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The 2d-directed spanning forest converges to the Brownian web

David Coupier∗, Kumarjit Saha†, Anish Sarkar‡, Viet Chi Tran§

May 7, 2020

Abstract

The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is
a planar directed forest whose vertex set is given by a homogeneous Poisson point process N on
R2. If the DSF has direction −ey, the ancestor h(u) of a vertex u ∈ N is the nearest Poisson
point (in the L2 distance) having strictly larger y-coordinate. This construction induces complex
geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled,
converges in distribution to the Brownian web (BW). See Theorem 1.2. This verifies a conjecture
made by Baccelli and Bordenave in 2007 [5].
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1 Introduction and results

1.1 The DSF and its conjectured scaling limit

Let us consider a homogeneous Poisson point process (PPP) N with intensity λ > 0 on the plane R2,
equipped with the Euclidean distance ‖x‖22 = x2(1) + x2(2), where we denote by x(i), for i = 1, 2, the
i-th coordinate of x ∈ R2. In this work, horizontal and vertical axes will be respectively interpreted as
space and time axes. Let us also denote by H+(l) := {x ∈ R2 : x(2) ≥ l} the half plane of points with
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ordinates greater than l ∈ R. The ancestor of x ∈ N is defined as the closest Poisson point to x in the
open half plane {y ∈ R2 : y(2) > x(2)}:

h(x,N ) := argmin{‖y − x‖2 : y ∈ N , y(2) > x(2)} . (1)

In most occasions, we drop the second argument for h(x,N ) and merely denote it by h(x). It is
useful to observe that for all x ∈ R2, the point h(x) is well defined. The Directed Spanning Forest
(DSF) with direction −ey on R2 is the random geometric graph F with vertex set N and edge set
E := {(x, h(x)) : x ∈ N}. Since for any x ∈ N , the point h(x) a.s. denotes a unique Poisson point,
the DSF is a directed outdegree-one graph without cycle. This justifies it is called a forest.

The DSF was introduced in 2007 by Baccelli and Bordenave [5] as a tool to study the asymptotic
properties of the Radial Spanning Tree (RST) which actually was the main subject of study in [5]. The
RST is a tree rooted at the origin O of R2, with vertex set N ∪{O}, in which each x ∈ N is connected
to the closest Poisson point inside the open ball {y ∈ R2 : ‖y‖2 < ‖x‖2}. The authors showed that
the DSF is an approximation of the RST, in distribution, locally and far from the origin.

However, the DSF appears as truly interesting in itself since it admits beautiful conjectures, already
mentioned in [5]. A trajectory of the DSF is a sequence (x, h(x), h(h(x)), . . .) of successive ancestors.
First, is it true that any two given trajectories of the DSF eventually coalesce with probability 1? In
other words, is the DSF a tree? This question was solved in [15] by Coupier and Tran using an efficient
percolation technique, namely the Burton and Keane argument [8]. Besides, Baccelli and Bordenave
showed that under diffusive scaling, any trajectory of the DSF converges in distribution to a Brownian
motion. Then they conjectured a stronger result [5, Section 7.3]: the convergence under this diffusive
scaling, of the whole forest F to the so-called Brownian web (BW).

In this paper we prove this second and stronger conjecture. In fact, we prove a slightly stronger
result in the sense that we construct a dual forest and show that under diffusive scaling, the DSF and
its dual jointly converge in distribution to the BW and its dual.

A natural strategy to answer these questions would be to exhibit some independence (or Markov)
properties in time (i.e. w.r.t. the vertical axis) for any couple of trajectories of the DSF. But this
strategy runs up against strong dependencies, due to the construction rule of the DSF F, which are of
two types: between different trajectories on the one hand and within a single trajectory on the other
hand. See Figure 1 for an illustration of these two dependence phenomena. Let us denote by B(x, r)
the closed Euclidean ball with radius r. The construction of the ancestor h(x) of x implies that the
interior of the semi-ball B+(x, ‖x − h(x)‖2) := B(x, ‖x − h(x)‖2) ∩ H+(x(2)) is empty of Poisson
points. Since this semi-ball overlaps the half-plane H+(h(x)(2)), we have information coming from the
past steps: the ancestor of h(x) cannot belong to the resulting intersection. Roughly speaking, the
past of a DSF trajectory may influence its future. Furthermore, when the successive ancestors of x are
constructed, the resulting empty region, called the history set, may have a complicated shape: it is a
union of semi-balls centered at already visited vertices intersected with a proper half plane (we shall
be more precise in the sequel). This random region is not necessarily connected and cannot be a priori
bounded.

In [18], Fontes et al introduced a suitable Polish space to study the BW, characterized its dis-
tribution (in Theorem 1.1 below) and provided criteria ensuring weak convergence to the BW (see
Theorem 6.2 in Section 6.1). Since then, convergence to the BW for various directed forests or navi-
gation schemes have been extensively studied and thence, the BW appeared as the universal scaling
limit for a large number of seemingly unrelated models. Let us cite: [7, 22] in the context of coalescing
system of independent nonsimple random walks; [10, 16] in the context of drainage networks; [26] for
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Figure 1: (a) This picture illustrates the dependence phenomenon within a single trajectory and how the past

trajectory may influence its next steps. It represents a Poisson point x and its first two ancestors, i.e. y = h(x)

and z = h(h(x)), and the two resulting semi-balls. The grey area corresponds to the history set of this trajectory

which can not have Poisson points in its interior. It is worth pointing out here that the (large) empty semi-

ball B+(x, ‖x − h(x)‖2) may influence the construction of many ancestors of the initial vertex x. (b) This

second picture illustrates the dependence phenomenon between two DSF trajectories when the resulting semi-

balls corresponding to their constructions overlap. This overlapping locally acts as a repulsive effect between

trajectories starting at x and y.

an oriented percolation model; [23] in connection with Hastings-Levitov planar aggregation models;
and [7, 9, 11, 14] in the context of radial systems of coalescing trajectories. In many of these papers,
the choice of the ancestor of any vertex x does not depend on the past, i.e., on what happens below
ordinate x(2), allowing to easily introduce Markov processes and use martingale convergence theorems
or Lyapunov functions. As explained above, this is no longer true for the DSF because of complex
geometrical dependencies. Recently, several papers [25, 31]– Saha and Sarkar are involved in the first
one –have considered modifications of the DSF in order to make the problem more tractable but until
this paper, the conjecture of Baccelli and Bordenave remained open.

1.2 The Brownian web

The BW appeared for the first time in the literature in the seminal papers of Arratia [2, 3]. In [2],
the author studied the diffusive scaling limit of coalescing simple symmetric random walks starting
from every point of 2Z at time 0 and showed that this collection converges to a collection of coalescing
Brownian motions starting from every point on R at time 0. In [3], Arratia generalizes this by proposing
a construction with paths starting from space-time points instead of just starting at time 0. For
a general review on the BW see [27] and references therein. Later Tóth and Werner [30] gave a
construction of a system of coalescing Brownian motions starting from every point in space-time plane
R2 and used it to construct the true self-repelling motion.

The framework (topologies, spaces, characterization and convergence criteria) that we will use in
this paper have been provided by Fontes et al. in [18]. Let us recall some relevant details. Let R2

c be
the completion of the space time plane R2 with respect to the metric

ρ((x1, t1), (x2, t2)) := | tanh(t1)− tanh(t2)| ∨
∣∣∣tanh(x1)
1 + |t1|

− tanh(x2)

1 + |t2|
∣∣∣ .
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As a topological space, R2
c can be identified with the continuous image of [−∞,∞]2 under a map

that identifies the line [−∞,∞] × {∞} with the point (∗,∞), and the line [−∞,∞] × {−∞} with
the point (∗,−∞). We define a path π with starting time σπ ∈ [−∞,∞] as a continuous mapping
π : [σπ,∞] → [−∞,∞] ∪ {∗} such that π(∞) = ∗ and, when σπ = −∞, π(−∞) = ∗. Notice that the
mapping t 7→ (π(t), t) ∈ (R2

c , ρ) is continuous on [σπ,∞]. We then define Π to be the space of all paths
in R2

c with all possible starting times in [−∞,∞]. The following metric, for π1, π2 ∈ Π

dΠ(π1, π2) :=| tanh(σπ1)− tanh(σπ2)|∨

sup
t≥σπ1∧σπ2

∣∣∣tanh(π1(t ∨ σπ1))

1 + |t| − tanh(π2(t ∨ σπ2))

1 + |t|
∣∣∣

makes Π a complete, separable metric space. The metric dΠ is slightly different from the original choice
in [18] which is somewhat less natural as explained in [29]. Convergence according to this metric can
be described as locally uniform convergence of paths as well as convergence of starting times. Let H
be the space of compact subsets of (Π, dΠ) equipped with the Hausdorff metric dH given by,

dH(K1,K2) := sup
π1∈K1

inf
π2∈K2

dΠ(π1, π2) ∨ sup
π2∈K2

inf
π1∈K1

dΠ(π1, π2) .

The couple (H, dH) is a complete separable metric space. Let also BH be the Borel σ-algebra on the
metric space (H, dH). The Brownian web W is then defined and characterized by the following result:

Theorem 1.1 (Theorem 2.1 of [18]). There exists an (H,BH)-valued random variable W whose dis-
tribution is uniquely determined by the following properties:

(a) from any deterministic point x ∈ R2, there is almost surely a unique path πx ∈ W starting from
x;

(b) for a finite set of deterministic points x1, . . . ,xk ∈ R2, the collection (πx
1
, . . . , πx

k
) is distributed

as coalescing Brownian motions starting from x1, . . . ,xk;

(c) for any countable deterministic dense set D of R2, W is the closure of {πx : x ∈ D} in (Π, dΠ)
almost surely.

The above theorem shows that the collection is almost surely determined by countably many
coalescing Brownian motions.

1.3 Our convergence theorem and the key ideas of the proof

Let us return to the DSF. To state our result formally we need to introduce some more notation.
From a vertex u ∈ N , define h0(u) := u and hk(u) := h(hk−1(u)), for k ≥ 1. Taking the edges
{(hk−1(u), hk(u)) : k ≥ 1} to be straight line segments, we parameterize the path started from u and
formed by these edges as the piecewise linear function πu : [u(2),∞) → R such that πu(hk(u)(2)) :=
hk(u)(1) for every k ≥ 0 and πu(t) is linear in the interval [hk(u)(2), hk+1(u)(2)]. The collection of all
DSF paths is denoted by X := {πu : u ∈ N}.

For given real numbers γ, σ > 0, integer n ≥ 1 and for a path π with starting time σπ, the diffusively
scaled path πn(γ, σ) : [σπ/n

2γ,∞] → [−∞,∞] is given by

πn(γ, σ)(t) :=
π(n2γt)

nσ
. (2)
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Hence, the scaled path πn(γ, σ) has the starting time σπn(γ,σ) = σπ/n
2γ. For each n ≥ 1, let Xn(γ, σ) :=

{πun(γ, σ) : u ∈ N} be the collection of all the scaled paths. The closure X n(γ, σ) of Xn(γ, σ) in (Π, dΠ)
is a (H,BH)-valued random variable which a.s. consists of non-crossing paths only. This property will
be used in the sequel frequently.

Recall that λ > 0 is the intensity of the homogeneous PPP N . Our main result, illustrated by
Figure 2, solves the conjecture of Baccelli and Bordenave [5, Section 7.3]:

Theorem 1.2. There exist σ = σ(λ) > 0 and γ = γ(λ) > 0 such that the sequence
{
X n(γ, σ) : n ≥ 1

}

converges in distribution to W as (H,BH)-valued random variables as n→ ∞.

(a) (b)

Figure 2: Simulations of the Directed Spanning Forest with direction −ex (this direction is chosen for the

convenience of the graphical representations). The trajectories coming from vertices with abscissa 0 ≤ x ≤ 5

and ordinates 0 ≤ y ≤ 100 are represented in bold red lines. These simulations are taken from [15]. On (b), the

red paths clearly look like coalescing Brownian motions and they all coalesce before time 1500.

In Section 6 (Theorem 6.1) we prove a stronger version of Theorem 1.2 by showing that the DSF
and its dual forest (which is defined later) jointly converge to the Brownian web and its dual process.

Our proof actually appears as the combination of three main arguments or ideas described below.
First, the criteria ensuring (weak) convergence to the BW have been meaningfully relaxed since the
original convergence result in [18], recalled here in Theorem 6.2 (Section 6.1). Indeed, in the literature
[9, 16], the proofs of criterion (B2) systematically require that the considered forest satisfies some FKG
inequality (on its trajectories). But, this strong property becomes difficult to check, or even false, when
dependence phenomena arise as it is the case for the DSF. Recently, in the context of non-crossing
path models, Schertzer et al. [27, Theorem 6.6] have replaced criterion (B2) with a wedge condition
involving a suitable dual of the considered forest. In this paper, we provide a new criteria (Theorem
6.3), similar in the spirit to [27, Theorem 6.6], in which criterion (B2) is replaced with the fact that
“no limiting primal and dual paths can spend positive Lebesgue time together”. This is condition (iv)
of Theorem 6.3.

The second key tool is a new and general Laplace type argument, stated in Theorem 5.2, allowing
to establish a coalescence time estimate for any couple of trajectories of the DSF (Theorem 5.1).
Obtaining such coalescence time estimate is always a crucial step in the literature to prove convergence
to the BW. We also think that Theorem 5.2 is interesting in itself and very robust. In particular, it
should provide the required coalescence time estimates for all the drainage network models in the basin
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of attraction of the BW [9, 11, 16, 25, 31]. See Remark 5.8 for further details. The coalescence time
estimate for the DSF (Theorem 5.1) plays a central role in the proof of condition (iv) previously cited.

The third main ingredient is a very accurate study, conducted in Section 4, of the joint evolution
of DSF trajectories. Exploiting the geometric properties of the DSF, we are able to exhibit some
renewal events (at some random times) for the joint evolution of multiple trajectories. In case of
evolution of a single trajectory, these renewal events give some suitable configurations allowing us to
recover Markovian structure (see Proposition 4.5). For joint evolution of two paths, we show that
the distance between the paths observed at these random times behaves like a random walk when the
paths are sufficiently far apart. Moreover, we show that both time and width of the explored region (by
the trajectories) between two consecutive renewal events admit tail distributions with sub-exponential
decays. All these properties allow us to show that the distance process satisfies the conditions of the
Laplace argument, more precisely conditions of Theorem 5.4.

1.4 Application to the RST: the highways and byways problem

In [5, Theorem 2.1], Baccelli and Bordenave also described the semi-infinite paths of the Radial Span-
ning Tree (RST). In particular, they showed that the (random) number χr of semi-infinite paths of
the RST crossing the circle Cr– centered at the origin O and with radius r –tends to infinity with
probability 1 as r → ∞. A natural question is then to specify the growth rate of χr w.r.t. the radius
r. Since the article of Hammersley and Welsh [19], this question is known as the highways and byways
problem.

A general method, recently proposed by Coupier [13] and applied to various geometrical random
trees, asserts that χr is negligible w.r.t. r. Such result for the RST was already known since [6].
Furthermore, this method can be performed whenever the considered tree satisfies the two following
conditions (see Section 6 of [13]). First, it can be approximated, locally and far from the origin, by
a directed forest– as the DSF approximates the RST. Secondly, the approximating directed forest has
to satisfy a suitable coalescence time estimate. Theorem 5.1 fulfills this last condition for the DSF.
Hence, the method developed in Section 6 of [13] applies without major modifications to the RST and
leads to the following result:

Theorem 1.3. For any ǫ > 0, r−(3/4+ǫ)χr tends to 0, almost surely and in expectation, as r tends to
infinity.

1.5 Organization of the paper

In Section 2, a discrete process called the joint exploration process is introduced to describe the joint
evolution of DSF paths. The dependence structure of this process is encoded with the notion of history
set. In Section 3 we able to obtain good control over the evolution of history sets. Some particular
random times, called renewal steps and corresponding to the renewal events mentioned above, are put
forward in Section 4. In Section 5.1, we present a general technique to study the coalescence time
tail decay based on a Laplace criterion. The coalescence time estimate (Theorem 5.1) is stated and
proved by applying this criterion in Section 5.2. In Section 6.1, we describe new criteria (Theorem 6.3)
ensuring the weak convergence of a forest and a suitable dual to the BW and its dual.

Several qualitative results of this paper involve constants. For the sake of clarity, we will use C0

and C1 to denote two positive constants, whose exact values may change from one line to the other.
The important thing is that both C0 and C1 are universal constants whose values will depend only
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on the intensity of the PPP, the number k of considered trajectories and a constant κ that we will
introduce to describe the renewal steps (see (4) and (18)).

2 The joint exploration process

2.1 Construction

Let k ∈ N be a positive integer. Let us consider k starting points u1, . . . ,uk ∈ R2. In this section,
following [25], we define a discrete time process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} in an inductive
way for the joint exploration of the k paths πu1 , . . . , πuk so that they move together. This discrete
time process is the joint exploration process which makes the subject of this section. The sequence
{(gn(u1), . . . , gn(uk)) : n ≥ 0} is a representation of the trajectories while {Hn : n ≥ 0} will be the
associated dependence set.

Before defining precisely the joint exploration process, let us first discuss the typical initial configu-
ration (u1, . . . ,uk,H0) from which the joint exploration process starts. The starting points u1, . . . ,uk

can be deterministic, and possibly with the same ordinate (as in Section 5), or merely points of the
PPP N . In order to cover the case of configurations obtained at good step, we have to take into account
some initial extra information encoded with a random compact set H0. Sometimes (as in Section 5),
H0 will be empty. For the moment, we only demand that H0 a.s. satisfies

(N ∪ {u1, . . . ,uk}) ∩ int(H0) = ∅ , (3)

where int(H0) denotes the interior of H0. Notice that the points u1, · · · ,uk can be on the boundary
of H0. Extra conditions will be added in Section 3 but we can omit them for the moment.

Set g0(ui) = ui for i = 1, . . . , k. In the joint exploration process, only the lowest vertex moves,
denoted by Wmove

n , while the k − 1 other ones remain unchanged. In case several vertices have the
same lower ordinate, we move them one by one starting from the leftmost one:

(i) Wmove
0 := argmin{w(1) : w ∈ {u1, . . . ,uk} and w(2) = r0} where r0 := min{u1(2), . . . ,uk(2)},

and W stay
0 := {u1, . . . ,uk} \Wmove

0 ;

(ii) For 1 ≤ i ≤ k,

g1(ui) :=

{
h
(
g0(ui),N ∪W stay

0

)
if g0(ui) =Wmove

0

g0(ui) otherwise.

After the first step, the history set H0 is updated into H1 = H1(u1, . . . ,uk):

H1 :=
(
H0 ∪B+(Wmove

0 , ‖h(Wmove
0 )−Wmove

0 ‖2)
)
∩H+(Wmove

1 (2)) ,

where Wmove
1 (2) := min{g1(ui)(2) : 1 ≤ i ≤ k} is the next moving vertex.

By induction, given (gn(u1), . . . , gn(uk),Hn(u1, . . . ,uk)), for any n ≥ 1, let us set

(i) Wmove
n := argmin{w(1) : w ∈ {gn(u1), . . . , gn(uk)} and w(2) = rn} where rn := min{gn(u1)(2), . . . , gn(uk)(2)},

and W stay
n := {gn(ui) : 1 ≤ i ≤ k} \Wmove

n ;
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(ii) For 1 ≤ i ≤ k,

gn+1(ui) :=

{
h
(
gn(ui),N ∪W stay

n

)
if gn(ui) =Wmove

n

gn(ui) otherwise.

