is quite limited. However, an684

increased resolution allowing to recover the fine texture of the objects can be observed685

on the zoomed view restored images in Figure 14(b)-Figure 14(d). More importantly,686

Figures Figure 13 and Figure 14 show that at high SNR, the SBR-LMS yields similar687

performances as those of the reference methods (Tikhonov and BT).688

The second image in Figure 15(a) corresponds to the same observed scene with689

an integration time of 0.013 ms which results in a low SNR. The image restored with690

SBR-LMS (µ = 0.5, Q = 9, ρz = 0.1, ρs = 0.05, ηλ = 0.001) is shown in Figure 15(b).691

Results obtained by Tikhonov and BT methods, whose hyperparameters are estimated692

by the MDC approach, are shown in Figure 15(b) and Figure 15(c), respectively. The693

bias introduced by the regularization terms can be observed in Figure 15(b) since694

the dynamic range is lower than that of Tikhonov methods. It clearly appears that695

the noise level on the background estimated by SBR-LMS is much lower than that696

of the Tikhonov approaches. Due to the noise level, all approaches cannot reveal fine697

structures accurately, but the edges are well preserved.698

6. Conclusions. In this work, the online deconvolution problem of hyperspec-699

tral images collected by industrial pushbroom imaging systems was addressed. The700

contribution of this work is the derivation of the SBR-LMS algorithm that allows the701

fast slice-by-slice hyperspectral image restoration, accounting for convolution kernel702

non-causality and low SNR issues. The key feature of the proposed approach relies on703

the possibility to include non-quadratic regularization terms while maintaining a com-704

putational complexity linear w.r.t. the number of unknowns. The transient behavior705

model of the algorithm was analyzed; it allows to assess the influence of each regu-706

larization parameter. Experimental results on both simulated and real hyperspectral707

images showed that the SBR-LMS algorithm has good noise removal and deblurring708

capabilities, especially at low SNR which is the relevant case for industrial imaging709

systems.710

The effective implementation of such method is hampered by the choice of the711

regularization parameters. In general, this choice is made by successive trials which712

can be highly time consuming. Future works will focus on the automatic learning713

of hyperparameters. A first idea could be to learn the optimal parameters in a way714

similar to what is done in [38] on a typical sample and to use these fixed parameters715

for the online processing. A more promising approach would be to perform the online716

learning of these parameters: for example, [32], a variable-parameter algorithm is717

proposed to adjust optimally the algorithm parameters of ZA-LMS. This will avoid718

the necessity of having representative image samples and will meet the requirements719
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(a) Original hyperspectral image
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(b) Estimated image (SBR-LMS)
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(c) Estimated image (Tikhonov)
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(d) Estimated image (Block Tikhonov)

Fig. 13: hyperspectral image restoration at 3 wavelengths.

of a full online processing. To circumvent the asymmetric transient behavior induced720

by the ℓ1 norm zero-attracting regularization, an ℓ0-like regularizer such as introduced721

in [17] could be considered. For different types of materials and/or spectroscopies,722

other spectral regularizations could be used such as TV-like spectral regularization723

proposed in [1] for promoting piecewise constant spectra reconstruction. Finally,724

accounting for the low-rank structure of the data to restore (which results from a725

non-negative linear mixing model of the data to restore), a joint online deconvolution726

and unmixing algorithm is worth being studied. This is expected to yield a very low727

computational burden and accurate image restoration approach.728

Appendix A. Structure of matrix G for both cases Q ≥ L and Q < L.729
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(a) Original hyperspectral image
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(b) Estimated image (SBR-LMS)
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(c) Estimated image (Tikhonov)
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(d) Estimated image (Block Tikhonov)

Fig. 14: hyperspectral image restoration at 3 wavelengths.

For Q ≥ L, matrix G can be partitioned as follows:730

(A.1) G ,















H1 · · · HL 0

. . .
. . .

H1 · · · HL

. . .
. . .

H1 · · · HL

0(L−1)PN×(Q+L−1)PN















,731
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(a) Original hyperspectral image
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(b) Estimated image (SBR-LMS)
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(c) Estimated image (Tikhonov)
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(d) Estimated image (Block Tikhonov)

Fig. 15: hyperspectral image restoration at 3 wavelengths.

and for Q < L, we have the form:732

(A.2) G ,









H1 · · · HQ · · · HL 0

. . .
. . .

H1 · · · HQ · · · HL

0(L−1)PN×(Q+L−1)PN









.733

Thus, we can conclude that for both cases Q ≥ L and Q < L, matrix G can be734
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written as:735

(A.3) G ,

[

Φ11 G12

0(L−1)PN×(Q+L−1)PN

]

.736

Appendix B. SB-LMS interpreted as a time-regularized Tikhonov-like737

estimator. This appendix reveals that there is a hidden time-regularization intro-738

duced by the SB-LMS (that is the SBR-LMS where ρs = ρz = ηλ = 0) whose strength739

is controlled by the step size µ. Setting the spatial and spectral regularization terms740

to zero in (3.16), the SB-LMS is defined as:741

x̂′

k+1 = Ωx̂′

k + µΦ (y′

k −Gx̂′

k)(B.1)742743

Denoting X̂′(z) as the z-transform of x̂′

k, Equation (B.1) can be expressed as:744

(B.2) X̂′(z) = µ (zI−Ω+ µΦG)
−1

ΦY′(z)745

In another word, X̂′(z) is the output of a linear filter:746

(B.3) F(z) = µ (zI−Ω+ µΦG)−1 Φ747

with input Y′(z). It is well known that Tikhonov estimators result in a linear filtering748

of the data. Thus, the question we are addressing is to link these two linear filters.749

To simplify the analysis, we consider the denoising problem for which the convolution750

kernel is set to be identity. In that case, the block length Q is set to 1 (which results751

in x̂′

k = x̂k) and (B.2) can be simplified as:752

(B.4) X̂(z) =
µ

z − 1 + µ
Y(z)753

Assuming a unit sampling step size, the forward transform is given by s = z−1 where754

s is the Laplace parameter. The Fourier transform on the filter F (z) =
µ

z − 1 + µ
is755

obtained by setting s = jω where ω is the angular velocity:756

(B.5) F (ω) =
1

1 + jω/µ
=

1

(1 + ω2/µ2)0.5
exp−j arctan(ω/µ)

757

Combining the first-order approximation of arctan(ω/µ) ≈ ω/µ together with the758

series expansion of
√
1 + x2 can be used to give a low-pass approximation of the filter:759

(B.6) F (ω) ≈ 1

1 +
∑∞

i=1 βi(µ)ω2i
exp−j ω/µ

760

where βi(µ) =
(2i)!

(2µ)2i(i!)2
. Following [34], any filter of the form (B.6) results from to761

the minimization of a criterion:762

J (xk+k0
,yk) =||yk − xk+k0

||2 +
∞∑

i=1

βi(µ)||Dixk+k0
||2(B.7)763

764

where Di is the ith-order (discrete) derivative matrix along the time dimension and765

k0 = 1/µ. This means the LMS-based algorithms can be interpreted as delayed766
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Tikhonov-like algorithms. The first point to mention is that LMS-based estimators767

present a time delay in the estimation which is (approximately) proportional to 1/µ.768

The smaller µ is, the larger delay is. This has to be opposed to Tikhonov estimators769

which are null-phase filters and do not introduce any delay. The second point is770

related to the regularization parameters βi(µ) which is proportional to 1/(2µ)2i. A771

small value µ results in strong regularization strength along the time dimension.772
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