The 2d-directed spanning forest converges to the Brownian web - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2021

The 2d-directed spanning forest converges to the Brownian web

Résumé

The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is a planar directed forest whose vertex set is given by a homogeneous Poisson point process $\mathcal{N}$ on $\mathbb{R}^2$. If the DSF has direction $-e_y$, the ancestor $h(u)$ of a vertex $u \in \mathcal{N}$ is the nearest Poisson point (in the $L_2$ distance) having strictly larger $y$-coordinate. This construction induces complex geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled, converges in distribution to the Brownian web (BW). This verifies a conjecture made by Baccelli and Bordenave in 2007.
Fichier principal
Vignette du fichier
DSFtoBWforAOP_Corrected-06032020-HALArxiv.pdf (621.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01798763 , version 1 (23-05-2018)
hal-01798763 , version 2 (29-06-2018)
hal-01798763 , version 3 (07-05-2020)

Identifiants

Citer

David Coupier, Kumarjit Saha, Anish Sarkar, Viet Chi Tran. The 2d-directed spanning forest converges to the Brownian web. Annals of Probability, 2021, 49 (1), pp.435-484. ⟨10.1214/20-AOP1478⟩. ⟨hal-01798763v3⟩
202 Consultations
156 Téléchargements

Altmetric

Partager

More