When gn(u1), . . . , gn(uk) all have different ordinates– and this is a.s. the case whenener they are points
of N –, Wmove

n is given by the gn(ui) having the smallest ordinate. When this smallest ordinate is
realized by at least two vertices, then Wmove

n corresponds to the one having the smallest abscissa.
After the (n+1)-th move, the new level Wmove

n+1 (2) := min{gn+1(ui)(2), 1 ≤ i ≤ k} allows to define
the next history set Hn+1 = Hn+1(u1, . . . ,uk):

Hn+1 :=
(
Hn ∪B+(Wmove

n , ‖h(Wmove
n )−Wmove

n ‖2)
)
∩H+(Wmove

n+1 (2)) .

u1

u2

u3

Wmove
5 (2)

Wmove
2 (2)

Wmove
6 (2)

Wmove
0 (2)

Figure 3: First 6 steps of the joint process (gn(u1), gn(u2), gn(u3))n≥0 starting from u1,u2,u3 (given by the

squares). To simplify the picture, we take H0 = ∅. The first move concerns u2, i.e. Wmove
0 = u2, while the

second and third ones concern the trajectory starting at u3. The triplet (g3(u1), g3(u2), g3(u3)) is represented

by red vertices. Until the fourth step, u1 has not moved yet: g4(u1) = u1. And at the fifth step, the ancestor

of Wmove
4 = g4(u1) is an element of W stay

4 , namely g4(u2), which means that πu1 and πu2 coalesce. The grey

area corresponds to H6(u1,u2,u3). On both sides of the picture, the levels Wmove
n (2), 0 ≤ n ≤ 6, are indicated.

In the sequel, we need to work with a filtration encoding all the information until the current step
including the initial configuration (u1, . . . ,uk,H0). For any integer n, let us set

Fn := σ
{
gl(ui), i ∈ {1, . . . k}, 0 ≤ l ≤ n, H0

}
.

The next result summarizes some elementary properties of the joint exploration process which can
be proved by induction.

Lemma 2.1. Under Assumption (3), the following properties hold.

(i) The joint exploration process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} is an (Fn)-Markov chain with
state space (R2)k × {A ⊆ R2 : A is compact}.

(ii) A.s. and for any n, (N ∪ {u1, . . . ,uk}) ∩ int(Hn) = ∅.

(iii) A.s. and for any n, any 1 ≤ i ≤ k, the vertex gn(ui) necessarily lies on the boundary of
H+(Wmove

n (2)) \Hn whenever it is different from the ui’s (see Figure 3).

(iv) A.s. the sequence (Wmove

n (2))n≥0 is non-decreasing.

8



2.2 An auxiliary process

The fact that the interior part of Hn avoids the PPP N provides information (coming from past steps)
on which the next steps of the joint exploration process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} depend.
This dependence phenomenon is the main obstacle to the study of the joint exploration process since
it kills all direct Markov properties.

A first tool to deal with this difficulty consists in the use of an auxiliary discrete time process
{g̃n(u1), . . . , g̃n(uk), H̃n : n ≥ 0} starting from the same initial configuration (u1, . . . ,uk,H0). This new
exploration process obeys the same evolution rule as the original one– this is the claim of Proposition
2.2 below –but each move uses a new PPP on R2, independent of those previously used. The use of
independent PPP’s at each move will be very useful to exhibit independent r.v.’s in the sequel. This
amounts to throwing at each step of the construction a new PPP outside the region already explored,
namely the dependence set. This technique was already used in [5] without being clearly stated.

Let us explain this more precisely. Consider a collection {Nn : n ∈ N} of i.i.d. Poisson point
processes on R2, independent of the original process N from which {gn(u1), . . . , gn(uk),Hn : n ≥ 0} is
defined. Set g̃0(ui) = ui for 1 ≤ i ≤ k, H̃0 = H0.

(i) W̃move
0 := argmin{w(1) : w ∈ {u1, . . . ,uk} and w(2) = r̃0} where r̃0 := min{u1(2), . . . ,uk(2)},

and W̃ stay
0 := {u1, . . . ,uk} \ W̃move

0 ;

(ii) For 1 ≤ i ≤ k,

g̃1(ui) :=

{
h
(
g̃0(ui), (N1 \ H̃0) ∪ W̃ stay

0

)
if g̃0(ui) = W̃move

0

g̃0(ui) otherwise.

We use the PPP N1 \ H̃0 to construct g̃1(u1), · · · g̃1(uk). The history set H̃1 = H̃1(u1, . . . ,uk) after
the first move is defined as:

H̃1 :=
(
H̃0 ∪B+(W̃move

0 , ‖h(W̃move
0 )− W̃move

0 ‖2) ∩H+(W̃move
1 (2)) ,

where W̃move
1 (2) := min{g̃1(ui)(2) : 1 ≤ i ≤ k}.

Conditional on (g̃n(u1), . . . , g̃n(uk), H̃n) let

(i) W̃move
n := argmin{w(1) : w ∈ {g̃n(u1), . . . , g̃n(uk)} and w(2) = r̃n} where r̃n := min{g̃n(u1)(2), . . . , g̃n(uk)(2)},

and W̃ stay
n := {g̃n(ui) : 1 ≤ i ≤ k} \ W̃move

n ;

(ii) For 1 ≤ i ≤ k,

g̃n+1(ui) :=

{
h
(
g̃n(ui), (Nn+1 \ H̃n) ∪ W̃ stay

n

)
if g̃n(ui) = W̃move

n

g̃n(ui) otherwise.

Note that, to get g̃n+1(ui) in the above definition, we re-sample the PPP only outside the explored
region, i.e. with Nn+1 \ H̃n, since the PPP Nn+1 may have points in H̃n. This precaution was not
required for the original exploration process since it uses at each step the same PPP N which avoids
the current history set Hn.

The joint history set H̃n+1 = H̃n+1(u1, . . . ,uk) at the (n+ 1)-th move is given by:

H̃n+1 :=
(
H̃n ∪B+(W̃move

n , ‖h(W̃move
n )− W̃move

n ‖2)
)
∩H+(W̃move

n+1 (2)) ,

where W̃move
n+1 (2) = min{g̃n+1(ui)(2) : 1 ≤ i ≤ k}.
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Proposition 2.2. Under Assumption (3), the joint exploration process {(gn(u1), . . . , gn(uk),Hn) : n ≥
0} and the auxiliary exploration process {(g̃n(u1), . . . , g̃n(uk), H̃n) : n ≥ 0} are identically distributed.

Proof. Let {Nn : n ∈ N} be a collection of i.i.d. Poisson processes on R2. We work conditional on
(gn(u1), . . . , gn(uk),Hn) = (x1, . . . ,xk,Λn), for some x1, . . . ,xk ∈ R2 and Λn ⊂ R2, on {(gj(u1), . . . , gj(uk),Hj) :
j < n} and on N ∩H0 = ∅. The region H+(min{xi(2) : 1 ≤ i ≤ k}) \ Λn has not been explored yet
and the Poisson point process N on this region can be replaced with any independent Poisson point
process Nn+1. Thus, we have in distribution that:

gn+1(ui)
d
=

{
h
(
xi, (Nn+1 \ Λn) ∪ {x1, . . . ,xk}

)
if xi =Wmove

n

xi otherwise.

For xi =Wmove
n , setting x′

i := h
(
xi, (Nn+1 \ Λn) ∪ {x1, . . . ,xk}

)
, we have

Hn+1
d
=
(
B+(xi, ‖xi − x′

i‖2) ∪ Λn

)
∩H+

(
x′
i(2) ∧min{xj(2) : j 6= i}

)
.

Hence, the original joint exploration process and the auxiliary one have the same transition probabili-
ties. They are identically distributed.

Moreover, conditional on Fn, the process (gn+1(u1), . . . , gn+1(uk),Hn+1) admits a random mapping
representation of the form

(gn+1(u1), . . . , gn+1(uk),Hn+1)
d
= f((gn(u1), . . . , gn(uk),Hn),Nn+1)

for some measurable mapping f . This gives its Markovian character (see [20]).

3 Good steps

Let us define the height of any non empty bounded subset ∆ of R2, as

L(∆) := sup{y(2) − x(2) : x,y ∈ ∆}

and L(∅) = 0. The goal of this section, i.e. Proposition 3.1, consists in stating that the height of the
history set L(Hn) returns regularly under a given positive integer κ which will be specified later.

Precisely, let us set τ0 = τ0(u1, . . . ,uk) = 0 and for j ≥ 1,

τj = τj(u1, . . . ,uk) := inf

{
kn > τj−1 :

n ≥ 1, L(Hkn) ≤ κ and
Wmove

kn (2) ≥Wmove
τj−1

(2) + κ+ 1

}
. (4)

Such a step is called a good step of the joint process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0}. At a good
step, the height of the history set is at most κ. The condition that Wmove

τj (2) −Wmove
τj−1

(2) should be
more than κ+ 1 is to ensure that the history regions involved at different good steps are disjoint. As
additional and technical requirements, τj has to be a multiple of the number k of trajectories. This
condition portends that in the sequel we will consider blocks of k consecutive steps. Let us also remark
that the τj ’s are stopping times w.r.t. the filtration (Fn)n≥0.

In Section 4, we will select some suitable (in some sense) good steps and will call them renewal steps.

Only for this section, we will work with the auxiliary exploration process {(g̃n(u1), . . . , g̃n(uk), H̃n) :
n ≥ 0} instead of the (original) joint exploration process, and for ease of notation, we denote this pro-
cess itself by {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0}.
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Proposition 3.1 holds whenever the following conditions on the initial configuration (u1, . . . ,uk,H0)
are satisfied.

(H1) Shape of H0. The initial history set H0 is a compact set defined as the intersection with
H+(Wmove

0 (2)) of a finite number of closed balls whose centers are in H−(Wmove
0 (2)). Moreover,

the height of H0 is such that L(H0) ≤ κ.

(H2) Locations of u1, . . . ,uk. The starting points u1, . . . ,uk are deterministic, they belong to the
closure of H+(Wmove

0 (2)) \H0 and satisfy

max{u1(2), . . . ,uk(2)} ≤Wmove
0 (2) + κ .

Roughly speaking, Assumption (H1) says that the initial history set H0 is a finite union of balls
intersected with the half-space H+(Wmove

0 (2)) and whose height is bounded by κ. Assumption (H2)
requires that all the information associated to the initial configuration is contained in a strip of height
κ, which is a little bit more than avoiding the interior part of H0: the reason for this will appear clearly
in the proof of Lemma 3.2.

Mainly two types of initial configurations will be considered. Either H0 = ∅– this case is covered
by (H1) –and the starting points are deterministic with possibly the same ordinate (as in Section 5).
Or H0 6= ∅ and the ui’s are located on the boundary of H+(Wmove

0 (2)) \H0. This second type exactly
corresponds to configurations obtained at a good step. An example of this second type is given by
(g6(u1), g6(u2), g6(u3),H6) in Figure 3.

From now on, we assume that (H1) and (H2) hold. Proposition 3.1 states that the number of
steps between two consecutive good steps can be stochastically dominated by a r.v. having exponential
decay.

Proposition 3.1. Let j ≥ 0. There exists a r.v. T whose distribution does not depend on Fτj such
that, for all n,

P
(
τj+1 − τj ≥ n | Fτj

)
≤ P

(
T ≥ n

)
≤ C0e

−C1n . (5)

We will prove Proposition 3.1 through a sequence of lemmas. To understand how our proof is
organized, we start with describing the evolution of the height of the history set during a single step.
Two situations may actually occur. If the semi-ball B+(Wmove

n , ‖h(Wmove
n )−Wmove

n ‖2) created during
the (n+ 1)-th move, does not exceed the horizontal line {x : x(2) =Wmove

n (2) + L(Hn)} then

L(Hn+1) = L(Hn)−
(
Wmove

n+1 (2)−Wmove
n (2)

)
< L(Hn) .

In this case, the height of the history set is decreasing and, on some suitable events (occurring with
positive probability), we will be able to quantify its decrease. See Lemmas 3.4, 3.5 and 3.6.

Otherwise, the new height L(Hn+1) is realized by the last created semi-ball B+(Wmove
n , ‖h(Wmove

n )−
Wmove

n ‖2) and
L(Hn+1) = ‖h(Wmove

n )−Wmove
n ‖2 −

(
Wmove

n+1 (2)−Wmove
n (2)

)
.

In this second case, the height of the history set may increase or not. A priori, a large distance
‖h(Wmove

n )−Wmove
n ‖2 should occur with small probability since this would force the PPP to avoid the

(large) semi-ball B+(Wmove
n , ‖h(Wmove

n ) −Wmove
n ‖2). However, a large part of that semi-ball can be

already covered by the history set Hn, which by definition avoids the PPP. In this case, having a large
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distance ‖h(Wmove
n )−Wmove

n ‖2 becomes quite possible. Lemmas 3.2 and 3.3 allow us to overcome this
obstacle and to control the growth of L(Hn).

In both situations, the sequence {L(Hn) : n ≥ 0} satisfies the following fundamental and useful
induction relation: a.s. and for any n,

L(Hn+1) ≤ max{L(Hn), ‖h(Wmove
n )−Wmove

n ‖2} . (6)

At the end of this section, we will combine these results in Lemmas 3.7 and 3.8 to get Proposition
3.1.

3.1 How much is L(Hn) increasing?

Let us introduce some notations. For a real number l > 0 and an integer n ≥ 0, let us set

g↑,ln :=Wmove
n + (0, l)

(recall that Wmove
n a.s. denotes a single point). Let

Cπ/2(0) := {reiθ : r > 0, θ ∈ [π/4, 3π/4]}
be the cone with apex 0 and making an angle π/4 with the vertical axis. We also define, for x ∈ R2,
Cπ/2(x) := x+ Cπ/2(0).

Conditional on the current configuration (gn(u1), . . . , gn(uk),Hn), the next lemma exhibits deter-
ministic regions avoiding the history set Hn. Such regions are unexplored yet and will allow us to
control how the history set grows (see Lemma 3.3). Notice that Baccelli and Bordenave used in [5,
Lemma 4.2] a similar geometric argument, which is false. Actually, it is impossible to exhibit a cone,
with a positive and deterministic angle and with apex at the moving vertex Wmove

n , which almost
surely avoids the history set Hn. To get such a property, the cone has to be pushed upward and this
is what we do with g↑,ln .

Lemma 3.2. For all n ≥ 0 and for any l ≥ L(Hn)/2, the cone Cπ/2(g
↑,l
n ) a.s. avoids the history set

Hn, i.e. Cπ/2(g
↑,l
n ) ∩Hn = ∅.

Remark that although the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ) avoids the history set Hn, it could

contain a starting point gn(ui) = ui which has not moved yet (until step n) and could still be outside
Hn.

Proof of Lemma 3.2. Let l ≥ L(Hn)/2. By definition of the history set Hn, we have to check that the

cone Cπ/2(g
↑,l
n ) avoids each semi-ball B+(Wmove

m , ‖Wmove
m − h(Wmove

m )‖2) created at a previous step
m < n and each semi-ball contributing to H0 (recall Assumption (H1)). Let us denote by B+(A,R)
such generic semi-ball.

By translation and symmetry, we can assume without loss of generality that g↑,ln = (0, 0). So
Wmove

n = (0,−l). Here, we use in a crucial way that Wmove
n belongs to the boundary of H+(Wmove

n (2))\
Hn, i.e. Assumption (H2). Also, by Assumption (H1), A(2) ≤Wmove

n (2) = −l and B+(A,R) is below
the horizontal line with ordinate l as l ≥ L(Hn)/2. So, the worst case is obtained when the semi-
ball B+(A,R) realizes the height L(Hn) and is tangent to Wmove

n with a maximal ordinate A(2), i.e.
A = (Wmove

n (1) + 2l,Wmove
n (2)) = (2l,−l) and R = 2l. See Figure 4 for an illustration of this worst

situation.
Finally, an elementary geometric computation allows to conclude. If the cone Cπ/2(g

↑,l
n ) overlaps

B+(A, 2l) then the point M = (l/2, l/2) has to belong to B+(A, 2l) since it is the closest point to A
in the cone. But ‖A−M‖22 = 18l2/4 > (2l)2. So this concludes the proof.
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For n ≥ 0, we denote by ζn+1 the distance between g
↑,L(Hn)/2
n and its nearest Poisson point inside

the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ):

ζn+1 := inf
{
‖g↑,L(Hn)/2

n − x‖2 : x ∈ Nn+1 ∩ Cπ/2(g
↑,L(Hn)/2
n )

}
. (7)

As we will consider blocks of k consecutive steps in the sequel, let us introduce for n ≥ 0,

Xn+1 :=

k∑

j=1

(⌊2ζkn+j⌋+ 1) . (8)

The random variableXn+1 is an integer-valued random variable and the reason for choosing ⌊2ζkn+j⌋+1
will appear in the proof of Lemma 3.3. Later, this integer valued random variable Xn+1 will be used
to construct a discrete state space Markov chain to dominate the ‘height’ process L(Hn).

Wmove
n

x
L(Hn)

ζn+1

Cπ/2(x)

Figure 4: Black vertices are Poisson points. The gray area corresponds to the history set Hn. The white point–

denoted by x –is g
↑,L(Hn)/2
n . The cone with apex x and bisector the ordinate axis is the unexplored cone and

avoids the history set Hn.

The next result says that when the height of the history set increases between steps kn and k(n+1)
then the new height L(Hk(n+1)) is bounded from above by the r.v. Xn+1 which admits an exponential
tail.

Lemma 3.3. Using the previous notations:

(i) For all n ≥ 0, the following inequality holds with probability 1:

L(Hk(n+1))1{L(Hk(n+1))>L(Hkn)} ≤ Xn+1 .

(ii) The r.v.’s {Xn+1 : n ≥ 0} are i.i.d. and satisfy ∀n,m ≥ 0,

P(Xn+1 > m) ≤ C0e
−C1m . (9)

Proof. Let us first show (i). For a single trajectory (i.e. k = 1), we have a.s.

L(Hn+1)1{L(Hn+1)>L(Hn)} ≤ ⌊2ζn+1⌋+ 1 . (10)
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This implies that L(Hn+1) ≤ max{L(Hn), ⌊2ζn+1⌋+1}. Applying this inequality k times leads to Item
(i) for any k ≥ 2.

Denoting by y the element of the unexplored cone realizing the r.v. ζn+1, it follows:

‖h(Wmove
n )−Wmove

n ‖2 ≤ ‖y −Wmove
n ‖2

≤ ζn+1 + ‖g↑,L(Hn)/2
n −Wmove

n ‖2
= ζn+1 + L(Hn)/2 . (11)

If L(Hn+1) > L(Hn) then the last created semi-ball increases the history set. So,

‖h(Wmove
n )−Wmove

n ‖2 ≥ L(Hn+1) ≥ L(Hn) .

With (11), we get ζn+1 ≥ L(Hn)/2 and L(Hn+1) ≤ 2ζn+1. And (10) follows.
Item (ii) is mainly based on the independence between the random variables ζn+1, n ≥ 0, which is

due to the fact that independent PPP’s are used for each step of the joint process {(gn(u1), . . . , gn(uk),Hn) :
n ≥ 0}. Moreover, by Lemma 3.2, the r.v. ζn+1’s are i.i.d. with an exponential tail distribution since
P(ζn+1 > r) is the probability that there is no Poisson point in Cπ/2(0) ∩B(0, r). The same holds for
the Xn+1’s.

3.2 How much is L(Hn) decreasing?

Now let us show that (L(Hn))n≥0 is submitted to a ‘negative drift’ so that the sequence regularly
returns to small values. We introduce an event of positive probability on which the ordinate of the
moving vertex indeed increases of at least 1 between the kn-th and k(n + 1)-th steps. Working a bit
more, we will obtain as a consequence that the height of the history set decreases by at least 1 on this
event if it is greater than κ. Notice that such event also allows to control the number of steps needed
for the ordinate of the moving vertex to reach a distance at least κ+ 1 from the last good step.

For x ∈ R2 and for w, l > 0, the rectangle of width 2w and of height l, whose base is centered at
x, is denoted by

Rec(x;w, l) := x+ [−w,w] × [0, l] .

Thus we set
ln := inf{l ≥ 0 : Area(Rec(g↑,1n ; 1, l) \Hn) ≥ 1/2} . (12)

In other words, ln is the random height of the rectangle centered at Wmove
n + (0, 1) with width 2 so

that the area of its unexplored part becomes at least 1/2. The justification of the constant 1/2 in the

definition of ln will appear in the proof of Lemma 3.5. Besides, the overlap of Rec(g↑,1n ; 1, L(Hn)/2)

with the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ) has area 1. Thanks to Lemma 3.2, this means that a.s.

ln ≤ L(Hn)

2
. (13)

For any integer n ≥ 0, In+1 is the indicator random variable defined as

In+1 := 1
{(Rec(g↑,1n ;1,ln)\Hn)∩Nn+1 6=∅ and Rec(Wmove

n ;5,1)∩Nn+1=∅}
.

Let us now explain the ideas behind Lemmas 3.4, 3.5 and 3.6. First notice that Rec(g↑,1n ; 1, ln)\Hn and
Rec(Wmove

n ; 5, 1) are two disjoint regions with area 1/2 and 10 respectively. So the events indicated
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by the In+1’s all occur with the same fixed positive probability, denoted by p0 in Lemma 3.4. Such an
event will be pleasant in the sense that, provided there is no point of W stay

n in the horizontal rectangle
Rec(Wmove

n ; 5, 1), the ancestor h(Wmove
n ) advances by at least 1 in ordinate w.r.t. Wmove

n . Combining
this with (13) should force the height of the history set to decrease by at least 1 during the (n+1)-th

move. However, it can happen that some points of W stay
n are in Rec(Wmove

n ; 5, 1) (or Rec(g↑,1n ; 1, ln))
as illustrated in Figure 5. In this case, h(Wmove

n ) ∈W stay
n and the increment h(Wmove

n )(2)−Wmove
n (2)

cannot be bounded from below. But, this situation corresponds to the coalescence of two paths among
the πu1 , . . . , πuk . Here is the reason why we consider blocks of k consecutive steps: on the event
{∏k

j=1 Ikn+j = 1} where such pleasant events occur between the kn-th and the k(n+ 1)-th steps, the
ordinate of the current moving vertex is forced to progress by at least 1 (Lemma 3.5) and the history
set to decrease by at least 1 (Lemma 3.6).

Wmove
n

Y

Z

ln

1

Figure 5: The red rectangle represents Rec(g↑,1n ; 1, ln), where g↑,1n = Wmove
n + (0, 1), which is partially covered

by the history set Hn (the gray regions). By definition of ln the area of Rec(g↑,1n ; 1, ln) \ Hn is equal to 1/2.

The vertex Y is an element of W stay
n while Z is a Poisson point of Nn+1. This picture illustrates the tricky

situation occurring in the proof of Lemma 3.5: although In+1 = 1, Wmove
n+1 (2) is not larger than Wmove

n (2) + 1

since h(Wmove
n ) = Y .

Lemma 3.4. Let p0 := (1 − e−λ/2)e−10λ > 0 where λ denotes the (common) intensity of the Poisson
point processes. Then, for any n ≥ 0,

P(In = 1) = p0 and P

( k∏

j=1

Ikn+j = 1
)
= pk0 .

Proof. Recall that the process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} is an Fn-Markov chain. Since

Rec(g↑,1n ; 1, ln) \Hn and Rec(Wmove
n ; 5, 1) are disjoint sets with constant areas, we get a.s.

E
(
In+1|Fn

)
= P

(
(Rec(g↑,1n ; 1, ln) \Hn) ∩ Nn+1 6= ∅ |Fn

)

×P
(
Rec(Wmove

n ; 5, 1) ∩Nn+1 = ∅ |Fn

)

= (1− e−λ/2)e−10λ =: p0 .

Taking expectation, P(In+1 = 1) also equals p0.
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Thus, the conditional expectation E(
∏k

j=1 Ikn+j|Fkn) can be written as

E

( k−1∏

j=1

Ikn+jE

(
Ik(n+1) | Fkn,Nkn+1, . . . ,Nk(n+1)−1

)
| Fkn

)

where
E

(
Ik(n+1) | Fkn,Nkn+1, . . . ,Nk(n+1)−1

)
= E

(
Ik(n+1) | Fk(n+1)−1

)
= p0

a.s. thanks to the previous computation. Taking expectation, we get

P

( k∏

j=1

Ikn+j = 1
)
= p0 P

( k−1∏

j=1

Ikn+j = 1
)
= pk0 a.s.

by an immediate induction.

Lemma 3.5. On the event {∏k
j=1 Ikn+j = 1}, the ordinate of the moving vertex increases by at least

1 between the kn-th and the k(n + 1)-th steps:

Wmove

k(n+1)(2) ≥Wmove

kn (2) + 1 a.s. (14)

Proof. Let us first prove it for only one path, i.e. k = 1. On the event {In+1 = 1}, the rectan-

gle Rec(g↑,1n ; 1, ln) contains at least one Poisson point. So, X := h(Wmove
n ) = Wmove

n+1 belongs to
B+(Wmove

n , ln + 2). Let us prove that X(2) ≥Wmove
n (2) + 1. This is clear by definition of {In+1 = 1}

whenever ln ≤ 3. We can now focus on the case ln > 3. Without loss of generality we assume that
Wmove

n = (0, 0). Since k = 1 (and so W stay
n = ∅), it suffices to prove that the set

U := {x ∈ R2 : 1 ≤ |x(1)| ≤ ln + 2 and 0 ≤ x(2) ≤ 1}

is included in Hn and, consequently, contains no Poisson point. This means that the moving vertex
will make a vertical progress of at least 1. To do so, let us remark that both points A := (1, ln + 1/2)

and B := (−1, ln+1/2) belong to the history set Hn. Otherwise, the region Rec(g↑,1n ; 1, ln) \Hn would
contain at least one of the two rectangles [B(1), 0] × [ln + 1/2, ln + 1] or [0, A(1)] × [ln + 1/2, ln + 1],
each of area 1/2, which is impossible by definition of ln (recall (12)). Now, it is not difficult to check
that any semi-ball B+(gm(u1), ·), for 0 ≤ m ≤ n − 1, which contains A but not Wmove

n = (0, 0) in its
interior, also contains the strip [1, ln + 2] × [0, 1] when ln > 3. By symmetry, the same holds for the
left part of U .

It remains to prove (14) for any k ≥ 2. If Wmove
kn+1(2) is already larger than Wmove

kn (2) + 1 then
this is also the case for Wmove

k(n+1)(2). Otherwise, the ancestor of Wmove
kn coincides with an element of

W stay
kn : this is the tricky situation described in Figure 5. Actually the worst case is the following:

Wmove
kn , . . . ,Wmove

k(n+1)−2 are k − 1 different vertices which have all merged with Wmove
k(n+1)−1 during the

k − 1 last steps. In other words, the k paths starting from u1, . . . ,uk were still disjoint at the kn-th
step but have all coalesced k − 1 steps after. Then, it remains to apply the argument for k = 1 to the
only remaining path, i.e. to Wmove

k(n+1)−1:

Wmove
k(n+1)(2) = h(Wmove

k(n+1)−1)(2) ≥Wmove
k(n+1)−1(2) + 1 ≥Wmove

kn (2) + 1 .

It is the above tricky situation, described in Figure 5, which justifies that we consider blocks of k
steps when defining the τj’s.
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Lemma 3.5 leads to the next result which provides a ‘drift condition’: on the event {∏k
j=1 Ikn+j =

1}, the height of the history set has to decrease by at least 1 between the steps kn and k(n + 1), if it
is larger than κ.

Lemma 3.6. Without loss of generality we will assume that the constant κ appearing in the definition
of the τj’s (4) is an integer larger than 6. For any n ≥ 0, on the event {∏k

j=1 Ikn+j = 1}, we have a.s.
that

L(Hk(n+1)) ≤ max{L(Hkn)− 1, κ} .

Proof. Let n ≥ 0. Let us first assume that L(Hkn) ≤ κ. If Ikn+1 = 1 there is a Poisson point in

Rec(g↑,1kn ; 1, lkn). So, by (13),

‖h(Wmove
kn )−Wmove

kn ‖2 ≤ lkn + 2 ≤ L(Hkn)/2 + 2 ≤ κ

since κ ≥ 6. By (6), we deduce that L(Hkn+1) is also smaller than κ. By induction, the same holds
for L(Hk(n+1)).

From now on, let us assume that L(Hkn) ≥ κ. Two cases must be distinguished.
If none of the semi-balls

B+(Wmove
kn+j , ‖h(Wmove

kn+j )−Wmove
kn+j‖2), j = 0, . . . , k − 1,

generated between the (kn + 1)-th and the k(n + 1)-th steps exceed the horizontal line {x : x(2) =
Wmove

kn (2) + L(Hkn)} then

L(Hk(n+1)) ≤ L(Hkn)−
(
Wmove

k(n+1)(2)−Wmove
kn (2)

)
≤ L(Hkn)− 1,

by Lemma 3.5.
Otherwise, we necessarily have

L(Hk(n+1)) ≤ max
0≤j≤k−1

‖h(Wmove
kn+j )−Wmove

kn+j‖2 . (15)

Combining Ikn+1 = 1 and (13), we get

‖h(Wmove
kn )−Wmove

kn ‖2 ≤ lkn + 2 ≤ L(Hkn)/2 + 2 ≤ L(Hkn)− 1

whenever L(Hkn) ≥ κ ≥ 6. Here is the justification for the choice of κ ≥ 6. This and (6) imply that
L(Hkn+1) ≤ L(Hkn). Then, Ikn+2 = 1 and

‖h(Wmove
kn+1)−Wmove

kn+1‖2 ≤ L(Hkn+1)/2 + 2 ≤ L(Hkn)/2 + 2 ≤ L(Hkn)− 1

since L(Hkn) ≥ κ. By induction, we have on {∏k
j=1 Ikn+j = 1} that, for all j ∈ {0, . . . k − 1},

L(Hkn+j) ≤ L(Hkn) and ‖h(Wmove
kn+j)−Wmove

kn+j‖2 ≤ L(Hkn)− 1. Hence:

max
0≤j≤k−1

‖h(Wmove
kn+j )−Wmove

kn+j‖2 ≤ L(Hkn)− 1 ,

which by (15) concludes the proof.
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3.3 Synthesis

Now we are going to define inductively a discrete time integer-valued process {Mn =Mn(u1, . . . ,uk) :
n ≥ 1} whose role is to dominate the height of the history set. Set M0 := κ+1, where κ is the integer
introduced in (4). For n ≥ 0 given Mn, we define Mn+1 as follows:

Mn+1 :=

{
max{Mn − 1, κ} if

∏(κ+1)k
j=1 I(κ+1)kn+j = 1,

max{Mn,
∑(κ+1)

j=1 X(κ+1)n+j , (κ+ 1)} otherwise,
(16)

where the r.v.’s Xn are defined in (8). The sequence {Mn : n ≥ 1} is a Markov chain with state space
{κ, κ + 1, κ+ 2, · · · }. Let τM be the hitting time of κ:

τM := inf{n ≥ 1 :Mn = κ} . (17)

In order to hit the level κ starting from M0 = κ+ 1, the Markov chain (Mn) has to decrease by 1
at least once, i.e. the event

(κ+1)k∏

j=1

I(κ+1)kn+j = 1

has to occur at least once before τM . This happens with probability p
(κ+1)k
0 . By Lemma 3.5, considering

blocks of (κ + 1)k steps guarantees a progress of at least κ + 1 for the ordinate of the moving vertex
when this event happens, which is the last condition required for good steps. See (4).

The r.v. Mn is built in order to dominate the height L(H(κ+1)kn).

Lemma 3.7. The inequality L(H(κ+1)kn) ≤Mn holds a.s. for all n ≥ 0. As a consequence, the random

time τ1 defined in (4) satisfies a.s. τ1 ≤ (κ+ 1)kτM .

Proof. Let us first prove L(H(κ+1)kn) ≤ Mn by induction. Assumption (H1) says L(H0) ≤ κ ≤ M0.

Assume that L(H(κ+1)kn) ≤ Mn for some n ≥ 0. Either
∏(κ+1)k

j=1 I(κ+1)kn+j = 1, and then by Lemma
3.6,

L(H(κ+1)kn+k) ≤ max{L(H(κ+1)kn)− 1, κ} ≤ max{Mn − 1, κ} =Mn+1 .

We can easily iterate the argument, still applying Lemma 3.6:

L(H(κ+1)kn+2k) ≤ max{L(H(κ+1)kn+k)− 1, κ} ≤Mn+1

to finally get L(H(κ+1)k(n+1)) ≤Mn+1.

Or,
∏(κ+1)k

j=1 I(κ+1)kn+j = 0 and then, by Lemma 3.3 (i),

L(H(κ+1)k(n+1)) ≤ max{L(H(κ+1)kn+κk),X(κ+1)n+(κ+1)}
≤ max{L(H(κ+1)kn+(κ−1)k),X(κ+1)n+κ +X(κ+1)n+(κ+1)}
≤ max{L(H(κ+1)kn),X(κ+1)n+1 + . . .+X(κ+1)n+(κ+1)}
≤ Mn+1 .

This completes the proof by induction. As a consequence, at the (κ + 1)kτM -th step the height
L(H(κ+1)kτM ) is smaller than κ. Moreover, by construction of the chain (Mn), there exists an integer

m′ < τM such that
∏(κ+1)k

j=1 I(κ+1)km′+j = 1. Lemma 3.5, applied (κ+ 1) times, implies

Wmove
(κ+1)kτM (2) ≥Wmove

(κ+1)k(m′+1)(2) ≥Wmove
(κ+1)km′(2) + (κ+ 1) ≥Wmove

0 (2) + (κ+ 1) .

We finally get τ1 ≤ (κ+ 1)kτM .
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A proof similar to the one of Lemma 2.6 in [25] leads to the next result.

Lemma 3.8. For any n ∈ N we have

P(τM > n) ≤ C0e
−C1n .

Proof. Thanks to [4, Proposition 5.5, Chapter 1] (see also [21, Chap. 15]) it is enough to show that
there exists a function f : N → R+, an integer n0 and real numbers r > 1, δ > 0 such that

• f(l) > δ for any l ∈ N;

• E[f(M1)|M0 = l] <∞ for any l ≤ n0;

• and E[f(M1)|M0 = l] ≤ f(l)/r for any l > n0.

Indeed, this implies the existence of some r > 1 such that E(rτ
M(n0)|M0 = n0) <∞ where τM (n0) :=

inf{n ≥ 1 : Mn ∈ [0, n0]}. In other words, the hitting time τM (n0) admits an exponential moment.

Finally, Lemma 3.8 follows from the fact that starting from any l ≤ n0, p
(κ+1)kn0

0 > 0 gives a lower
bound for the probability that the chain hits the state κ within the next n0 steps where p0 is defined
in Lemma 3.4.

We take f : N → R+ to be f(l) := eαl where α > 0 is small enough so that E[eαY ] < ∞ with
Y := max{X1 + . . .+X(κ+1), (κ + 1)}. This is possible by Lemma 3.3. So, for any l ≤ n0,

E[f(M1)|M0 = l] ≤ eαn0E[eα(M1−M0)|M0 = l] ≤ eαn0E[eαY ] <∞ .

Then, pick r > 1 such that e−αp
(κ+1)k
0 + (1− p

(κ+1)k
0 ) < 1/r. Using (16), we can write for l ≥ n0 > κ:

E[eα(M1−M0)|M0 = l]

=E[eα(M0−1−M0)1∏(κ+1)k
j=1 Ij=1

|M0 = l] + E[eα(max(M0,Y )−M0)1∏(κ+1)k
j=1 Ij=0

|M0 = l]

≤e−αp
(κ+1)k
0 + (1− p

(κ+1)k
0 ) + e−αlE[1{Y >l}e

αY ]

<1/r′,

for n0 large enough and r′ ∈ (1, r). This completes the proof.

We are now able to prove Proposition 3.1. As suggested by Lemma 3.7, the dominating r.v. T
occurring in Proposition 3.1 is given by (κ+ 1)kτM .

Proof of Prop. 3.1. Let us first start with the case j = 0. Lemmas 3.7 and 3.8 ensure that

P
(
τ1 − τ0 ≥ n | Fτ0

)
= P

(
τ1 ≥ n | F0

)
≤ P

(
(κ+ 1)kτM ≥ n

)
≤ C0e

−C1n

for suitable positive constants C0, C1. So, conditional to F0 (which contains the information given by
the initial configuration (u1, . . . ,uk,H0)), τ1 − τ0 is stochastically dominated by T := (κ+ 1)kτM .

Now, let us prove the result for j = 1; we will deduce the result for any j similarly. The idea consists
in working conditionally on the σ-algebra Fτ1 and applying the previous strategy (i.e. Lemmas 3.2
to 3.8) to the “new starting configuration” (gτ1(u1), . . . , gτ1(uk),Hτ1). First remark that the elements
gτ1(u1), . . . , gτ1(uk) as well as the history set Hτ1 are measurable w.r.t. Fτ1 : they are deterministic
conditionally to Fτ1 . Assumptions (H1) and (H2) are also clearly satisfied by the definition of the
hitting time τ1 and by the construction of the joint exploration process (see Lemma 2.1).
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Then, from step τ1 onwards, we can apply the strategy developed throughout this section, and
dominate the height of the history set by a new Markov chain, say (M ′

n), built as in (16) and distributed
as (Mn). Hence, conditionally to Fτ1 , the increment τ2 − τ1 is stochastically dominated by a r.v.
τM

′
where τM

′
is the hitting time of κ for the chain (M ′

n). Of course, τM
′

and τM are identically
distributed.

4 Renewal steps

From now on, we come back to the original joint exploration process built with a single PPP N and
starting from an initial configuration (u1, . . . ,uk,H0) satisfying (H1) and (H2).

Before describing the mathematical details of renewal steps, we provide the general idea. Let us
first introduce some notations. Consider the j-th good step with j ≥ 1. Let us set for any 1 ≤ i ≤ k,

g↓τj (ui) := (gτj (ui)(1),W
move
τj (2)) and g↑τj (ui) := (gτj (ui)(1),W

move
τj (2) + κ)

respectively the projections of gτj (ui) onto the horizontal axes with ordinates Wmove
τj (2) andWmove

τj (2)+
κ. The vertices gτj (ui)’s lie in the horizontal strip delimited by these two axes.

Let us now define the following ‘renewal’ events.

Definition 1. For j ≥ 1, the j-th good step is called a renewal step, if the following event, henceforth
called the renewal event, Aj = Aj(u1, . . . ,uk) occurs:

Aj :=

k⋂

i=1

{
Card

((
B+(g↓τj (ui), κ + 1) \Hτj

)
∩N

)
= 1

and Card
(
B+(g↑τj (ui), 1) ∩ N

)
= 1
}
.

(18)

Note that the definition of Aj is associated with the j-th good step and then, only good steps can
be renewal steps.

The event Aj asserts that for any index i, the semi-ball B+(g↓τj (ui), κ+1) contains only one Poisson

point which is actually included in B+(g↑τj (ui), 1). Besides, the semi-balls B+(g↑τj (ui), 1)’s may have
non-empty intersections and the corresponding Poisson points (involved by Aj) may not necessarily be
distinct in this case.

Thus we set γ0 = 0 and for ℓ ≥ 1, let γℓ = γℓ(u1, . . . ,uk) be the number of good steps required for
the ℓ-th renewal step:

γℓ := inf
{
j > γℓ−1 : the event Aj occurs

}
.

Moreover
βℓ := τγℓ (19)

denotes the total number of steps required for ℓ-th renewal step. In the sequel, we will break down the
DSF paths starting from u1, . . . ,uk according to these renewal steps βℓ, ℓ ≥ 1, in order to obtain the
searched decay of the tail distribution for the coalescence time of two paths (Theorem 5.1 of Section
5) and the convergence of scaled DSF paths to coalescing Brownian motions (Section 6.2.1).

In this section, we first show that the renewal times are a.s. finite and establish an exponential
decay for the tail distribution of the number of steps between two consecutive renewal steps (Section
4.1) as well as the size of the region explored by the DSF paths between two consecutive renewal steps
(Section 4.2). Though we define the renewal events for k paths, with a general integer k, only two
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cases will be important for us: the single path case in Section 4.3, in which the role of the renewal
event Aj is explained, and the two paths case in Section 4.4.

Because of the event Aj concerns the PPP N inside H+(Wmove
τj (2)) \Hτj , it does not belong to the

σ-field Fτj . Hence, for any ℓ ≥ 1, the r.v. γℓ is not a (Fτj )-stopping time. This is the reason why we
enrich the σ-field Fτj by including the events A1, A2, . . . , Aj . Let S0 = F0 and, for j ≥ 1, we consider
the enhanced σ-field:

Sj := σ
(
Fτj , A1, A2, . . . , Aj

)
. (20)

For any ℓ ≥ 0, the r.v. γℓ is then a stopping time w.r.t. the filtration {Sj : j ≥ 0}. Next we introduce
the filtration {Gℓ : ℓ ≥ 0} where

Gℓ := Sγℓ . (21)

Lemma 4.1. The sequence of r.v.’s {βℓ : ℓ ≥ 0} denoting the total number of steps required for ℓ-th
renewal step is adapted to the filtration {Gℓ : ℓ ≥ 0}.

4.1 Tail distribution of the number of steps between consecutive renewal steps
(for k paths)

We first show that the probability of a renewal event occurring at a good step is bounded strictly away
from 0 as well as 1, conditionally on the previous steps. This will be used to show that the renewal
steps must occur and that a geometric number of good steps at most are required to reach a renewal
step. The main result of the current section is:

Proposition 4.2. There exist positive constants C0, C1 such that for any ℓ ≥ 0, for any n ≥ 1,

P
(
βℓ+1 − βℓ ≥ n | Gℓ

)
≤ C0e

−C1n . (22)

In order to prove the above proposition, we need the following result.

Lemma 4.3. There exist 0 < p1 ≤ p2 < 1 depending only on k, κ, λ such that, for any j ≥ 1, the
following holds:

P
(
Aj | Fτj ,1A1 , . . . ,1Aj−1

)
= P

(
Aj | Fτj

)
∈ [p1, p2] . (23)

Proof. We first show that (23) holds for j = 1 (where we set 1A0 = 1). Observe that Fτ1 does not
contain any information about the PPP in the half plane H+(Wmove

τ1 (2) + κ+ 1). We can choose

p2 := P(Card(B+(g↑τ1(u1), 1) ∩ N ) = 1) =
λπ

2
exp(−λπ/2)

as an upper bound strictly smaller than 1.
For a single path, the lower bound is straight forward. In fact the event {N ∩

(
B+(g↓τ1(u1), κ+1) \

B+(g↑τ1(u1), 1)
)
= ∅,Card(N ∩B+(g↑τ1(u1), 1)) = 1} implies that renewal occurs and hence provides a

lower bound. However, finding a strictly positive lower bound for more than one path requires more
work when the paths are close and when the regions overlap.

We assume here without loss of generality that all the gτ1(ui)’s are different. Then the same holds

for g↓τ1(ui)’s and g↑τ1(ui)’s a.s. Let us set

F :=
⋃

1≤i≤k

(
B+(g↓τ1(ui), κ+ 1) \B+(g↑τ1(ui), 1)

)
.
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The probability that F ∩N is empty is easily bounded from below by a positive constant depending
on k, κ and the intensity λ of the PPP. But it requires tedious geometric computations to show that
each B+(g↑τ1(ui), 1) contains exactly one Poisson point with positive probability, because gτj (ui)’s can
be very close to each other. So, we give the main arguments and skip the details.

Let ǫ > 0. If
min
i 6=i′

|g↑τ1(ui)(1) − g↑τ1(ui′)(1)| ≥ ǫ (24)

then it is possible to exhibit deterministic (conditional on Fτ1) regions Λ1, . . . ,Λk such that their areas
are equal to some constant c(ǫ) > 0, they do not overlap with F and each Λi satisfies

Λi ⊂ B+(g↑τ1(ui), 1) \
( ⋃

i′ 6=i

B+(g↑τ1(ui′ , 1)
)
.

From there, putting exactly one Poisson point inside each Λi, it is not difficult to conclude. When (24)

is no longer true, we split {1, . . . , k} into disjoint subsets in which consecutive elements g↑τ1(ui) and

g↑τ1(ui+1) are at a distance smaller than ǫ. We treat these subsets separately. Let us consider the first

of them, say {g↑τ1(u1), . . . , g
↑
τj (us)} with 1 ≤ s ≤ k and |g↑τ1(ui)(1)−g↑τ1(ui+1)(1)| < ǫ for 1 ≤ i ≤ s−1.

For ǫ > 0 small enough (depending on κ and k), the semi-balls B+(g↑τ1(ui), 1), 1 ≤ i ≤ s(≤ k), have
a non-empty intersection. Hence, we can exhibit a deterministic region Λ(1) with area c′(ǫ) > 0 such
that

Λ(1) ⊂
⋂

1≤i≤s

B+(g↑τ1(ui), 1) and Λ(1) ∩
(
F ∪

(⋃

i>s

B+(g↑τ1(ui), 1)
))

= ∅ .

Now we repeat the argument with the remaining set {g↑τ1(us+1), . . . , g
↑
τ1(uk)} (possibly empty). We

finally exhibit disjoint subsets Λ(1), . . . ,Λ(n) with good properties. Putting exactly one Poisson point
inside each of them and no point in F , we may obtain the lower bound p1.

Next consider Equation (23) for j = 2. Recall that the random variable 1A1 depends only on the
PPP in the half plane H−(Wmove

τ1 (2) + κ + 1), where H−(l) := {x ∈ R2 : x(2) ≤ l}, and where by
definition we have Wmove

τ2 (2)−Wmove
τ1 (2) > κ+1. Given Fτ2 , since the subsequent steps as well as the

event A2 depend only on the PPP in the half plane H+(Wmove
τ2 (2)) we have

P
(
A2 | Fτ2 ,1A1

)
= P

(
A2 | Fτ2

)
,

and then the proof follows using the same argument as in the case of j = 1. Finally for general j ≥ 1,
the proof follows by method of induction.

Now we are ready to prove Proposition 4.2.

Proof. We work conditionally on Gℓ, for ℓ ≥ 0. Let us first show that

P(γℓ+1 − γℓ > j | Gℓ) ≤ P(G > j)

where G is a geometric r.v. with success probability p1. In other words, the r.v. γℓ+1 − γℓ is stochas-
tically dominated by G. First we prove it for ℓ = 0. The argument for general ℓ ≥ 0 is the same. In
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what follows, Ac denotes the complement event of A.

P(γ1 − γ0 > j | G0) = P(Ac
1, A

c
2, . . . , A

c
j | G0)

= E
[j−1∏

i=1

1Ac
i
E[1Ac

j
| Sj−1,Fτj ] | G0

]

= E
[j−1∏

i=1

1Ac
i
E[1Ac

j
| Fτj ] | G0

]

≤ (1− p1)E
[j−1∏

i=1

1Ac
i
| G0

]

≤ (1− p1)
j ,

by Lemma 4.3 and a direct recursion. Next we show that given the σ-field Sj , the difference τj+1 − τj
still decays exponentially fast. Observe that the events A1, . . . , Aj−1 depend only on the Poisson
points in H−(Wmove

τj−1
(2)+κ+1) while τj+1− τj depends on the points in H+(Wmove

τj (2)) and hence are
independent given Fτj .

P(τj+1 − τj ≥ n | Sj) = P(τj+1 − τj ≥ n | σ(Fτj , Aj−1))

=
P(τj+1 − τj ≥ n,Ac

j | Fτj )

P(Ac
j | Fτj )

1Ac
j
+

P(τj+1 − τj ≥ n,Aj | Fτj )

P(Aj | Fτj )
1Aj

≤ P(τj+1 − τj ≥ n | Fτj )

(
1

P(Ac
j | Fτj )

+
1

P(Aj | Fτj )

)
.

(25)

So, using Proposition 3.1 and Lemma 4.3 we obtain the expected decay:

P(τj+1 − τj ≥ n | Sj) ≤ C0 exp (−C1n) ,

where C0, C1 > 0 are constants only depending on k, κ, λ.
Therefore, we can construct a random variable T satisfying P(T ≥ n) ≤ C0 exp (−C1n) and stochas-

tically dominating the difference τj+1− τj | Sj . Further, we can stochastically bound, for any ℓ,m, the
sum

m−1∑

j=0

τγℓ+j+1 − τγℓ+j

conditionally to Gℓ by T1 + . . .+ Tm where the Tj ’s are i.i.d. copies of the r.v. T defined above. Now,
let ϑ > 0 small enough so that E(eϑT ) <∞. Then, for any constant c > 0, we write

P(βℓ+1 − βℓ ≥ n | Gℓ)

≤ P

( ⌊cn⌋∑

j=0

τγℓ+j+1 − τγℓ+j ≥ n | Gℓ

)
+ P

(
G > ⌊cn⌋ | Gℓ

)

≤ P

( ⌊cn⌋∑

j=0

Tj ≥ n) + (1− p1)
⌊cn⌋

≤ e−ϑnE(eϑT )⌊cn⌋ + (1− p1)
⌊cn⌋ .

This completes the proof of (22) by choosing c = c(ϑ) sufficiently small.
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4.2 Size of the renewal blocks (for k paths)

Let u1, . . . ,uk be the starting points and fix ℓ ≥ 0. In this section, our goal is to exhibit ran-
dom rectangles containing the regions explored by the k trajectories of the joint exploration process
{(gn(u1), . . . , gn(uk)) : n ≥ 0} between the ℓ-th and the (ℓ+ 1)-th renewal steps. We define

Wℓ+1 =Wℓ+1(u1, · · · ,uk) :=

βℓ+1−1∑

m=βℓ

‖Wmove
m − h(Wmove

m )‖2 . (26)

By construction the r.v. Wℓ+1 is such that, for any 1 ≤ i ≤ k, the random set

βℓ+1−1⋃

m=βℓ

B+ (gm(ui), ‖gm(ui)− gm+1(ui)‖2) , (27)

where the union is made up with all the semi-balls created by the path starting at ui between the ℓ-th
and the (ℓ+ 1)-th renewal steps, is included in gβℓ

(ui) + [−Wℓ+1,Wℓ+1]× [0,Wℓ+1]. This rectangle is
called a renewal block. This is the reason why Wℓ+1 is termed as the size of these renewal blocks.

It is important to remark that the k trajectories between the ℓ-th and the (ℓ+ 1)-th renewal steps
depend only on the Poisson points inside the random set (27). Hence, these k trajectories are not
altered by any change of the PPP N outside the renewal blocks gβℓ

(ui)+ [−Wℓ+1,Wℓ+1]× [0,Wℓ+1]’s.
This suggests that two paths far from each other evolve almost independently; such argument will be
used in the proof of Theorem 5.1.

Proposition 4.4. There exist constants C0, C1 > 0 such that for any ℓ ≥ 0, for all n ≥ 1,

P(Wℓ+1 ≥ n | Gℓ) ≤ C0e
−C1n1/2

. (28)

This shows that the conditional distribution of Wℓ+1 | Gℓ is dominated by a random variable W
with sub-exponential tail given by C0e

−C1n1/2
. With more works, it could be possible to show that the

distribution of W admits an exponentially decaying tail, but (28) will be sufficient for our purpose.

Proof. Let ℓ ≥ 0. We will work conditionally on Gℓ. Let us recall the definition of the random variables
{ζm+1 : m ≥ 0} in (7) which are i.i.d. with exponentially decaying tails. Let us now show by recursion
that, for any m ≥ 0,

‖Wmove
βℓ+m − h(Wmove

βℓ+m)‖2 ≤ max
0≤n≤m

(⌊2ζn+1⌋+ 1) + κ+ 1 . (29)

First, (29) holds for m = 0 since, on the renewal event,

‖gβℓ
(ui)− h(gβℓ

(ui))‖2 ≤ κ+ 1 .

Thus, assume that (29) holds for a given integer m. If

‖Wmove
βℓ+m+1 − h(Wmove

βℓ+m+1)‖2 ≤ max
0≤n≤m

‖Wmove
βℓ+n − h(Wmove

βℓ+n)‖2 ,

then (29) is obviously satisfied for m+ 1. Otherwise, we have

‖Wmove
βℓ+m+1 − h(Wmove

βℓ+m+1)‖2 > max
0≤n≤m

‖Wmove
βℓ+n − h(Wmove

βℓ+n)‖2 ≥ L(Hβℓ+m) ,
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which forces, via similar arguments to those developed in the proof of Lemma 3.3, part (i), that

‖Wmove
βℓ+m+1 − h(Wmove

βℓ+m+1)‖2 ≤ ⌊2ζm+2⌋+ 1 .

This concludes the proof of (29).
The fact that the r.v.’s {maxn≤m⌊2ζn+1⌋+κ+2 : m ∈ Z+} are not identically distributed prevents

us from immediately obtaining exponential decay for the r.v. Wℓ+1 | Gℓ. So we content ourself with
the following computation leading to sub-exponential decay. First,

P(Wℓ+1 ≥ n | Gℓ) ≤ P




⌊n1/2⌋∑

m=0

max
l≤m

(⌊2ζl+1⌋+ κ+ 2) ≥ n




+ P(βℓ+1 − βℓ ≥ n1/2 | Gℓ) .

(30)

The second term of the l.h.s. of (30) is bounded from above by C0e
−C1n1/2

thanks to Proposition 4.2
while the first one is treated as follows:

P




⌊n1/2⌋∑

m=0

max
l≤m

(⌊2ζl+1⌋+ κ+ 2) ≥ n




≤ P


 ⋃

m≤⌊n1/2⌋

{
⌊2ζm+1⌋+ κ+ 2 ≥ n1/2 − 1

}



≤ (⌊n1/2⌋+ 1)P
(
⌊2ζ1⌋+ κ+ 2 ≥ n1/2 − 1

)

≤ (⌊n1/2⌋+ 1)C0e
−C1(n1/2−κ−3)

by (9). We conclude by adjusting the constants C0, C1 > 0.

4.3 Renewals for a single path (k = 1)

Consider the path started from the vertex u1. Suppose that we are at the j-th good step τj and let us
set

y1 := gτj (u1) = g↓τj (u1) = y
↓
1 andy

↑
1 := g↑τj (u1) .

The realization of the renewal event Aj means that the semi-ball B+(y↓
1, κ + 1) contains exactly

one Poisson point, say X, which is actually included in B+(y↑
1, 1). It is important to remark that

conditionally to the occurrence of Aj , the location of the Poisson point X is completely free inside

B+(y↑
1, 1) and it is uniformly distributed on B+(y↑

1, 1). We call such a good step a renewal step. Let
τj′ with j′ > j be another good step which is the next renewal step after τj. Let y2 := gτj′ (u1). On
the renewal event Aj , the vertex y1 is connected in one step to the (unique) Poisson point X inside

B+(y↑
1, 1). Now let us consider a new DSF path, called a regenerated path, starting from the projected

point y
↑
1. Like y1, the projected point y

↑
1 is also connected in one step to X so that the original path

(from u1) and the regenerated path (from y1) coincide beyond X. See Figure 6.

Let us remark that by construction the two semi-balls generated by the connections of y1 and y
↑
1

to the same ancestor X ∈ B+(y↑
1, 1) are included in B+(y1, κ+ 1). So no information about the PPP

N ∩
(
H+(y↑

1) \B+(y1, κ+ 1)
)
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Figure 6: Left hand picture represents the two successive renewal steps with positions of the path being y1 and

y2 respectively at those steps. The new path started from y
↑
1 continues together with the original path. The right

hand picture shows how translating to the origin provides the distribution of the increment z0.

is revealed.
Thus, let us think of the projected point y

↑
1 as the origin. So, by translation invariance of the

Poisson process, the evolution of the regenerated path from y
↑
1 till τj′ (the next renewal step) can be

constructed as follows. Start a path from 0 until the occurrence of the first renewal event with the
following set of initial information:

a) Distribute a single point uniformly in B+(0, 1);

b) The set (B+((0,−κ), κ + 1) \B+(0, 1)) ∩H+(0) has no point;

c) Take an independent Poisson process on H+(0) \ (B+((0,−κ), κ + 1).

Let z0 be the position of the above path be at the first renewal step (see Figure 6). Now, translate

this path to the projected point y
↑
1 to get the position of the next renewal. Therefore, we must have

that
y2 − y1

d
= z0 + (0, κ). (31)

Let us show the latter rigorously. Consider the process {gβℓ
(u1) : ℓ ≥ 0}, where the renewal times βℓ

have been introduced in (19). Define

Yℓ = Yℓ(u1) := gβℓ
(u1) for ℓ ≥ 0. (32)

Proposition 4.5. The process {Yℓ − Yℓ−1 : ℓ ≥ 2} is a sequence of i.i.d. random vectors, whose
distribution is given by z0 + (0, κ) where z0 is as defined in equation (31).

Because u1 does not benefit from a renewal environnement, the first increment Y1 − Y0 = Y1 − u1

is not distributed according to the other increments Yℓ − Yℓ−1, for ℓ ≥ 2. Since the definition of z0
does not depend on the starting vertex u1, the same holds for the increment distribution, for ℓ ≥ 2.

Proof. Fix m ≥ 3 and Borel subsets B2, . . . , Bm of R2. Let Iℓ(Bℓ) be the indicator random variable of
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the event {Yℓ − Yℓ−1 ∈ Bℓ}. Then, we have

P(Yℓ − Yℓ−1 ∈ Bℓ for ℓ = 2, . . . ,m) = E(

m∏

ℓ=2

Iℓ(Bℓ))

= E

(
E
( m∏

ℓ=2

Iℓ(Bℓ) | Gm−1

))
= E

(m−1∏

ℓ=2

Iℓ(Bℓ)E
(
Im(Bm) | Gm−1

))

as the random variables Iℓ(Bℓ) are measurable w.r.t. Gm−1 for ℓ = 2, . . . ,m − 1. Note that the σ-
algebra Gm−1 = Gm−1(u1) contains the information brought by the single path started at u1 until its
(m− 1)-th renewal step.

Since any renewal step is first a good step, history regions are bounded below the horizontal line
y = gβm−1(u1)(2) + κ. Therefore only information of relevance carried at the (m− 1)-th renewal step

for constructing the path from g↑βm−1
(u1) is that there is exactly one point in B+(g↑βm−1

(u1), 1) (hence

it must be uniformly distributed inside B+(g↑βm−1
(u1), 1)) and no point in (B+(g↓βm−1

(u1), κ + 1) \
B+(g↑βm−1

(u1), 1)) ∩ H+(g↑βm−1
(u1)(2)). Therefore, all information that is used to construct the path

till the good step resulting in the (m− 1)-th renewal is no more required (see Figure 6).
Together with the properties of the PPP, these observations allow us to use the discussion before

equation (31) to say that the conditional distribution of gβm(u1) − g↑βm−1
(u1) given Gm−1 is given by

z0. Therefore, we have

gβm(u1)− gβm−1(u1) | Gm−1(u1)
d
= z0 + (0, κ)

so that we obtain

P(Yℓ − Yℓ−1 ∈ Bℓ for ℓ = 2, . . . ,m) = E

(m−1∏

ℓ=2

Iℓ(Bℓ)E
(
Im(Bm) | Gm−1

))

= P((z0 + (0, κ) ∈ Bm)E
(m−1∏

ℓ=2

Iℓ(Bℓ)
)
.

Now, induction on m completes the proof.

The distribution of z0 depends only on the uniformly distributed point in B+(0, 1) and an inde-
pendent Poisson process on H+(0) \ B+((0,−κ), κ + 1). Therefore, from the symmetry property of
Poisson process and symmetry of the regions considered above (by reflecting the configuration with
respect to the y-axis), we have that the first coordinate of z0 has a symmetric distribution, which we
sum up in the:

Corollary 4.6. The process {Yℓ+1(1) − Yℓ(1) : ℓ ≥ 1} is a sequence of i.i.d. random variables, whose
distribution is symmetric and independent of the starting point.

In the next section, we will show that the increment random variable Yℓ+1 − Yℓ has moments of
all orders. This and Corollary 4.6 imply that a (single) diffusively scaled DSF path converges to the
Brownian motion.
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4.4 Renewal for two paths (k = 2)

Let us consider two starting points u1,u2 with u2(1) ≥ u1(1) and |u2(2)− u1(2)| ≤ κ. Like the single

path case, our idea is again to start two regenerated paths from the projected points g↑βℓ
(u1) and

g↑βℓ
(u2). For ℓ ≥ 0 and i ∈ {1, 2}, we define

Yℓ(ui) := g↑βℓ
(ui) .

Moreover the random variable Zℓ denotes the distance between the two trajectories started at u1 and
u2 projected on the horizontal axis and at the ℓ-th renewal step:

Zℓ = Zℓ(u1,u2) := g↑βℓ
(u2)(1) − g↑βℓ

(u1)(1) . (33)

As the DSF paths are non-crossing, the process {Zℓ : ℓ ≥ 0} is non-negative with zero being an
absorbing state.

Writting

|Zℓ+1 − Zℓ| ≤ |g↑βℓ+1
(u2)(1) − g↑βℓ

(u2)(1)| + |g↑βℓ+1
(u1)(1) − g↑βℓ

(u1)(1)|
≤ ‖Yℓ+1(u2)− Yℓ(u2)‖2 + ‖Yℓ+1(u1)− Yℓ(u1)‖2
≤ 2Wℓ+1 ,

where Wℓ+1 is the size of the (ℓ + 1)-th renewal block, defined in (26), we immediatly deduce from
Proposition 4.4 the next result.

Corollary 4.7. For any two vertices u1,u2 ∈ R2 with u1(1) < u2(1) and |u1(2) − u2(2)| ≤ κ,

(1) the random variables Yℓ+1(ui)− Yℓ(ui), for ℓ ≥ 0 and i ∈ {1, 2} have moments of all orders and

(2) the increments of the process {Zℓ : ℓ ≥ 0} have moments of all orders.

There is a crucial difference between the single path case and the two paths case. Indeed, at the
ℓ-th renewal step, if the distance between gβℓ

(u1) and gβℓ
(u2) is smaller than κ+1, it may happen that

the two paths coalesce during the next step: see Figure 7. When this is the case, the two original paths
(from u1 and u2) coincide beyond this renewal step and are no longer equal to the two regenerated

paths (from g↑βℓ
(u1) and g↑βℓ

(u2)). They are actually equal to one of the regenerated paths. This
means in particular that coalescence between the two original paths may occur before that the process
{Zℓ : ℓ ≥ 0} hits zero.

However, if the vertices gβℓ
(u1) and gβℓ

(u2) are far away (at least κ+1), it is easy to observe that

the original paths and the regenerated paths starting from the projected points g↑βℓ
(u1) and g↑βℓ

(u2)
would proceed together.

Let us focus now on the case where Zℓ = g↑βℓ
(u2)(1) − g↑βℓ

(u1)(1) is large, precisely on Fℓ :=
{Wℓ+1 ≤ Zℓ/3}. On this event, the regions explored by the DSF paths between the ℓ-th and the
(ℓ + 1)-th renewal steps are each included in rectangles centered at the respective projected vertices

g↑βℓ
(u1) and g↑βℓ

(u2), and of width Wℓ+1 smaller than Zℓ/3. So they are disjoint. We can then proceed
to the following transformation : we interchange the point configurations of both disjoint rectangles
without changing the outside. Let us denote N ∗ the resulting PPP. This transformation provides:

Zℓ+1(N ∗)− Zℓ(N ∗) = −
(
Zℓ+1(N )− Zℓ(N )

)
,
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Figure 7: This picture represents a renewal step of the joint exploration process {(gn(u1), gn(u2), Hn) : n ≥ 0}
(with only k = 2 trajectories): the event Aj occurs where β = τj. The red dots represent g↑β(u1) and g↑β(u2).

Observe that the vertex gβ(u1) connects to gβ(u2) and not to the uniformly distributed point in B+(g↑β(u1), 1),

i.e. the two trajectories of the DSF merge.

i.e. the distribution of the increment Zℓ+1−Zℓ is symmetric on the event Fℓ = {Wℓ+1 ≤ Zℓ/3}. Details
are given in the proof below. This is the main result of Corollary 4.8 and this will be crucially used to
obtain the tail decay of the coalescing time. See Section 5.

In other words, the next result says that, far from the origin, the process {Zℓ : ℓ ≥ 0} behaves like
a symmetric random walk satisfying certain moment bounds.

Corollary 4.8. Fix any two vertices u1,u2 ∈ R2 with u1(1) ≤ u2(1) and |u2(2) − u1(2)| ≤ κ. Then
there exist positive constants M0, C0, C1, C2 and C3 such that:

(i) For any ℓ ≥ 0, let us set Fℓ := {Wℓ+1 ≤ Zℓ/3}. Then, on the event {Zℓ ≥ M0}, we have
P(F c

ℓ | Gℓ) ≤ C3/(Zℓ)
3 and

E
[
(Zℓ+1 − Zℓ)1Fℓ

| Gℓ

]
= 0 .

(ii) For any ℓ ≥ 0, on the event {Zℓ ≤M0},

E
[
(Zℓ+1 − Zℓ) | Gℓ

]
≤ C0 .

(iii) For any ℓ ≥ 0 and m > 0, there exists cm > 0 such that, on the event {Zℓ ∈ (0,m]},

P
(
Zℓ+1 = 0 | Gℓ

)
≥ cm .

(iv) For any ℓ ≥ 0, on the event {Zℓ > M0},

E
[
(Zℓ+1 − Zℓ)

2 | Gℓ

]
≥ C1 and E

[
|Zℓ+1 − Zℓ|3 | Gℓ

]
≤ C2 .

Proof. For part (i), take M0 sufficiently large and Proposition 4.4 gives us that on the event {Zℓ ≥M0},
we have P(F c

ℓ | Gℓ) ≤ C3/(Zℓ)
3 for some positive constant C3.

Now let us consider the trajectories of two paths starting from the vertices u1 and u2 between the ℓ-
th and (ℓ+1)-th renewal steps. Note that the trajectories of these regenerated paths can be constructed

with a resampled PPP over the region H+(Wmove
βℓ

(2) + κ) \
(
B+(g↓βℓ

(u1), κ+ 1) ∪B+(g↓βℓ
(u2), κ+ 1)

)

and resampled independent uniform distributions over the (disjoint) semi-balls B+(g↑βℓ
(u1), 1) and
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B+(g↑βℓ
(u2), 1) without changing the joint distribution of the trajectories. Recall that there are no

Poisson points in the region

2⋃

i=1

(
H+(Wmove

βℓ
(2) + κ) ∩B+(g↓βℓ

(ui), κ + 1)
)
\B+(g↑βℓ

(ui), 1) .

We construct a new point process in the following way:

(1) Given Gℓ, the realizations of the point process in the rectangles R1 = g↑βℓ
(u1) + [−Zℓ/3, Zℓ/3] ×

[0, Zℓ/3] and R2 = g↑βℓ
(u2) + [−Zℓ/3, Zℓ/3]× [0, Zℓ/3] are interchanged.

(2) The realization of the PPP N outside these two rectangles is kept as it is.

We should note that both these rectangles R1 and R2 contain the unique Poisson point uniformly
distributed over the semi-balls B+(g↑βℓ

(u1), 1) and B+(g↑βℓ
(u2), 1) as well. We observe that the newly

constructed point process N ∗ has the same distribution as a PPP conditioned to have a unique point
in the semi-balls B+(g↑βℓ

(ui), 1) and no point in the regions H+(Wmove
βℓ

(2) + κ)∩B+(g↓βℓ
(ui), κ+1)

)
\

B+(g↑βℓ
(ui), 1) for i = 1, 2.

Now, we restrict our attention to the event Fℓ = {Wℓ+1 ≤ Zℓ/3} and consider the trajectories
in between ℓ-th and (ℓ + 1)-th renewal steps using the newly constructed PPP N ∗. We remark that
for this “new” regenerated paths, the number of steps until the next renewal step and the size of the
corresponding renewal block have not changed. Moreover, the increment of each path between the ℓ-th
and the (ℓ+ 1)-th renewal steps have been interchanged. This means that the increment Zℓ+1 − Zℓ is
become −(Zℓ+1 − Zℓ). This completes the proof of Item (i).

Item (ii) follows readily from the fact that

E[(Zℓ+1 − Zℓ) | Gℓ] ≤ E[|Zℓ+1 − Zℓ| | Gℓ] ≤ E(2Wℓ+1 | Gℓ) <∞ ,

since conditionnaly on Gℓ, Wℓ+1 admits sub-exponential decay (see Proposition 4.4 for details).
For Item (iii), we recall the fact that the σ-field Gℓ does not contain any information about the PPP

in the region H+(Wmove
βℓ

(2) + κ) \
(
B+(g↓βℓ

(u1), κ+ 1) ∪B+(g↓βℓ
(u2), κ+ 1)

)
. Hence, it is not difficult

to convince oneself that the conditional probability P(Zℓ+1 = 0 | Gℓ) is strictly positive (suitable
configurations are easy to build).

It then remains to check Item (iv). We observe that

E
[
(Zℓ+1 − Zℓ)

2 | Gℓ

]
≥ E

[
(Zℓ+1 − Zℓ)

21(|Zℓ+1−Zℓ|2≥1) | Gℓ

]

≥ P((Zℓ+1 − Zℓ)
2 ≥ 1 | Gℓ) .

Again on the event {Zℓ > M0}, it is not difficult to observe that the probability P((Zℓ+1−Zℓ)
2 ≥ 1 | Gℓ)

is strictly positive. For the third moment,

E[(Zℓ+1 − Zℓ)
3 | Gℓ] ≤ E[|Zℓ+1 − Zℓ|3 | Gℓ] ≤ E((2Wℓ+1)

3 | Gℓ) <∞ .
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5 Tail distribution for the coalescence time of two paths

In this section we start with two points u1,u2 in R2 such that u1(1) < u2(1) and u1(2) = u2(2) = 0.
The initial history set H0 is assumed empty. As explained in the introduction, a key result for proving
the convergence of the DSF to the BW, lies in a precise estimate for the tail distribution of the
coalescence time of two paths of the DSF:

T (u1,u2) := inf{t ≥ 0 : πu1(t) = πu2(t)} (34)

where πui = (πui(t))t≥0 denotes the parametrization of the path πui . This random time is known to
be almost surely finite [15]. In this section we prove the following theorem on tail decay of coalescing
time T (u1,u2) of two DSF paths πu1 and πu2 .

Theorem 5.1. Assume u2(1) − u1(1) > 0 and u2(2) = u1(2) = 0. There exists a constant C0 > 0
which does not depend on u1,u2 such that, for any t > 0,

P(T (u1,u2) > t) ≤ C0√
t
max{1,u2(1) − u1(1)} .

In order to prove Theorem 5.1 we develop a robust technique to obtain such an estimate for certain
class of processes which need not be Markov and can be applied to a large class of models (see Remark
5.8). We will show that processes which behave like symmetric random walks away from the origin
and satisfy certain moment bounds belong to this class (for a precise statement we refer to Corollary
5.6). As a consequence, Corollary 4.8 allows us to apply this technique for the DSF paths and gives
a suitable tail decay in terms of number of renewal steps. With some additional work, we obtain the
tail distribution of coalescing time.

For the sequel, it will be crucial that the factor u2(1) − u1(1) occurs in the upper bound of
P(T (u1,u2) > t). Theorem 5.1 will be applied, in the proofs of criteria (ii) and (iv) of Theorem 6.3,
to starting points satisfying at each time u2(1) − u1(1) ≥ 1.

5.1 A general result for upper bounding hitting time tails

For this section, we introduce the following notation: for a discrete-time process {Yt : t ≥ 0} taking
non-negative values, let νY be the first hitting time to 0, i.e.,

νY := inf{t ≥ 1 : Yt = 0}. (35)

In this section we obtain tail decay for the hitting time of 0 for certain class of processes which
need not to be Markov. To start with we assume that the process is supermartingale.

Theorem 5.2. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} discrete-time adapted stochastic process taking values
in R+. Suppose that:

(i) For any t ≥ 0,
E
[
(Yt+1 − Yt) | Gt

]
≤ 0 a.s.

(ii) There exist constants C0, C1 > 0 such that for any t ≥ 0, we have

E
[
(Yt+1 − Yt)

2 | Gt

]
≥ C0 and E

[
|Yt+1 − Yt|3 | Gt

]
≤ C1,

on the event {Yt > 0}.
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Then, νY <∞ almost surely. Further, there exists a constant C2 > 0 such that for any y > 0 and any
integer n,

P(νY > n | Y0 = y) ≤ C2y√
n
.

Proof. We will denote the conditional probability and the conditional expectation given Y0 = y as Py

and Ey respectively. The proof is divided into three steps.

Step 1: Assume that there exist constants C3, θ0 > 0 such that for all 0 < θ < θ0

Ey

(
exp(−C3θ

2νY )
)
≥ exp(−θy). (36)

Using that x 7→ 1 − exp(−C3θ
2x) is a non-decreasing function for any θ > 0, the Markov inequality

and (36), we get:

Py

(
νY > n

)
≤ Ey

(
1− exp(−C3θ

2νY )
)

1− exp(−C3θ2n)
≤ 1− exp(−θy)

1− exp(−C3θ2n)

provided that θ < θ0. Hence, for θ = 1/
√
n with n > 1/θ20,

Py

(
νY > n

)
≤ 1− exp(−y/√n)

1− exp(−C3)
≤ y√

n(1− exp(−C3))
,

which is the announced result with C2 = (1− exp(−C3))
−1.

Step 2: It remains to prove the estimate (36) on the Laplace transform of νY . To do it, we use
martingale techniques. For θ > 0 and j ≥ 0, let us set

ψθ,j := E
(
exp(−θ(Yj+1 − Yj)) | Gj

)
.

Thus we define a discrete time process as follows: Z0 := exp(−θY0) = exp(−θy) P-a.s. and for t ≥ 1,

Zt :=
exp(−θYt)∏t−1

j=0 ψθ,j

. (37)

This process is a {Gt : t ≥ 0}-martingale since

E
(
Zt+1 | Gt

)
= E

[exp(−θ(Yt+1 − Yt)) exp(−θYt)∏t
j=0 ψθ,j

| Gt

]

=
Zt

ψθ,t
E
[
exp(−θ(Yt+1 − Yt)) | Gt

]
= Zt.

Then, (Zt∧νY )t≥0 is also a non-negative {Gt : t ≥ 0}-martingale and for any t ≥ 0,

Ey

(
Zt∧νY

)
= Ey

(
Z0

)
= exp(−θy). (38)

For the moment, let us assume that there exist constants C3, θ0 > 0 such that for all θ ∈ (0, θ0)
and for all index t,

exp
(
− θYt∧νY − (t ∧ νY )C3θ

2
)
≥ Zt∧νY . (39)
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Assuming this, we first show that P(νY < ∞) = 1. For any ω such that νY (ω) < ∞, we obtain
that, letting by t ↑ ∞,

exp
(
− θYt∧νY − (t ∧ νY )C3θ

2
)
→ exp(−θYνY − νYC3θ

2) = exp(−νYC3θ
2)

since YνY (ω)(ω) = 0. On the other hand, for ω such that νY (ω) = ∞, we get

exp
(
− θYt∧νY − (t ∧ νY )C3θ

2
)
≤ exp

(
− (t ∧ νY )C3θ

2
)
→ 0,

as C3 are positive and Yt is non-negative. We observe that exp
(
− θYt∧νY − (t ∧ νY )C3θ

2
)

is smaller
than 1 for all t since Yt is non-negative. Applying the dominated convergence theorem, along with (39)
and (38), we can write:

Ey

(
1{νY <∞} exp(−C3θ

2νY )
)
= lim

t→∞
Ey

(
exp

(
− θYt∧νY − (t ∧ νY )C3θ

2
))

≥ lim sup
t→∞

Ey

(
Zt∧νY

)
= exp(−θy). (40)

Next, we let θ ↓ 0 in (40). Again applying the dominated convergence theorem, we obtain that
Ey

(
1{νY <∞} exp(−C3θ

2νY )
)
→ Py

(
νY < ∞

)
while the right hand side of the above inequality con-

verges to 1. Thus, we have Py

(
νY < ∞) ≥ 1. Now, using the fact that {νY < ∞} almost surely in

(40), we obtain the desired relation (36).

Step 3: If there exist constants C3, θ0 > 0 such that, for any θ ∈ (0, θ0) and any j ∈ {0, 1, . . . , t∧νY −1},

log
(
ψθ,j

)
≥ C3θ

2 (41)

then
∑t∧νY −1

j=0 log
(
ψθ,j

)
≥ (t∧νY )C3θ

2 from which (39) easily follows. We observe that, for any x ∈ R,

by Taylor’s expansion, ex = 1 + x+ x2/2 + x3/6 + ex0x40/4! where x0 is some point in between 0 and
x. Thus, for all x ∈ R, ex ≥ 1 + x+ x2/2 + x3/6. Now, fix any index j ∈ {0, 1, . . . , t ∧ νY − 1} so that
Yj > 0. Using hypotheses (i) and (ii), we have, for any θ ∈ [0,∞)

ψθ,j = E
(
e−θ(Yj+1−Yj) | Gj

)

≥ 1− θ E
(
Yj+1 − Yj | Gj

)
+
θ2

2
E
(
(Yj+1 − Yj)

2 | Gj

)
− θ3

6
E
(
(Yj+1 − Yj)

3 | Gj

)

≥ 1 + C0
θ2

2
−C1

θ3

6
.

The constants C0, C1 do not depend on j. The function θ ∈ [0,∞) 7→ 1+C0θ
2/2−C1θ

3/6 is continuous,
equal to 1 at θ = 0 and increasing on the neighbourhood of 1. Hence, it is possible to pick θ0 > 0 such
that for all 0 < θ < θ0, 1 < 1 + C0θ

2/2 − C1θ
3/6 < 2. Since log(x) ≥ (x − 1)/2 for x ∈ (1, 2), we

obtain for any 0 < θ < θ0,

1

θ2
log
(
ψθ,j

)
≥ 1

θ2
log
(
1 +C0

θ2

2
− C1

θ3

6

)
≥ C0

4
− C1θ

12
.

We then deduce (41) for θ0 > 0 small enough and C3 = C0/8.

Remark 5.3. If we use the bound ex ≥ 1 + x + (x+)2/2 for x ∈ R where x+ = max(x, 0), the

requirements in (ii) could be reduced to E
[(
(Yt+1 − Yt)

+
)2 | Gt

]
≥ C0 on the set {Yt > 0}.
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Theorem 5.2 assumes the supermartingale structure which is often not available for the whole set
of values that the process may take. Next we prove a result which only assumes the supermartingale
structure when the process is away from the origin.

Theorem 5.4. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} adapted stochastic process taking values in R+.
Suppose that there exist positive constants M,C0, C1, C2 and 0 < p0 < 1 such that

(i) for any t ≥ 0,
E
[
Yt+1 − Yt | Gt

]
≤ C01{Yt∈(0,M ]};

(ii) for any t ≥ 0,
P
(
Yt+1 = 0 | Gt

)
≥ c0 on the event {Yt ∈ (0,M ]};

(iii) for any t ≥ 0, on the event {Yt > M}, a.s. we have

E
[
(Yt+1 − Yt)

2 | Gt

]
≥ C1 and E

[
|Yt+1 − Yt|3 | Gt

]
≤ C2.

Then, νY < ∞ almost surely. Further, there exist positive constants C3, C4 such that for any y > 0
and any integer n,

P(νY > n | Y0 = y) ≤ C3 + C4y√
n

.

Proof. The proof follows similar steps as in the proof of Theorem 5.2. Again we use the same notations
as in the previous Theorem and the proof is divided into steps.

We will show in Step 1 that there exist constants C4, C5 > 0, 0 < θ0 < − log(1 − p0)/(2C5) such
that for all 0 < θ < θ0

Ey

(
exp(−C4θ

2νY )
)
≥ e−2θye−2C5θ 1− (1− p0)e

2C5θ

p0
. (42)

Choosing θ = 1/
√
n as earlier and making few algebraic simplifications, we have the desired result.

Step 1: To obtain (42), we consider the same exponential martingale again, i.e., for θ > 0, we set
Z0 := exp(−θY0) = exp(−θy) P-a.s. and for t ≥ 1,

Zt :=
exp(−θYt)∏t−1

j=0 ψθ,j

where ψθ,j is as defined in (37).
Let us define Tt as the number of visits of the process to the set (0,M ] upto time t, i.e.,

Tt =

t∑

j=0

1{Yt∈(0,M ]}. (43)

Assume that there exist constants C6, C7 and θ0 > 0 such that for all θ ∈ (0, θ0) and for all index
t ≥ 0,

exp
(
− θYt∧νY − (t ∧ νY )C6θ

2 + θC7Tt∧νY −1

)
≥ Zt∧νY . (44)
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This will be proved in Step 2.

First we argue that νY < ∞ almost surely. Consider the case y > M . Let us take Y
(M)
t :=

Yt1{Yt>M}. We observe that the conditions of Theorem 5.2 are satisfied by the process {Y (M)
t : t ≥ 0}

and hence by the previous Theorem the process Y
(M)
t will hit 0 in finite time, i.e., the process Yt will

enter the set [0,M ] in finite time. If, at this point, the process {Yt} is already at 0, we are done.
Otherwise, by assumption (ii), it has a strictly positive probability p0 of hitting 0 at the next step.
So, in finitely many steps, the process will either hit 0, which again shows that νY <∞ almost surely,
or will go out to the set (M,∞). In the latter case, we are back to the starting situation. So, again
the process will hit the set [0,M ] in finite time and so on. Since p0 > 0, the process can only go out
of (0,M ] to (M,∞) finitely many times, before it hits 0. Thus, the process will hit the set 0 in finite
time almost surely. When the process starts in (0,M ], the situation is as above without having first
to hit the set [0,M ]. So, in all cases, νY <∞ almost surely.

Now we observe that Tt∧νY −1 is a non-decreasing in t and hence converges to TνY −1 as t ↑ ∞. Since
at each time point, the process is in the set (0,M ], there is at least a probability of p0 of hitting 0, the
number of visits in (0,M ] before hitting 0 is stochastically dominated by a geometric random variable
G (the total number of trials before a success) with probability of success p0. Thus, TνY −1 is finite
almost surely and is stochastically dominated by the above described geometric random variable G.

Now, we impose further restriction on θ0. Assume that θ0 < − log(1 − p0)/(2C7). Hence, we note
that, for 0 < θ < θ0, we have Ey

(
exp(2θC7G)

)
< +∞. Letting t ↑ ∞ in (44), we have that the left

hand side converges to to exp
(
−C6θ

2νY + θC7TνY −1

)
. Furthermore, for any t ≥ 0, the left hand side is

bounded by exp
(
θC7Tt∧νY −1

)
≤ exp

(
θC7TνY −1

)
. Since TνY −1 is stochastically dominated by G and

Ey(exp(θC7G)) <∞, the dominated convergence theorem may be applied to conclude

exp(−θy) = lim
t→∞

Ey

(
Zt∧νY

)

≤ lim
t→∞

Ey

[
exp
(
−θYt∧νY − (t ∧ νY )C6θ

2 + θC7Tt∧νY −1

)]

= Ey

[
exp(−C6θ

2νY + θC7TνY −1)
]

≤
(
Ey

[
exp(−2C6θ

2νY )
])1/2(

Ey

[
exp(2θC7TνY −1)

])1/2

≤
(
Ey

[
exp(−2C6θ

2νY )
])1/2(

Ey

[
exp(2θC7G)

])1/2

where the inequality in fourth line is obtained by applying Cauchy-Schwartz inequality and where the
final inequality is obtained by stochastic domination. By choice of θ0, the moment generating function
of G is finite for 0 < θ < θ0. Using the expression of G and squaring the right hand side, we obtain
the inequality in (42).

Step 2: To obtain (44), we follow similar steps. Fix any index j ∈ {0, 1, . . . , t∧νY −1} so that Yj > 0.
If Yj > M , we have, as earlier, for suitable choice of θ1 > 0,

log
(
ψθ,j

)
≥ C8θ

2

for 0 < θ < θ1. For the case Yj ∈ (0,M ], we note that ex = 1 + x+ ex0x2/2 for some x0 in between 0
and x so that ex ≥ 1 + x. Thus, we have

ψθ,j = E
(
e−θ(Yj+1−Yj) | Gj

)
≥ 1− θE

(
Yj+1 − Yj | Gj

)
≥ 1− C0θ.
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Noting that the function θ 7→ 1 − C0θ is continuous, equal to 1 at θ = 0 and decreasing on the
neighbourhood of 1. Hence, it is possible to pick θ2 > 0 such that for all 0 < θ < θ2, 1 > 1−C0θ > 1/2.
Since log(x) ≥ 2(x− 1) for x ∈ (1/2, 1), we obtain for any 0 < θ < θ2,

log
(
ψθ,j

)
≥ −2C0θ

for 0 < θ < θ2. Combining these two inequalities, for 0 < θ < min{θ1, θ2, 1} = θ0, we have

t∧νY −1∑

j=0

log
(
ψθ,j

)
≥ C8θ

2
t∧νY −1∑

j=0

I({Yj ∈ (M,∞)}) − 2C0θ

t∧νY −1∑

j=0

I({Yj ∈ (0,M ]})

= C8θ
2(t ∧ νY − Tt∧νY −1)− 2C0θTt∧νY −1

≥ C8θ
2(t ∧ νY )− (2C0 + C8)θTt∧νY −1.

This completes the proof of (44).

Remark 5.5. Here also, we can use the bound ex = 1+x+(x+)2/2 for x ∈ R. In such a case we can

replace condition (iii) by E
[(
(Yt+1 − Yt)

+
)2 | Gt

]
≥ C0 on the set {Yt > M}.

Finally, we deal with situations where the increments of the process {Yt : t ≥ 0} have a null
expectation on an event with high probability. This is typically the case when the considered process
closely resembles to a random walk when it is far from the origin.

Corollary 5.6. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} adapted stochastic process taking values in R+. Let
νY := inf{t ≥ 1 : Yt = 0} be the first hitting time to 0. Suppose for any t ≥ 0 there exist positive
constants M0, C0, C1, C2, C3 such that:

(i) There exists an event Ft such that, on the event {Yt > M0}, we have P(F c
t | Gt) ≤ C0/Y

3
t and

E
[
(Yt+1 − Yt)1Ft | Gt

]
= 0 .

(ii) For any t ≥ 0, on the event {Yt ≤M0},

E
[
(Yt+1 − Yt) | Gt

]
≤ C1 .

(iii) For any t ≥ 0 and m > 0, there exists cm > 0 such that, on the event {Yt ∈ (0,m]},

P
(
Yt+1 = 0 | Gt

)
≥ cm .

(iv) For any t ≥ 0, on the event {Yt > M0}, we have

E
[
(Yt+1 − Yt)

2 | Gt

]
≥ C2 and E

[
|Yt+1 − Yt|3 | Gt

]
≤ C3 .

Then, νY < ∞ almost surely. Further, there exist positive constants C4, C5 such that for any y > 0
and any integer n,

P(νY > n | Y0 = y) ≤ C4 +C5y√
n

.

Recall that, by Corollary 4.8, the four hypotheses (i)-(iv) of Corollary 5.6 are satisfied by the

process {Zℓ : ℓ ≥ 0} defined in (33) by Zℓ = g↑βℓ
(u2)(1)− g↑βℓ

(u1)(1).
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Proof. Let us define φ : [0,∞) → [0,∞) by

φ(u) = 1 +
1

(1 + u)1/3
.

Clearly φ is positive, in fact, 1 ≤ φ(u) ≤ 2 for all u ∈ [0,∞). Furthermore,

φ(1)(u) = − 1

3(1 + u)4/3
, φ(2)(u) =

4

9(1 + u)7/3

and φ(3)(u) = − 28

27(1 + u)10/3
< 0.

Now define the function f : [0,∞) → [0,∞) by f(0) = 0 and for x > 0, f(x) =
∫ x
0 φ(u)du. Then,

f (1)(u) = φ(u) and f (k)(u) = φ(k−1)(u) for k ≥ 2. Since φ is positive, the function f is strictly
increasing.

Define the process Zt = f(Yt) for all t ≥ 0. Since f is strictly increasing, we observe that Zt = 0
if and only if Yt = 0. Therefore, we have that νY = νZ . We choose M ≥ f(M0) so that the function

C(1 + u)7/3 − 3C2u
2(1 + u) + 4C3u

2 < 0 for all u > M where C = C3/C
2/3
0 . We show that for M , the

process {Zt : t ≥ 0} satisfy the conditions of Theorem 5.4. Therefore, using Theorem 5.4, for suitable
constants C4, C5 > 0, we conclude that

P(νY > n|Y0 = y) = P(νZ > n|Z0 = f(y)) ≤ C4 + C5f(y)√
n

≤ C4 + 2C5y√
n

using the fact that f (1)(u) = φ(u) ≤ 2 for u > 0.
To verify the conditions of Theorem 5.4 for the process {Zt : t ≥ 0}, we have that (Zt+1 − Zt)

2 =

(f(Yt+1) − f(Yt))
2 =

(
f (1)(W )(Yt+1 − Yt)

)2
=
(
φ(W )

)2
(Yt+1 − Yt)

2 ≥ (Yt+1 − Yt)
2 where W is some

point between Yt and Yt+1. Similarly |Zt+1 − Zt|3 ≤ 8|Yt+1 − Yt|3. Thus, condition (iii) of Theorem
5.4 follows easily from (iv) and the choice of M . Also, condition (ii) is satisfied with p0 = αM and it
is easy to check that

E(Zt+1 − Zt | Gt)

= E(f(Yt+1)− f(Yt) | Gt)

≤ f (1)(Yt)E(Yt+1 − Yt | Gt)

≤ 2C11{Yt∈(0,M0]} + 2C
1/3
3 1{Yt∈(M0,∞)},

where we have used the fact that f (2)(u) = φ(1)(u) < 0 for all u > 0 in the Taylor’s expansion. Finally,
we have to show that when Zt > M , E(Zt+1 − Zt | Gt) ≤ 0. Using Taylor’s expansion again and the
fact that f (4)(u) < 0, we have

E(Zt+1 − Zt | Gt) = E(f(Yt+1)− f(Yt) | Gt)

≤ f (1)(Yt)E(Yt+1 − Yt | Gt) +
f (2)(Yt)

2
E
(
(Yt+1 − Yt)

2 | Gt

)

+
f (3)(Yt)

6
E
(
(Yt+1 − Yt)

3 | Gt

)

≤ 2|E(Yt+1 − Yt | Gt)|+
f (2)(Yt)

2
E
(
(Yt+1 − Yt)

2 | Gt

)

+
f (3)(Yt)

6
E
(
(Yt+1 − Yt)

3 | Gt

)
.
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We observe the second term is bounded by −C2/
[
3(1 + Yt)

4/3
]

while the last term is bounded by

4C3/
[
9(1 + Yt)

7/3
]
. The first term is broken into two parts and the choice M ensures that Yt > M0

and we have,

|E(Yt+1 − Yt | Gt)|
= |E

(
(Yt+1 − Yt)1Ft | Gt

)
+ E

(
(Yt+1 − Yt)1F c

t
| Gt

)
|

= E
(
(Yt+1 − Yt)1F c

t
| Gt

)
|

≤ E
(
|Yt+1 − Yt|1F c

t
| Gt

)

≤
[
E
(
|Yt+1 − Yt|3 | Gt

)]1/3[
P(F c

t | Gt

)]2/3

≤ C
1/3
3

[
C0/Y

3
t

]2/3
=
C ′
3

Y 2
t

.

Putting back, we have that

E(Zt+1 − Zt | Gt)

≤ 2
C ′
3

Y 2
t

− C2

3(1 + Yt)4/3
+

4C3

9(1 + Yt)7/3

=
1

9Y 2
t (1 + Yt)7/3

[
C(1 + Yt)

7/3 − 3C2Y
2
t (1 + Yt) + 4C3Y

2
t

]
< 0

whenever Yt > M0. This completes the proof.

5.2 Tail distribution of coalescence time for DSF paths

Let us denote by ν = ν(u1,u2) the number of (renewal) steps required by the process {Zℓ : ℓ ≥ 1} to
hit 0:

ν := inf{ℓ ≥ 1 : Zℓ = 0} . (45)

Clearly the ordinate Tν := gβν (u1)(2)−u1(2) gives an upper bound for the coalescence time T (u1,u2)
of the two paths πu1 and πu2 . To establish Theorem 5.1, we first focus on ν. Combining Corollaries
4.8 and 5.6, we immediately get:

Proposition 5.7. There exist a positive constant C0 such that for any integer n,

P(ν > n) ≤ C0√
n
max{1,u2(1) − u1(1)} . (46)

The above proposition allows us to prove Theorem 5.1.

Proof of Theorem 5.1. It is easy to observe that

gβν (u1) = gβν (u2) implies that gm(u1) = gm(u2)

for some m such that m ≤ βν . In other words

Tν := gβν (u1)
↑(2)− u1(2) = gβν (u1)

↑(2)− u2(2)

dominates the actual coalescing time T (u1,u2) of the two paths. For any ℓ ≥ 0, clearly the time taken
between ℓ-th and ℓ + 1-th renewals are dominated by the width random variable Wℓ+1 as defined in
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(26). Consider an i.i.d. sequence {Wi : i ≥ 1}, each having the same distribution as W, where W
is a random variable with sub-exponentially decaying tail such that the conditional distribution of
Wℓ+1 | Gℓ is dominated by W (for details see Proposition 4.4). Choose c = 1/(E(2W)) and we have,

P(Tν > t) ≤ P

( ⌊ct⌋+1∑

ℓ=1

Wℓ ≥ t
)
+ P(ν > ct)

≤ P

( ⌊ct⌋+1∑

ℓ=1

(Wℓ − E(W)) ≥ t(1− cE(W))
)
+

C0√
ct

max{1,u2(1)− u1(1)}

≤
Var
(∑⌊ct⌋+1

ℓ=1 Wℓ

)

(t(1− cE(W))2
+

C0√
ct

max{1,u2(1) − u1(1)}

≤ (⌊ct⌋ + 1)Var(W)

(t/2)2
+

C0√
ct

max{1,u2(1)− u1(1)}

≤ C1√
t
max{1,u2(1)− u1(1)} ,

for a suitable choice of constant C1 > 0. This completes the proof.

Remark 5.8. Let us end this section with a final remark. For the DSF, Coupier and Tran showed that
the coalescence time between any two DSF paths is almost surely finite [15], which uses Burton-Keane
argument. This method gives an independent proof that the coalescence time between DSF paths πu1

and πu2 is almost surely finite. It is also important to observe that this method is very robust. Similar
arguments as above show that the conditions of Theorem 5.4 hold for other drainage network models
which are also in the basin of attraction of the BW [9, 11, 16, 25, 31]. Actually both models studied in
[11, 31] have crossing paths and we can easily apply Corollary 5.6 to deal with processes which arise
from absolute distance between paths which may cross over without coalescing. In such situations, if we
have that the paths behave nearly independently when they are far apart, almost all the conditions go
through as above. While dealing with crossing paths, we may have to restrict that the individual paths
are of small sizes as opposed to the difference of increments that we consider for non-crossing paths.

6 Convergence to the Brownian web

This section is devoted to the proof of our main result, namely Theorem 1.2, but in fact we prove a
stronger version stating that the sequence {(Xn, X̂n) : n ≥ 1}, where Xn denotes the scaled DSF and

X̂n its scaled dual forest, converges in distribution to the BW and its dual (W, Ŵ). Before stating

Theorem 1.2, we define the scaled dual forest X̂n and the dual Brownian web Ŵ.

Let us first specify a dual forest F̂ to the DSF F. We start with the dual vertex set V̂ . For any
(x, t) ∈ R2, let (x, t)r ∈ N be the unique Poisson point such that

• (x, t)r(2) < t, h((x, t)r)(2) ≥ t and π(x,t)r (t) > x where π(x,t)r denotes the path in X starting
from (x, t)r;

• there is no path π ∈ X with σπ < t and π(t) ∈ (x, π(x,t)r (t)).
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Hence, π(x,t)r is the nearest path in X to the right of (x, t) starting strictly before time t. It is useful
to observe that π(x,t)r is defined for any (x, t) ∈ R2. Similarly, π(x,t)l denotes the nearest path to the
left of (x, t) which starts strictly before time t. Now, for each (x, t) ∈ N the nearest left and right dual
vertices are respectively defined as

r̂(x,t) :=
(
(x+ π(x,t)r(t))/2, t

)
and l̂(x,t) :=

(
(x+ π(x,t)l(t))/2, t

)
.

Then, the dual vertex set V̂ is given by V̂ := {r̂(x,t), l̂(x,t) : (x, t) ∈ N}.
Next, let us define the dual ancestor ĥ(y, s) = ĥ((y, s),N ) of (y, s) ∈ V̂ as the unique vertex in V̂

given by

ĥ(y, s) :=

{
l̂(y,s)r if (y, s)r(2) > (y, s)l(2)

r̂(y,s)l otherwise.

The dual edge set is then Ê := {〈(y, s), ĥ(y, s)〉 : (y, s) ∈ V̂ }. Clearly, each dual vertex has exactly
one outgoing edge which goes in the downward direction. Hence, the dual graph F̂ := (V̂ , Ê) does not
contain any cycle. This forest is entirely determined from F without extra randomness. We obtain
a dual (or backward) path π̂(y,s) ∈ Π̂ starting at (y, s), by linearly joining the successive ĥ(·) steps.
Thus, X̂ := {π̂(y,s) : (y, s) ∈ V̂ } denotes the collection of all dual paths obtained from F̂.

x r̂xl̂x

xl

xr

Figure 8: Here is a picture of the DSF F (in upward direction) and its dual forest F̂ (in downward direction).

Vertices of the DSF are black circles whereas dual vertices are grey squares. In particular, the vertex x produces

two dual vertices l̂x and r̂x. On this picture, (r̂x)r = xr and (r̂x)l = xl with xr(2) > xl(2): this implies that

ĥ(r̂x) = l̂xr
. The same is true for l̂x.

Let us recall that Xn = Xn(γ, σ) for γ, σ > 0 and n ≥ 1, is the collection of n-th order diffusively
scaled paths. See (2). In the same way, we define X̂n = X̂n(γ, σ) as the collection of diffusively scaled
dual paths. For any dual path π̂ with starting time σπ̂, the scaled dual path π̂n(γ, σ) : [−∞, σπ̂/n

2γ] →
[−∞,∞] is given by

π̂n(γ, σ)(t) := π̂(n2γt)/nσ . (47)

For each n ≥ 1, the closure X̂ n of X̂n in (Π̂, dΠ̂) is a (Ĥ,BĤ)-valued random variable.
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Now, let us introduce the dual Brownian web Ŵ. For this, we need a topology on the family of
backward paths similar to the one associated to (Π, dΠ). As in the definition of Π, let Π̂ be the collection
of all continuous paths π̂ with starting time σπ̂ ∈ [−∞,∞] such that π̂ : [−∞, σπ̂] → [−∞,∞] ∪ {∗}
with π̂(−∞) = ∗ and, when σπ̂ = ∞, π̂(∞) = ∗. As earlier t 7→ (π̂(t), t) is continuous from [−∞, σπ̂]
to (R2

c , ρ). We thus equip Π̂ with the metric

dΠ̂(π̂1, π̂2) = | tanh(σπ̂1)− tanh(σπ̂2)|

∨ sup
t≤σπ̂1

∨σπ̂2

∣∣∣tanh(π̂1(t ∧ σπ̂1))

1 + |t| − tanh(π̂2(t ∧ σπ̂2))

1 + |t|
∣∣∣

making (Π̂, dΠ̂) a complete, separable metric space. Let us recall that with a slight abuse of notation,

the closure of any element X in (Π, dΠ) or (Π̂, d
Π̂
) will be still denoted by X.

The metric space of compact sets of Π̂ is denoted by (Ĥ, dĤ), where dĤ is the Hausdorff metric on

Ĥ, and let BĤ be the corresponding Borel σ-field. The BW and its dual denoted by (W, Ŵ) are a

(H× Ĥ,BH × BĤ)-valued random variable such that:

(i) Ŵ is distributed as −W, the BW rotated 1800 about the origin;

(ii) W and Ŵ uniquely determine each other: Ŵ consists of a collection of coalescing paths running
backward in time and that a.s. do not cross the paths of W, in the sense that for any paths
π ∈ W and π̂ ∈ Ŵ such that σπ < σπ̂, we have for all s, t such that σπ ≤ s < t ≤ σπ̂,

(π(s)− π̂(s))(π(t) − π̂(t)) ≥ 0 . (48)

See Schertzer et al. [27, Theorem 2.4]. The interaction between the paths in W and Ŵ is that of
Skorohod reflection (see [28]).

We can finally state our main result:

Theorem 6.1. There exist σ = σ(λ) > 0 and γ = γ(λ) > 0 such that the sequence

{(
X n(γ, σ), X̂ n(γ, σ)

)
: n ≥ 1

}

converges in distribution to (W, Ŵ) as (H× Ĥ,BH×Ĥ)-valued random variables as n→ ∞.

Because of the intricate dependencies of the DSF model, we are not able to apply the earlier
techniques available in the literature, as Theorem 6.2 below, in order to obtain Theorem 1.2. This
is the reason why we provide in Section 6.1 new convergence criteria (Theorem 6.3) regarding joint

convergence to (W, Ŵ) for non-crossing path models. Let us mention here that ideas sustaining this
result are already present in [24] (Section 2.3). In Section 6.2, we use results obtained in Sections 4
and 5 to show that the sequence {(Xn, X̂n) : n ≥ 1} satisfies the conditions of Theorem 6.3.

6.1 Convergence criteria for non-crossing path models

Let us recall and comment the first convergence criteria to the BW, provided by Fontes et al. [18], in
order to motivate new convergence criteria given in Theorem 6.3. This section focuses on non-crossing
path models. The reader may refer to [27] for a very complete overview on the topic.
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Let Ξ ⊂ Π. For t > 0 and t0, a, b ∈ R with a < b, consider the counting random variable ηΞ(t0, t; a, b)
defined as

ηΞ(t0, t; a, b) := Card
{
π(t0 + t) : π ∈ Ξ, σπ ≤ t0 and π(t0) ∈ [a, b]

}
(49)

which considers all paths in Ξ, born before t0, that intersect [a, b] at time t0 and counts the number
of different positions these paths occupy at time t0 + t. In Theorem 2.2 of [18], Fontes et al. provided
the following convergence criteria.

Theorem 6.2 (Theorem 2.2 of [18]). Let {Ξn : n ∈ N} be a sequence of (H, BH) valued random
variables with non-crossing paths. Assume that the following conditions hold:

(I1) Fix a deterministic countable dense set D of R2. For each x ∈ D, there exists πxn ∈ Ξn such

that for any finite set of points x1, . . . ,xk ∈ D, as n → ∞, we have (πx
1

n , . . . , πx
k

n ) converges

in distribution to (W x
1
, . . . ,W x

k
), where (W x

1
, . . . ,W x

k
) denotes coalescing Brownian motions

starting from the points x1, . . . ,xk.

(B1) For all t > 0, lim supn→∞ sup(a,t0)∈R2 P(ηΞn(t0, t; a, a+ ǫ) ≥ 2) → 0 as ǫ ↓ 0.

(B2) For all t > 0, 1
ǫ lim supn→∞ sup(a,t0)∈R2 P(ηΞn(t0, t; a, a+ ǫ) ≥ 3) → 0 as ǫ ↓ 0.

Then Ξn converges in distribution to the standard Brownian web W as n→ ∞.

Let us first mention that for a sequence of (H,BH)-valued random variables {Ξn : n ∈ N} with
non-crossing paths, Criterion (I1) implies tightness (see Proposition B.2 in the Appendix of [18] or
Proposition 6.4 in [27]) and hence subsequential limit(s) always exists. Moreover, Criterion (B1) has
in fact been shown to be redundant with (I1) for non-crossing path models (see Theorem 6.5 of [27]).
Combining (I1) with Theorem 1.1, we obtain that any such subsequential limit Ξ a.s. contains a
random subset which is distributed as the standard BW W.

There are several approaches to prove the other inclusion Ξ ⊂ W. Criterion (B2) is often verified
by applying an FKG type correlation inequality together with a bound on the distribution of the
coalescence time between two paths. However, FKG is a strong property which may not hold for
models with interactions. This strategy seems really hard to carry out in the DSF context. In the
literature, new criteria have been suggested to replace (B2): let us mention for instance Criterion (E)
proposed by Newman et al [22]. See also Theorem 6.3 of Schertzer et al. [27]. In the same reference,
Schertzer et al. have given in Theorem 6.6 a new criterion replacing (B2), called the wedge condition.
Our convergence result (Theorem 6.3 below) appears as a generalization of Theorem 6.6 of [27] by
considering the joint convergence of {(Ξn, Ξ̂n) : n ≥ 1} to the BW and its dual. Here, Ξ̂n merely
denotes a (Ĥ, B̂Ĥ)-valued random variable made up of paths running backward in time. Theorem 6.3
also replaces the wedge condition by the fact that no limiting primal and dual paths can spend positive
Lebesgue time together: this is condition (iv). We believe that Theorem 6.3 is robust and can be
applied for studying convergence to the BW for a large variety of models with non-crossing paths.

Theorem 6.3. Let {(Ξn, Ξ̂n) : n ≥ 1} be a sequence of (H× Ĥ,BH×Ĥ)-valued random variables with
non-crossing paths only, satisfying the following assumptions:

(i) For each n ≥ 1, paths in Ξn do not cross (backward) paths in Ξ̂n almost surely: there does not
exist any π ∈ Ξn, π̂ ∈ Ξ̂n and t1, t2 ∈ (σπ, σπ̂) such that (π̂(t1)−π(t1))(π̂(t2)−π(t2)) < 0 almost
surely.

(ii) {Ξn : n ∈ N} satisfies (I1).
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(iii) {(π̂n(σπ̂n
), σπ̂n

) : π̂n ∈ Ξ̂n}, the collection of starting points of all the backward paths in Ξ̂n, as
n→ ∞, becomes dense in R2.

(iv) For any sub sequential limit (Z, Ẑ) of {(Ξn, Ξ̂n) : n ∈ N}, paths of Z do not spend positive
Lebesgue measure time together with paths of Ẑ, i.e., almost surely there do not exist π ∈ Z and
π̂ ∈ Ẑ such that

∫ σπ̂

σπ
1π(t)=π̂(t)dt > 0.

Then (Ξn, Ξ̂n) converges in distribution to (W, Ŵ) as n→ ∞.

This section ends with the proof of Theorem 6.3.

Proof. As mentioned in Section 6.2 of [27], conditions (i) and (ii) imply that the sequence {(Ξn, Ξ̂n) :
n ≥ 1} is jointly tight and then subsequential limit(s) always exists. Let (Z, Ẑ) be one of them. Our

goal is to identify the distribution of this limiting value with (W, Ŵ).
As the sequence {Ξn : n ≥ 1} satisfies (I1), for any (x, t) ∈ Q2, there a.s. exists a path π(x,t) in Z

starting from the point (x, t) and distributed as a Brownian motion starting from x at time t. Because
of the non-crossing paths property of the limit Z– which inherits this property from Ξn (condition
(i))–, similar arguments as in the proof of Proposition 3.1 of [18] ensure that π(x,t) is a.s. the only
path in Z starting at (x, t). This means that ZQ2 is distributed as a collection of coalescing Brownian
motions:

ZQ2
d
= WQ2 . (50)

(See also discussions in Section 6.2 of [27]).
In order to assert that the closure Z of ZQ2 in (Π, dΠ) is a standard Brownian web, we have to

prove that Z contains no more paths than W. This is the role of the wedge condition and Theorem 6.6
of [27]. Let us first introduce some notation. For any backward paths π̂l and π̂r in Π̂ that are ordered
with π̂l(s) < π̂r(s) at time s := min{σπ̂r , σπ̂l}, we define T (π̂l, π̂r) := sup{t < s : π̂l(t) = π̂r(t)}
(possibly equal to −∞) as the first hitting time of π̂l and π̂r (which is actually the coalescing time of
these paths). The wedge with left boundary π̂l and right boundary π̂r is the following open set of R2:

A(π̂l, π̂r) :=
{
(y, u) ∈ R2 : T (π̂l, π̂r) < u < s and π̂l(u) < y < π̂r(u)

}
. (51)

A path π ∈ Π, is said to enter the wedge A(π̂l, π̂r) from outside if there exist t1, t2 with σπ < t1 < t2
such that (π(t1), t1) /∈ Ā and (π(t2), t2) ∈ A, where Ā denotes the closure of A in R2. The bottom point
of A(π̂l, π̂r) is (π̂l(T (π̂l, π̂r)), T (π̂l, π̂r)) = (π̂r(T (π̂l, π̂r)), T (π̂l, π̂r)). The wedge condition states that

a.s. no path in Z enters any wedge of ẐQ2 from outside.

This is Criterion (U) of [27]. This condition combined with (i), (ii) and (iii) implies (Theorem 6.6
of [27]) that Ξn converges in distribution to W as n tends to infinity, i.e., Z is distributed as W.
By condition (i), primal and dual paths do not cross with probability 1. Hence, the only way for a
path π in Z to enter a wedge of ẐQ2 from outside is through its bottom point by spending a time of
positive Lebesgue measure with the dual path started from the bottom point of the wedge. But this
is forbidden by condition (iv). So the wedge condition holds and Z is distributed as W.

Next, we focus on the dual paths in Ẑ. From condition (iii), it follows that for any (x, t) ∈ Q2,
a.s. there exists a backward path π̂(x,t) in Ẑ starting from (x, t). Since paths in Z and Ẑ do not cross,
the position of π̂(x,t) at the rational time s < t can be specified as follows:

π̂(x,t)(s) = sup{y ∈ Q : π(y,s) ∈ ZQ2 , π(y,s)(t) < x}
= inf{y ∈ Q : π(y,s) ∈ ZQ2 , π(y,s)(t) > x},
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which means that the dual paths in ẐQ2 are uniquely determined by the forward paths in ZQ2 . Since

the dual paths in Ŵ do not cross the paths in W, it follows that the dual paths in ŴQ2 are also a.s.
determined by the forward paths in WQ2 . We then deduce from (50) that

ẐQ2
d
= ŴQ2 .

As previously, we can conclude using conditions (i) and (iv) that a.s. paths of Ẑ do not enter any
wedge in ZQ2 , which has the same distribution as WQ2 , from outside. We then conclude thanks to
the next result which is a slight variant of Theorem 1.9 of [29] (see also Theorem 3.9 in [27] and the
following remark), whose proof is omitted here:

Lemma 6.4. Let (W, Ẑ) be a (H× Ĥ,BH×Ĥ)-valued random variable with W denoting the Brownian

web such that a.s. paths of Ẑ do not enter any wedge in WQ2 from outside and the set of starting

points of dual paths in Ẑ, given by {σπ̂ : π̂ ∈ Ẑ}, is dense in R2. Then, we have

Ẑ d
= Ŵ .

This completes the proof of Theorem 6.3: the distribution of the subsequential limit (Z, Ẑ) is

identified as (W, Ŵ).

6.2 Verification of conditions of Theorem 6.3

In this section, we show that the sequence of diffusively scaled path families {(Xn, X̂n) : n ≥ 1} obtained
from the DSF and its dual forest satisfies the conditions in Theorem 6.3.

Conditions (i) and (iii) of Theorem 6.3 hold by construction. Indeed, paths of X do not cross
(backward) paths of X̂ with probability 1. The same holds for the scaled sets Xn and X̂n. Moreover,
the collection {(π̂n(σπ̂n

), σπ̂n
) : π̂n ∈ Ξ̂n} of all starting points of the scaled backward paths in Ξ̂n

becomes dense in R2 as n→ ∞.
The next two sections are respectively devoted to the proofs of conditions (ii) and (iv). This will

conclude the proof of Theorem 1.2.

Remark 6.5. In [15], it was proved that a.s. there is no bi-infinite path in the DSF. It was also
asked whether the non-existence of bi-infinite path in the DSF could be proved using some duality
argument. The joint convergence of the scaled DSF and its dual to the double Brownian web (W, Ŵ)
gives a positive answer to this question. From the construction it is evident that the DSF has a bi-
infinite path if and only if the dual graph is not connected. Now if there are dual paths which do not
coalesce but converge to coalescing Brownian motions under diffusive scaling, then we have at least
one scaled forward path entrapped between these two scaled dual paths. The joint convergence to the
double Brownian web (W, Ŵ) forces that there must be a limiting forward Brownian path approximating
this entrapped forward scaled path. Further this limiting Brownian path must spend positive Lebesgue
measure time together with a backward Brownian path leading to a contradiction and proves that there
is no bi-infinite path in the DSF a.s.

6.2.1 Verification of condition (ii)

Let us prove that the diffusively scaled sequence {Xn : n ≥ 1} satisfies condition (ii), i.e. Criterion
(I1) of Theorem 6.2. The main ingredients on which (I1) is based have been stated in Section 4. On
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one hand, single path of the DSF can be simultaneously broken down into independent pieces through
renewals steps (Proposition 4.5). On the other hand, for multiple paths, they behave independently as
long as they explore disjoint regions and the size of renewal block between any two consecutive renewal
steps admits sub-exponentially decaying tails (Proposition 4.4). Thenceforth, to get (I1), we follow
the strategy of Ferrari et al [16], which was also used in [25]. The proof here is very similar to that of
[25] (see Section 5.1) but in a continuous setting. For this reason we only provide the main steps so
that the reader may understand the method without referring to [25].

Let us first focus on a single path, π0 starting at the origin u
(0)
1 = 0. Let {u(ℓ)

1 : ℓ ≥ 0} be the
sequence of renewal vertices allowing to break down π0 into independent pieces. Let us scale π0 into
π0n as in (2) with

σ :=
(
Var
(
u
(2)
1 (1)− u

(1)
1 (1)

))1/2
and γ := E

(
u
(2)
1 (2)− u

(1)
1 (2)

)
.

The parameters σ and γ depend on λ, k and κ. From now on, the diffusively scaled sequence {Xn :
n ≥ 1} is considered w.r.t. these parameters, but for ease of writing, we drop (γ, σ) from our notation.
Proposition 4.5 together with Corollary 4.7 allow us an application of Donsker’s invariance principle
to show that π0n converges in distribution in (Π, dΠ) to B0 a standard Brownian motion started at 0.

Thus we obtain that, for any sequences (vn) and (wn) such that vn(2) = wn(2) = 0, wn(1) < 0 <
vn(1) with (vn(1) − wn(1))/n → 0, the couple (πwn

n , πvn
n ) converges in distribution (in the suitable

product metric space) to (B0, B0). This result means that whenever two paths are close to each other,
precisely within a o(n) distance, then they will quickly coalesce. Although we can deal without it (see
e.g. [16]), this is directly implied by the estimated on the coalescing time that we have established at
Theorem 5.1: for any t > 0, P

(
T (vn,wn) > n2γt

)
= on(1).

For showing the joint convergence of multiple paths, we use the fact that paths behave (almost)
independently when they are separated by a large distance (roughly, at least of order n). This is
possible since the size of renewal blocks between two consecutive renewal steps admits sub-exponentially
decaying tails. Hence, distributions of two paths far enough from each other can be realized using
independent PPP’s. Thus, when paths come close to each other, they coalesce very quickly as indicated
just above.

This strategy dealing with dependent paths, originally introduced in [16], has been modified later
to treat the case of long range interactions in [9] and [25]. We again emphasize the fact that the
dependency structure of the DSF model is much more complicated compared to models previously
cited.

The main change w.r.t. the proof in Section 5.1 of [25] concerns Proposition 5.4 which estimates
the horizontal deviations of a path in terms of the height of the rectangle on which the configuration
is known. Here is the result corresponding to our setting.

Proposition 6.6. Let 0 < β < α. Consider the rectangle R := [−mβ,mβ]× [0,mβ ] for some m ≥ 1.
Let π0 be the path of the DSF starting at 0. Then,

P

(
sup

0≤s≤mβ

|π0(s)| ≥ 3mα | N ∩R
)
≤ C0 exp

(
− C1m

α−β
2
)
.

Proof. We first consider the case where sup0≤s≤mβ π0(s) ≥ 3mα. The proof for the other case, i.e.,
sup0≤s≤mβ π0(s) ≤ −3mα is similar and hence omitted. Let N ′ be another PPP independent of N .
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We consider two paths, say π(2m
α,0) and π

(2mα,0)
new , both starting from (2mα, 0), and using respectively

the PPP’s N and (N ′ ∩ R) ∪ (N ∩ Rc). In other words, for the path π
(2mα ,0)
new , the PPP inside the

rectangle R has been re-sampled. Since both paths π0 and π(2m
α ,0) are constructed with the same

PPP N , the non-crossing path property applies and gives:

sup
0≤s≤mβ

π0(s) ≥ 3mα ⇒ sup
0≤s≤mβ

π(2m
α,0)(s) ≥ mα .

Now, let us consider the sequence (Wj)j≥1 of sizes of renewal blocks associated with the single path

π
(2mα,0)
new . By construction, it does not depend on the configuration N ∩ R. After each renewal step,

the y-ordinate of the moving vertex increases by at least κ ≥ 6 and hence the path π
(2mα ,0)
new can admit

at most ⌊mβ⌋ renewal steps before crossing the horizontal line {x : x(2) = mβ}. So, on the event

A :=
{ ⌊mβ⌋∑

j=1

Wj ≤ mα
}
,

π
(2mα,0)
new cannot exit the rectangle [mα, 3mα]× [0,mβ ]. Moreover, on A, the paths π(2m

α,0) and π
(2mα,0)
new

must agree over time interval [0,mβ ]. We can then write:

P

(
sup

0≤s≤mβ

π0(s) ≥ 3mα | N ∩R
)

≤ P
(

sup
0≤s≤mβ

π(2m
α ,0)(s) ≥ mα | N ∩R

)

≤ P

(
sup

0≤s≤mβ

π(2m
α ,0)

new (s) ≥ mα , A | N ∩R
)
+ P

(
Ac | N ∩R

)

= P
(
Ac | N ∩R

)
= P(Ac) .

We conclude using Proposition 4.4:

P(Ac) ≤ ⌊mβ⌋P(W ≥ mα−β) ≤ C0 exp
(
− C1m

α−β
2
)
,

for suitable positive constants C0, C1.
Similar argument using paths starting from the point (−2mα, 0) completes the proof.

6.2.2 Verification of condition (iv)

To show condition (iv), we mainly follow the proof of Theorem 2.9 in [24], which was in a discrete
setting. As a key ingredient, the coalescence time estimate (Theorem 5.1) will be used in the proof of
Lemma 6.7 below.

Let (Z, Ẑ) be any subsequential limit of {(Xn, X̂n) : n ≥ 1}. By Skorokhod’s representation theorem
we may assume that the convergence happens almost surely. Instead of working with a subsequence,
for ease of notation we may assume that the sequence {(Xn, X̂n) : n ≥ 1} converges to (Z, Ẑ) almost
surely in the (H× Ĥ, dH×Ĥ) metric space.

We have to prove that, with probability 1, paths in Z do not spend positive Lebesgue measure
time together with the dual paths in Ẑ. This means that for any δ > 0 and any integer m ≥ 1, the
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probability of the event

A(δ,m) :=





∃ paths π ∈ Z, π̂ ∈ Ẑ
and t0 ∈ R s.t.

−m < σπ < t0 < t0 + δ < σπ̂ < m and −m < π(t) = π̂(t) < m
for all t ∈ [t0, t0 + δ]





has to be 0.

To show that P(A(δ,m)) = 0, we introduce a generic event Bǫ
n(δ,m) defined as follows. Given an

integer m ≥ 1 and δ, ǫ > 0,

Bǫ
n(δ,m) :=





∃ paths πn1 , π
n
2 , π

n
3 ∈ Xn s.t. σπn

1
, σπn

2
≤ 0, σπn

3
≤ δ

and πn1 (0), π
n
1 (δ) ∈ [−m,m]

with |πn1 (0)− πn2 (0)| < ǫ but πn1 (δ) 6= πn2 (δ)
and with |πn1 (δ)− πn3 (δ)| < ǫ but πn1 (2δ) 6= πn3 (2δ)





.

The event Bǫ
n(δ,m) means that there exists a path πn1 localized in [−m,m] at time 0 as well as at time

δ which is approached (within distance ǫ) by two path πn2 and πn3 respectively at times 0 and δ while
still being different from them respectively at time δ and 2δ. Thanks to the coalescence time estimate
(Theorem 5.1), the following lemma, proved at the end of the section, shows that Bǫ

n(δ,m) has a small
probability:

Lemma 6.7. For any integer m ≥ 1, real numbers ǫ, δ > 0, there exists a constant C0(δ,m) > 0 (only
depending on δ and m) s. t. for all large n,

P(Bǫ
n(δ,m)) ≤ C0(δ,m) ǫ .

Let us now explain how Lemma 6.7 allows us to conclude. For j = 1, . . . , ⌊6mδ ⌋, let us set tj :=
−m+ (jδ)/3 and

Bǫ
n(δ,m; j)

:=





∃ paths πn1 , π
n
2 , π

n
3 ∈ Xn s.t. σπn

1
, σπn

2
≤ tj , σπn

3
≤ tj+1 and

πn1 (t
j), πn1 (t

j+1) ∈ [−2m, 2m] with |πn1 (tj)− πn2 (t
j)| < 4ǫ

but πn1 (t
j+1) 6= πn2 (t

j+1) and with |πn1 (tj+1)− πn3 (t
j+1)| < 4ǫ

but πn1 (t
j+2) 6= πn3 (t

j+2)





.

The event Bǫ
n(δ,m; j) corresponds to the event B4ǫ

n (δ/3, 2m) considered in Lemma 6.7, and shifted up
by tj . Hence, by the translation invariance property of the DSF and Lemma 6.7:

P(Bǫ
n(δ,m; j)) = P(B4ǫ

n (δ/3, 2m)) ≤ 4C0(δ/3, 2m) ǫ

for all n large enough. The expected result will follow from:

A(δ,m) ⊂ lim inf
n→∞

⌊ 6m
δ

⌋⋃

j=1

Bǫ
n(δ,m; j) , (52)

47



since we then have:

P(A(δ,m)) ≤ lim sup
ǫ→0

P

(
lim inf
n→∞

∪⌊ 6m
δ

⌋
j=1 Bǫ

n(δ,m; j)
)

≤ lim sup
ǫ→0

lim inf
n→∞

⌊ 6m
δ

⌋∑

j=1

P(Bǫ
n(δ,m; j))

≤ lim sup
ǫ→0

6m

δ
4C0(δ/3, 2m) ǫ = 0 .

It then remains to prove (52). Recall that (Z, Ẑ) is a subsequential limit for (Xn, X̂n). By Sko-
rohod’s representation theorem we may assume that the convergence happens almost surely. Let us
work on the event A(δ,m), and consider π ∈ Z, π̂ ∈ Ẑ and t0 ∈ (σπ, σπ̂) as in the definition the event
A(δ,m). It is useful to recall that the convergence of (Xn, X̂n) to (Z, Ẑ) w.r.t. the Hausdorff metric
implies that, for all n large enough, we can find πn in Xn starting before time t0 and π̂n ∈ X̂n starting
after t0 + δ that approximate π and π̂ in the sense that

max
{
|σπ − σπn |, |σπ̂ − σπ̂n |, |π(σπ)− πn(σπn)|, |π̂(σπ̂)− π̂n(σπ̂n)|,

sup
t∈[t0,t0+δ]

|π(t)− πn(t)| ∨ |π̂(t)− π̂n(t)|
}
< ǫ1.

Let us first assume that πn(t0) < π̂n(t0). Since by construction paths in Xn can not cross paths in
X̂n, we must have πn(t) < π̂n(t) on the whole time interval [t0, t0 + δ]. Let j0 be the first index such
that j0 := min{j ≥ 1 : −m+ (jδ)/3 ≥ t0}. πn plays the role of πn1 as in the definition of Bǫ

n(δ,m; j0)
and as πn2 , we consider the (scaled) DSF path starting from the nearest scaled Poisson point (x, t)
to the point (π̂n(t

j0), tj0) with t < tj0 and x > π̂n(t). As the forward paths in Xn can not cross the
dual paths in X̂n, we must have πn1 (t

j0 + δ/3) 6= πn2 (t
j0 + δ/3). It is not difficult to observe that for

all large n, the paths πn1 and πn2 satisfies the definition of Bǫ
n(δ,m; j). With a similar proof, we can

show the existence of a third path πn3 satisfying the requirements Bǫ
n(δ,m; j). The other case, i.e.,

πn(t0) > π̂n(t0) can be treated similarly. This completes the proof of (52). ✷

Let us end with the proof of Lemma 6.7 which is close to the proof of Lemma 2.11 of [24]. Both
results are mainly based on the coalescence time tail estimates. With respect to Lemma 2.11 of [24]
two additional difficulties appear here: paths of the DSF are non-Markovian and constructed on a
Poisson point process. Proposition 4.4 will help us to control this long range dependence.

Proof of Lemma 6.7. Fix 0 < 2β < α < 1. First, with high probability, we show that it is enough to
consider the (unscaled) paths starting from Poisson vertices in a ‘thin’ rectangular strip S to study
the event Bǫ

n(δ,m):
S := [−2nσm, 2nσm]× [−2nβ, 0].

This will help us to control the explored region until these paths cross the line {x ∈ R2 : x(2) = n2γδ}.
Define the boxes of side length nβ with lower sides on the lines y = −2nβ, y = −nβ and y = 0.

These boxes are given for 0 ≤ j ≤ ⌊4nσm/nβ⌋ and 0 ≤ l ≤ 2 by

Rl(j) := [−2nσm+ jnβ ,−2nσm+ (j + 1)nβ ]× [−lnβ, (−l + 1)nβ ].
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Define the event Dn as

Dn :=

⌊4nσm/nβ⌋⋂

j=0

∩2
l=0{Rl(j) ∩ N 6= ∅}.

In other words, the event Dn states that each of the above boxes must contain at least one Poisson
point. It is not difficult to see that limn→∞ P(Dc

n) = 0. We observe that on the event Dn, all the paths
crossing the segment [−nσm,nσm]× {0} must start from Poisson points inside the rectangular strip
S otherwise it contradicts the fact that interior of a history semi-ball must be free of Poisson points.
Hence on the event Bǫ

n(δ,m)∩Dn, the scaled paths πn1 and πn2 considered in Bǫ
n(δ,m) must start from

the (scaled) Poisson vertices in the rectangular strip S.
Next we show that evolution of the paths starting from Poisson points in S until they cross the

line y =∈ n2γδ is independent of the point process N ∩H+(n2γδ + 2nβ). Define the event

En := { There exists a path π starting from Poisson point in S

such that the history generated by it till it crosses

the line y = n2γδ does not intersect with H+(n2γδ + nβ)}.

Since between any two successive (marginal) renewals, the concerned path must progress at least κ+1,
any path starting from a Poisson point in S can have at most ⌊(n2γδ + 2nβ)/(κ + 1)⌋ + 1 renewals
until it crosses the line y = n2γδ. Thanks to Proposition 4.4, as the width of the region explored
between any two successive renewals decays sub-exponentially and the region S has area 4nσm× 2nβ ,
by applying union bound we have that the probability P(Ec

n) decays sub-exponentially. Hence for all
large n, we can focus on the event P(Bǫ

n(δ,m) ∩Dn ∩ En).
We consider the event {Bǫ

n(δ,m),Dn, En, nσπ
n
1 (δ) ∈ [k, k+1)} for k ∈ Z. Define the event Gǫ

n(δ,m)
as

Gǫ
n(δ,m) :=

{
∃ paths πn1 , π

n
2 ∈ Xn s.t. σπn

1
, σπn

2
≤ 0 and πn1 (0), π

n
1 (δ) ∈ [−m,m]

with |πn1 (0)− πn2 (0)| < ǫ but πn1 (δ) 6= πn2 (δ)

}
.

Because of the non-crossing nature of paths, we must have

{Bǫ
n(δ,m),Dn, En, nσπ

n
1 (δ) ∈ [k, k + 1)} ⊂

{π(k−nσǫ,n2γδ)(2n2γδ) 6= π(k+nσǫ,n2γδ)(2n2γδ),

Gǫ
n(δ,m),Dn, En, nσπ

n
1 (δ) ∈ [k, k + 1)},

because these paths are separated by πn1 and πn3 .
For ⌊−nσm⌋ − 1 ≤ k ≤ ⌊nσm⌋, define the event Fn(k) as

Fn(k) :=
{
k − nσǫ− nα ≤ π(k−nσǫ,n2γδ)(n2γδ + nβ)

≤ π(k+nσǫ,n2γδ)(n2γδ + nβ) ≤ k + nσǫ+ nα
}
.

The event Fn(k) asks that the paths starting at (k−nσǫ, n2γδ) and (k+nσǫ, n2γδ) do not fluctuate too
much till time n2γδ+nβ. We showed earlier that, on the event Bǫ

n(δ)∩Dn∩En, the DSF paths starting
from Poisson vertices in the rectangular strip S do not explore the point process N ∩ H+(n2γδ + nβ)
until they cross the line y = n2γδ. Recall that 0 < 2β < α < 1 and observe that on the event Fn(k)

c,
at least one of the two paths starting from (k − nσǫ, n2γδ) and (k + nσǫ, n2γδ) admits fluctuations
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larger than nα on the time interval [n2γδ, n2γδ+nβ]. By Proposition 6.6, this has a probability smaller

than C0e
−C1n(α−β)/2

. This gives that for any ⌊−nσm⌋ − 1 ≤ k ≤ ⌊nσm⌋, the probability of the event

(Fn(k))
c ∩ {nσπn1 (δ) ∈ [k, k + 1)} ∩Bǫ

n(δ,m) ∩Dn ∩ En

decays to 0 sub-exponentially and uniformly in k. Hence we can focus on the event Fn(k)∩{nσπn1 (δ) ∈
[k, k + 1)} ∩ Bǫ

n(δ,m) ∩ Dn ∩ En, and the non-crossing path property forces the paths starting at
(k − nσǫ − nα, n2γδ + nβ) and (k + nσǫ + nα, n2γδ + nβ) to be still different at time 2n2γδ. So we
obtain,

P(Fn(k) ∩ {nσπn1 (δ) ∈ [k, k + 1)} ∩Bǫ
n(δ,m) ∩Dn ∩ En)

≤ P
(
{π(k−nσǫ−nα,n2γδ+nβ)(2n2γδ) 6= π(k+nσǫ+nα,n2γδ+nβ)(2n2γδ)}∩
{nσπn1 (δ) ∈ [k, k + 1)} ∩Gǫ

n(δ,m) ∩Dn ∩ En

)
. (53)

Observe that the event {π(k−nσǫ−nα,n2γδ+nβ)(2n2γδ) 6= π(k+nσǫ+nα,n2γδ+nβ)(2n2γδ)} depends only on
the point process N ∩ H+(n2γδ + nβ) and the event {nσπn1 (δ) ∈ [k, k + 1)} ∩ Gǫ

n(δ,m) ∩ Dn ∩ En

depends only on the point process N ∩H−(n2γδ+nβ). Hence we have independence of the two events
in (53) and Theorem 5.1 gives that for all large n,

P
(
π(k−nσǫ−nα,n2γδ+nβ)(2n2γδ) 6= π(k+nσǫ+nα,n2γδ+nβ)(2n2γδ)

)

≤ C0(2nσǫ+ 2nα)√
n2γδ − nβ

≤ C0ǫ

where C0 = C0(δ) > 0 is suitably chosen.
As the events {nσπn1 (δ) ∈ [k, k + 1)} are disjoint for different k ∈ Z, it follows:

⌊nσm⌋∑

k=⌊−nσm⌋−1

P
(
{nσπn1 (δ) ∈ [k, k + 1)} ∩Gǫ

n(δ,m) ∩Dn ∩ En

)
≤ P(Gǫ

n(δ,m)).

Fix any 0 < θ < 1. The above discussion shows that for all large n we have

P(Bǫ
n(δ,m)) ≤ θ + C0ǫP(G

ǫ
n(δ,m)).

In order to estimate the probability of Gǫ
n(δ,m) we define another event

Hǫ(δ,m, l) := {π(l,0)(n2γδ) 6= π(l+1,0)(n2γδ)} for ⌊−nσm⌋ − 1 ≤ l ≤ ⌊nσm⌋.

By non-crossing property we have that Gǫ
n(δ,m) ⊂ ⋃⌊nσm⌋

l=⌊−nσm⌋−1H
ǫ(δ,m, l). To observe this inclusion

relation, consider the event Bǫ
n ∩ {πn1 (0) < πn2 (0)} and observe that the paths starting from the points

(⌊πn1 (0)⌋, 0) and (⌊πn2 (0)⌋+1, 0) must be different at time n2γδ. Similar reasoning follows for the event
Bǫ

n ∩ {πn1 (0) > πn2 (0)}. Translation invariance of Poisson point process and use of Theorem 5.1 give
that for all ⌊−nσm⌋ − 1 ≤ l ≤ ⌊nσm⌋

P(Hǫ(δ,m, l)) ≤ C0√
n2γδ

.

Hence, for all large n we have

P(Bǫ(δ,m)) ≤θ + C0ǫP(G
ǫ
n(δ,m)) ≤ θ + C0ǫ(2nσm+ 1)P(Hǫ(δ,m, l))

≤θ + C0ǫ,

where C0(m, δ) > 0 is adjusted accordingly. Since θ > 0 is chosen arbitrarily, This completes the
proof.
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7 Theorem 1.3: a sketch of the proof

Recall that the Radial Spanning Tree (RST), initially introduced in [5], is a tree rooted at the origin
O with vertex set N ∪ {O} in which each vertex x ∈ N is connected to the closest Poisson point to x

but inside the open ball {y ∈ R2 : ‖y‖2 < ‖x‖2}. Theorem 2.1 of [5] states that the RST a.s. admits
semi-infinite paths in each direction θ ∈ [0, 2π). In particular, the (random) number χr of semi-infinite
paths of the RST crossing the circle Cr with radius r, tends to infinity with probability 1. Theorem
1.3 claims that

Eχr = o(r3/4+ǫ) , (54)

for any ǫ > 0. Actually, our strategy to prove (54) has been already developed in Section 6 of [13] for
a similar geometric random tree called the Radial Poisson Tree. So we only focus here on the (minor)
changes w.r.t. [13].

By isotropy, it is sufficient to prove that, for 0 < α < 1/4, Eχr(2r
α) tends to 0 as r → ∞ where

χr(2r
α) counts the intersection points between the semi-infinite paths of the RST and the arc of the

circle Cr, centred at (0,−r) and with length 2rα. Approximating the RST around (0,−r) by the DSF
with direction −ey (especially using Lemma 3.4 of [5] instead of Lemma 6.4 of [13]) we show that

lim sup
r→∞

Eχr(2r
α) ≤ lim sup

r→∞
Eηr(α, β, ε) (55)

where ε, β > 0 are such that α < β/2 and β + ε < 1/2, and where ηr(α, β, ε) counts the intersection
points between the horizontal segment [−rα, rα]×{−r} and paths of the DSF starting from the outside
of the rectangle [−rβ/2+ε, rβ/2+ε]× [−r,−r − rβ].

Controlling with high probability the deviations of DSF paths (with Theorem 4.10 of [5] instead
of Lemma 6.6 of [13]), (55) also holds if paths counted by ηr(α, β, ε) are assumed to cross the lower
side of the corresponding rectangle, i.e. the horizontal segment [−rβ/2+ε, rβ/2+ε] × {−r − rβ}. Thus,
standard arguments based on the invariant translation property of the DSF (see the proof of Lemma
6.7 of [13]) leads to

lim sup
r→∞

Eχr(2r
α) ≤ lim sup

r→∞
Eη̃r(α, β) (56)

where η̃r(α, β) is defined as the number of intersection points between the horizontal axis R × {−r}
and DSF paths crossing the segment [−rα, rα]× {−r − rβ}. Thenceforth,

lim sup
r→∞

Eη̃r(α, β) ≤ 1 (57)

allows to conclude. Indeed (57) implies that c(α) := lim supEχr(2r
α) is smaller than 1 for any

0 < α < 1/4. Let M > 0 and α < α′ < 1/4. By isotropy of the RST and for r large enough, we get
Eχr(2r

α′
) ≥MEχr(2r

α). Taking supremum limits, the inequality 1 ≥Mc(α) follows. When M → ∞,
this forces c(α) = 0.

It remains to prove (57). For i = ⌊−rα⌋, . . . , ⌊rα⌋, let us denote by γi the DSF path starting at the
deterministic point (i,−r − rβ) and by Yi the number of edges crossing the horizontal unit segment
[i, i+ 1)× {−r − rβ}. Then, a.s.

η̃r(α, β) ≤ 1 +

⌊rα⌋∑

i=⌊−rα⌋

(Yi + 1)1{γi 6=γi+1 at time −r} , (58)
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where the event {γi 6= γi+1 at time −r} means that paths γi and γi+1 are still disjoint when they cross
the horizontal axis R×{−r}. Since α < β/2, one can find parameters p, q > 1 such that α < β/(2p) and
1/p + 1/q = 1. Then, the Hölder’s inequality combined with our coalescence time estimate (Theorem
5.1) gives:

Eη̃r(α, β) ≤ 1 + 3rαE(Y0 + 1)1{γ0 6=γ1 at time −r}

≤ 1 + 3rα
(
E(Y0 + 1)q

)1/q
P
(
γ0 6= γ1 at time − r

)1/p

≤ 1 + 3
(
E(Y0 + 1)q

)1/qC1/p
0 rα

rβ/(2p)

which tends to 1 as r → ∞. Above, we have used the fact that the number Y0 of DSF edges crossing
an horizontal segment with unit length, admits moments of all orders. Indeed, the event {Y0 > ℓ} with
large ℓ, forces the existence of an edge counted by Y0 with length larger than ℓδ, for some δ > 0. This
implies the existence of an empty semi-ball with radius ℓδ and the claim easily follows.

In the proof of limEχr(2r
α) = 0, we have worked through a rectangle whose horizontal and vertical

sizes rα and rβ have been chosen as follows. On the one hand, DSF paths inside this rectancle have to
coalesce with high probability, which is ensured whenever α ≤ β/2 (Theorem 5.1). On the other hand,
the approximation of RST paths by DSF paths has to be valid in the whole rectangle, which requires
β < 1/2. The combination of these two conditions explains the exponent 3/4 in Theorem 1.3.

Finally, the proof of the almost sure convergence of χr/r
3/4+ǫ to 0 follows from the convergence in

expectation using the same arguments as in Section 7 of [13].
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